A Paradigm Shift in the Development of Anti-Candida Drugs

Author(s): D.V. Gowda*, M. Afrasim, S.I. Meenakshi, M. Manohar, S. Hemalatha, H. Siddaramaiah, P. Sathishbabu, S.M. Danish Rizvi, T. Hussain, M.A. Kamal

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 28 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The considerable increase in the incidence of Candida infection in recent times has prompted the use of numerous antifungal agents, which has resulted in the development of resistance towards various antifungal agents. With rising Candida infections, the need for design and development of novel antifungal agents is in great demand. However, new therapeutic approaches are very essential in preventing the mortality rate and improving the patient outcome in those suffering from Candida infections.

Objective: The present review objective is to describe the burden, types of Candidiasis, mechanism of action of antifungal agents and its resistance and the current novel approaches used to combat candidiasis.

Methods: We have collected and analyzed 135 different peer-reviewed literature studies pertinent to candidiasis. In this review, we have compiled the major findings from these studies.

Results and Conclusion: The review describes the concerns related to candidiasis, its current treatment strategy, resistance mechanisms and imminent ways to tackle the problem. The review explored that natural plant extracts and essential oils could act as sources of newer therapeutic agents, however, the focus was on novel strategies, such as combinational therapy, new antibodies, utilization of photodynamic therapy and adaptive transfer primed immune cells with emphasis on the development of effective vaccination.

Keywords: Candidiasis, Antifungal agents, Natural plant extracts, Novel drug therapy, Vaccination, VVC.

[1]
Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical appearance of oral candida infection and therapeutic strategies. Front. Microbiol., 2015, 6, 1391.
[http://dx.doi.org/10.3389/fmicb.2015.01391] [PMID: 26733948]
[2]
Gudlaugsson, O.; Gillespie, S.; Lee, K.; Vande Berg, J.; Hu, J.; Messer, S.; Herwaldt, L.; Pfaller, M.; Diekema, D. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis., 2003, 37(9), 1172-1177.
[http://dx.doi.org/10.1086/378745] [PMID: 14557960]
[3]
Ramage, G.; Tomsett, K.; Wickes, B.L.; López-Ribot, J.L.; Redding, S.W.; Antionio, S. Denture stomatitis: a role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2004, 98(1), 53-59.
[http://dx.doi.org/10.1016/j.tripleo.2003.04.002] [PMID: 15243471]
[4]
Razak, P.; Richard, K.; Rekha, T.; Hafiz, K.; Kumar, K.; Sameer, K. Geriatric oral health a review article. J. Int. Oral Health, 2014, 6, 110-116.
[PMID: 25628498]
[5]
Dorko, E.; Jenča, A.; Pilipčinec, E.; Danko, J.; Svický, E.; Tkáciková, L. Candida-associated denture stomatitis. Folia Microbiol. (Praha), 2001, 46(5), 443-446.
[http://dx.doi.org/10.1007/BF02814436] [PMID: 11899479]
[6]
Cumming, C.G.; Wight, C.; Blackwell, C.L.; Wray, D. Denture stomatitis in the elderly. Oral Microbiol. Immunol., 1990, 5(2), 82-85.
[http://dx.doi.org/10.1111/j.1399-302X.1990.tb00232.x] [PMID: 2087353]
[7]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[8]
Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol., 2012, 2012, 26.
[http://dx.doi.org/10.1155/2012/713687]
[9]
Gendreau, L.; Loewy, Z.G. Epidemiology and etiology of denture stomatitis. J. Prosthodont., 2011, 20(4), 251-260.
[http://dx.doi.org/10.1111/j.1532-849X.2011.00698.x] [PMID: 21463383]
[10]
de Paula e Silva. A.C.A.; de Oliveira, H.C.; Fusco-Almeida, A.M.; de Melo, W.C.M.A.; Costa-Orlandi, C.B.; Marcos, C.M.; Mendes-Giannini, M.J.S.; Scorzoni, L.; Assato, P.A. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 1-23.
[11]
De, R. Antifungal activity of components used for decontamination of dental prostheses on the growth of Candida albicans. Rev. Odontol. UNESP, 2014, 43, 137-143.
[http://dx.doi.org/10.1590/rou.2014.018]
[12]
Wiederhold, N.P. Antifungal resistance: current trends and future strategies to combat. Infect. Drug Resist., 2017, 10, 249-259.
[http://dx.doi.org/10.2147/IDR.S124918] [PMID: 28919789]
[13]
Thomaz, D.Y.; de Almeida, J.N., Jr; Lima, G.M.E.; Nunes, M.O.; Camargo, C.H.; Grenfell, R.C.; Benard, G.; Del Negro, G.M.B. An azole-resistant candida parapsilosis outbreak: clonal persistence in the intensive care unit of a brazilian teaching hospital. Front. Microbiol., 2018, 9, 2997.
[http://dx.doi.org/10.3389/fmicb.2018.02997] [PMID: 30568646]
[14]
Rodrigues, M.E.; Silva, S.; Azeredo, J.; Henriques, M. Novel strategies to fight Candida species infection. Crit. Rev. Microbiol., 2016, 42(4), 594-606.
[PMID: 25383647]
[15]
Pianalto, K.M.; Alspaugh, J.A. New horizons in antifungal therapy. J. Fungi (Basel), 2016, 2(4), 10-12.
[http://dx.doi.org/10.3390/jof2040026] [PMID: 29376943]
[16]
Hani, U.; Shivakumar, H.G.; Vaghela, R.; Osmani, R.A.M.; Shrivastava, A. Candidiasis: a fungal infection--current challenges and progress in prevention and treatment. Infect. Disord. Drug Targets, 2015, 15(1), 42-52.
[http://dx.doi.org/10.2174/1871526515666150320162036] [PMID: 25809621]
[17]
Ghazi, S.; Rafei, R.; Osman, M.; El Safadi, D.; Mallat, H.; Papon, N.; Dabboussi, F.; Bouchara, J-P.; Hamze, M. The epidemiology of candida species in the middle east and north africa. J. Mycol. Med., 2019, 29(3), 245-252.
[http://dx.doi.org/10.1016/j.mycmed.2019.07.006] [PMID: 31400864]
[18]
Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi (Basel), 2017, 3(4)E57
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[19]
Kaur, H.; Chakrabarti, A. Strategies to reduce mortality in adult and neonatal candidemia in developing countries. J. Fungi (Basel), 2017, 3(3), 41.
[http://dx.doi.org/10.3390/jof3030041] [PMID: 29371558]
[20]
Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US Hospitals: Analysis of 24, 179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis., 2004, 39, 309-317.
[http://dx.doi.org/10.1086/421946]
[21]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev., 2007, 20(1), 133-163.
[http://dx.doi.org/10.1128/CMR.00029-06] [PMID: 17223626]
[22]
Sardi, J.C.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 2013, 62(Pt 1), 10-24.
[http://dx.doi.org/10.1099/jmm.0.045054-0] [PMID: 23180477]
[23]
Köhler, J.R.; Casadevall, A.; Perfect, J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med., 2014, 5(1)a019273
[http://dx.doi.org/10.1101/cshperspect.a019273] [PMID: 25367975]
[24]
Seyedmousavi, S.H.S.; Ilkit, M. Estimated burden of serious human fungal diseases in turkey. Mycoses, 2018, 62(1), 22-31.
[PMID: 30107069]
[25]
Tati, S.; Davidow, P.; McCall, A.; Hwang-Wong, E.; Rojas, I.G.; Cormack, B.; Edgerton, M. Candida glabrata binding to candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog., 2016, 12(3)e1005522
[http://dx.doi.org/10.1371/journal.ppat.1005522] [PMID: 27029023]
[26]
Akpan, A.; Morgan, R. Oral candidiasis. Postgrad. Med. J., 2002, 78(922), 455-459.
[http://dx.doi.org/10.1136/pmj.78.922.455] [PMID: 12185216]
[27]
Paranhos, Hde. F.; Lovato da Silva, C.H.; de Souza, R.F.; Pontes, K.M. Evaluation of three indices for biofilm accumulation on complete dentures. Gerodontology, 2010, 27(1), 33-40.
[http://dx.doi.org/10.1111/j.1741-2358.2009.00285.x] [PMID: 19545322]
[28]
Cassone, A.; De Bernardis, F.; Santoni, G. Anticandidal immunity and vaginitis: novel opportunities for immune intervention. Am. Soc. Microbiol., 2007, 75, 4675-4686.
[29]
Achkar, J.M.; Fries, B.C. Candida infections of the genitourinary tract. Clin. Microbiol. Rev., 2010, 23(2), 253-273.
[http://dx.doi.org/10.1128/CMR.00076-09] [PMID: 20375352]
[30]
Rowen, J.L.; Thrush, O.C. Mucocutaneous candidiasis. Semin. Perinatol., 2003, 27(5), 406-413.
[http://dx.doi.org/10.1016/S0146-0005(03)00066-1] [PMID: 14626505]
[31]
Firinu, D.; Massidda, O.; Lorrai, M.M.; Serusi, L.; Peralta, M.; Barca, M.P.; Serra, P.; Manconi, P.E. Successful treatment of chronic mucocutaneous candidiasis caused by azole-resistant Candida albicans with posaconazole. Clin. Dev. Immunol., 2011, 2011283239
[http://dx.doi.org/10.1155/2011/283239] [PMID: 21197459]
[32]
Acharya, S.; Lohe, V.K.; Bhowate, R.R. Diagnosis and management of Pseudomembranous candidiasis. J. Otolaryngol. ENT Res., 2017, 8(3), 249.
[http://dx.doi.org/ 10.15406/joentr.2017.08.00249]
[33]
Kim, S.; Woo, E-R.; Lee, D.G. Synergistic antifungal activity of isoquercitrin: apoptosis and membrane permeabilization related to reactive oxygen species in Candida albicans. IUBMB Life, 2019, 71(2), 283-292.
[http://dx.doi.org/10.1002/iub.1973] [PMID: 30481395]
[34]
Jeanmonod, R.; Jeanmonod, D. Vaginal Candidiasis (Vulvovaginal Candidiasis); StatPearls Publishing: Florida, 2019.
[35]
Ben-Ami, R. Treatment of invasive candidiasis: a narrative review. J. fungi (Basel, Switzerland), 2018, 4, 1-18.
[36]
van de Veerdonk, F.L.; Netea, M.G. Treatment options for chronic mucocutaneous candidiasis. J. Infect., 2016, 72(Suppl.), S56-S60.
[http://dx.doi.org/10.1016/j.jinf.2016.04.023] [PMID: 27161991]
[37]
Sinha, S.; Sarkar, R.; Garg, V. Successful treatment of chronic mucocutaneous candidiasis with oral antifungals and levamisole. Indian J. Paediatr. Dermatol., 2015, 16, 159.
[http://dx.doi.org/10.4103/2319-7250.160655]
[38]
Endy Ryan, E.T.; Hill, D.R.; Solomon, T. T.P.; Aronson, N. Hunter’s tropical medicine and emerging infectious diseases, 10th ed; Elsevier: Philadelphia, 2020.
[39]
Vincent, J.L.; Anaissie, E.; Bruining, H.; Demajo, W.; el-Ebiary, M.; Haber, J.; Hiramatsu, Y.; Nitenberg, G.; Nyström, P.O.; Pittet, D.; Rogers, T.; Sandven, P.; Sganga, G.; Schaller, M.D.; Solomkin, J. Epidemiology, diagnosis and treatment of systemic Candida infection in surgical patients under intensive care. Intensive Care Med., 1998, 24(3), 206-216.
[http://dx.doi.org/10.1007/s001340050552] [PMID: 9565801]
[40]
Pilmis, B.; Fanny, Z.Y.; Lortholary, O. Systemic Candidiasis, Fourth ed; Elsevier Ltd: Amsterdam, 2009.
[41]
Dekkerová, J.; Lopez-Ribot, J.L.; Bujdáková, H. Activity of anti-CR3-RP polyclonal antibody against biofilms formed by Candida auris, a multidrug-resistant emerging fungal pathogen. Eur. J. Clin. Microbiol. Infect. Dis., 2019, 38(1), 101-108.
[http://dx.doi.org/10.1007/s10096-018-3400-x] [PMID: 30327897]
[42]
Graninger, W.; Presteril, E.; Schneeweiss, B.; Teleky, B.; Georgopoulos, A. Treatment of Candida albicans fungaemia with fluconazole. J. Infect., 1993, 26(2), 133-146.
[http://dx.doi.org/10.1016/0163-4453(93)92761-K] [PMID: 8473760]
[43]
Wade, A.; Lin, C.H.; Kurkul, C.; Regan, E.R.; Johnson, R.M. Combined toxicity of insecticides and fungicides applied to california almond orchards to honey bee larvae and adults. Insects, 2019, 10(1), 1-11.
[http://dx.doi.org/10.3390/insects10010020] [PMID: 30626043]
[44]
Pasqualotto, A.C.; Denning, D.W. New and emerging treatments for fungal infections. J. Antimicrob. Chemother., 2008, 61(Suppl. 1), i19-i30.
[http://dx.doi.org/10.1093/jac/dkm428] [PMID: 18063600]
[45]
de Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J.O.; de Sousa Cartágenes, M.D.S.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; de Andrade Monteiro, C. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front. Microbiol., 2018, 9, 1351.
[http://dx.doi.org/10.3389/fmicb.2018.01351] [PMID: 30018595]
[46]
Saini, S.C.D. Echinocandin susceptibility profile of fluconazole resistant. Infect. Disord. Drug Targets, 2016, 16, 63-68.
[PMID: 26648186]
[47]
Rajasekharan, S.K.; Lee, J-H.; Lee, J. Aripiprazole repurposed as an inhibitor of biofilm formation and sterol biosynthesis in multidrug-resistant Candida albicans. Int. J. Antimicrob. Agents, 2019, 54(4), 518-523.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.05.016] [PMID: 31173863]
[48]
Lakhani, P.; Patil, A.; Majumdar, S. Challenges in the polyene- and azole-based pharmacotherapy of ocular fungal infections. J. Ocul. Pharmacol. Ther., 2019, 35(1), 6-22.
[http://dx.doi.org/10.1089/jop.2018.0089] [PMID: 30481082]
[49]
Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: evolution, mechanisms and impact. Curr. Opin. Microbiol., 2018, 45, 70-76.
[http://dx.doi.org/10.1016/j.mib.2018.02.005] [PMID: 29547801]
[50]
Krishnasamy, L.; Krishnakumar, S.; Kumaramanickavel, G.S.C. Molecular mechanisms of antifungal drug resistance in candida species. J. Clin. Diagn. Res., 2018, 12, 1-6.
[51]
Albertson, G.D.; Niimi, M.; Cannon, R.D.; Jenkinson, H.F. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob. Agents Chemother., 1996, 40(12), 2835-2841.
[http://dx.doi.org/10.1128/AAC.40.12.2835] [PMID: 9124851]
[52]
Sanglard, D.; Ischer, F.; Monod, M.; Bille, J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology, 1997, 143(Pt 2), 405-416.
[http://dx.doi.org/10.1099/00221287-143-2-405] [PMID: 9043118]
[53]
Kothavade, R.J.; Kura, M.M.; Valand, A.G.; Panthaki, M.H. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J. Med. Microbiol., 2010, 59(Pt 8), 873-880.
[http://dx.doi.org/10.1099/jmm.0.013227-0] [PMID: 20413622]
[54]
Dick, J.D.; Merz, W.G.; Saral, R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob. Agents Chemother., 1980, 18(1), 158-163.
[http://dx.doi.org/10.1128/AAC.18.1.158] [PMID: 7416742]
[55]
Balashov, S.V.; Park, S.; Perlin, D.S. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob. Agents Chemother., 2006, 50(6), 2058-2063.
[http://dx.doi.org/10.1128/AAC.01653-05] [PMID: 16723566]
[56]
Negredo, E.; Cruz, L.; Paredes, R.; Ruiz, L.; Fumaz, C.R.; Bonjoch, A.; Gel, S.; Tuldrà, A.; Balagué, M.; Johnston, S.; Arnó, A.; Jou, A.; Tural, C.; Sirera, G.; Romeu, J.; Clotet, B. Virological, immunological, and clinical impact of switching from protease inhibitors to nevirapine or to efavirenz in patients with human immunodeficiency virus infection and long-lasting viral suppression. Clin. Infect. Dis., 2002, 34(4), 504-510.
[http://dx.doi.org/10.1086/324629] [PMID: 11797178]
[57]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[58]
Julia, C. Schwarz, Hanspeter K ¨Ahlig, Nadejda B. Matsko, Martin Kratzel, Markus Husa, C.V. Decrease of liposomal size and retarding effect on fluconazole skin permeation by lysine derivatives. J. Pharm. Sci., 2011, 100, 2911-2919.
[http://dx.doi.org/10.1002/jps.22513]
[59]
Sinico, C.; Fadda, A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv., 2009, 6(8), 813-825.
[http://dx.doi.org/10.1517/17425240903071029] [PMID: 19569979]
[60]
Alam, M.; Zubair, S.; Farazuddin, M.; Ahmad, E.; Khan, A.; Zia, Q.; Malik, A.; Mohammad, O. Development, characterization and efficacy of niosomal diallyl disulfide in treatment of disseminated murine candidiasis. Nanomedicine (Lond.), 2013, 9(2), 247-256.
[http://dx.doi.org/10.1016/j.nano.2012.07.004] [PMID: 22858760]
[61]
Veloso, D.F.M.C.; Benedetti, N.I.G.M.; Ávila, R.I.; Bastos, T.S.A.; Silva, T.C.; Silva, M.R.R.; Batista, A.C.; Valadares, M.C.; Lima, E.M. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv., 2018, 25(1), 1585-1594.
[http://dx.doi.org/10.1080/10717544.2018.1492046] [PMID: 30044149]
[62]
Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal Nanocarriers : A review on formulation technology, types and applications toward targeted drug delivery colloidal Nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. nanomedicine nanotechnology. Biol. Med. (Aligarh), 2018, 6, 9-24.
[63]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[64]
Barakat, H.S.; Darwish, I.A.; El-Khordagui, L.K.; Khalafallah, N.M. Development of naftifine hydrochloride alcohol-free niosome gel. Drug Dev. Ind. Pharm., 2009, 35(5), 631-637.
[http://dx.doi.org/10.1080/03639040802498864] [PMID: 18989805]
[65]
Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv., 2010, 7(11), 1303-1327.
[http://dx.doi.org/10.1517/17425247.2010.525230] [PMID: 20961206]
[66]
El-Hadidy, G.N.; Ibrahim, H.K.; Mohamed, M.I.; El-Milligi, M.F. Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation. Drug Dev. Ind. Pharm., 2012, 38(1), 64-72.
[http://dx.doi.org/10.3109/03639045.2011.590731] [PMID: 21696340]
[67]
Kogan, A.; Garti, N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci., 2006, 123-126, 369-385.
[http://dx.doi.org/10.1016/j.cis.2006.05.014] [PMID: 16843424]
[68]
Jose, J.; Charyulu, R.N. Solubility enhancement of an antifungal agent by association with dendrimers. Indian J. Res. Pharm. Biotecnol., 2015, 3, 171-175.
[69]
Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127.
[http://dx.doi.org/10.4103/2230-973X.177833] [PMID: 27051632]
[70]
Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol., 2017, 8, 261.
[http://dx.doi.org/10.3389/fphar.2017.00261] [PMID: 28559844]
[71]
Qurt, M.S.; Esentürk, İ.; Birteksöz Tan, S.; Erdal, M.S.; Araman, A.; Güngör, S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J. Drug Deliv. Sci. Technol., 2018, 48, 215-222.
[http://dx.doi.org/10.1016/j.jddst.2018.09.020]
[72]
Sosa, L.; Clares, B.; Alvarado, H.L.; Bozal, N.; Domenech, O.; Calpena, A.C. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. Nanomedicine, 2017, 13(7), 2303-2312.
[PMID: 28712917]
[73]
Gupta, M.; Vyas, S.P. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem. Phys. Lipids, 2012, 165(4), 454-461.
[http://dx.doi.org/10.1016/j.chemphyslip.2012.01.006] [PMID: 22309657]
[74]
Tripathy, S.; Das, M.K. Dendrimers and their applications as novel drug delivery carriers. J. Appl. Pharm. Sci., 2013, 3, 142-149.
[http://dx.doi.org/ 10.7324/JAPS.2013.3924]
[75]
Pawar, V. Techniques implemented for solubility enhancement of ketoconazole: a review. Indian J. Drugs, 2017, 5, 99-103.
[76]
S, S.; S, A.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: a novel class of drug delivery system--review. J. Pharm. Pharm. Sci., 2012, 15(1), 103-111.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[77]
Sharma, R.; Pathak, K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol., 2011, 16(4), 367-376.
[http://dx.doi.org/10.3109/10837451003739289] [PMID: 20367024]
[78]
Segal, B.H.; Kwon-Chung, J.; Walsh, T.J.; Klein, B.S.; Battiwalla, M.; Almyroudis, N.G.; Holland, S.M.; Romani, L. Immunotherapy for fungal infections. Clin. Infect. Dis., 2006, 42(4), 507-515.
[http://dx.doi.org/10.1086/499811] [PMID: 16421795]
[79]
Torosantucci, A.; Bromuro, C.; Chiani, P.; De Bernardis, F.; Berti, F.; Galli, C.; Norelli, F.; Bellucci, C.; Polonelli, L.; Costantino, P.; Rappuoli, R.; Cassone, A. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med., 2005, 202(5), 597-606.
[http://dx.doi.org/10.1084/jem.20050749] [PMID: 16147975]
[80]
Robinson, M.J.; Osorio, F.; Rosas, M.; Freitas, R.P.; Schweighoffer, E.; Gross, O.; Verbeek, J.S.; Ruland, J.; Tybulewicz, V.; Brown, G.D.; Moita, L.F.; Taylor, P.R.; Reis e Sousa, C. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med., 2009, 206(9), 2037-2051.
[http://dx.doi.org/10.1084/jem.20082818] [PMID: 19703985]
[81]
Matthews, R.C. Pathogenicity determinants of Candida albicans: potential targets for immunotherapy? Microbiology, 1994, 140(Pt 7), 1505-1511.
[http://dx.doi.org/10.1099/13500872-140-7-1505] [PMID: 8075793]
[82]
Pachl, J.; Svoboda, P.; Jacobs, F.; Vandewoude, K.; van der Hoven, B.; Spronk, P.; Masterson, G.; Malbrain, M.; Aoun, M.; Garbino, J.; Takala, J.; Drgona, L.; Burnie, J.; Matthews, R.; Study, C.A. Mycograb Invasive Candidiasis Study Group. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin. Infect. Dis., 2006, 42(10), 1404-1413.
[http://dx.doi.org/10.1086/503428] [PMID: 16619152]
[83]
Herbrecht, R.; Fohrer, C.; Nivoix, Y. Mycograb for the treatment of invasive candidiasis. Clin. Infect. Dis., 2006, 43(8), 1083-1084.
[http://dx.doi.org/10.1086/507547] [PMID: 16983626]
[84]
Han, Y.; Riesselman, M.H.; Cutler, J.E. Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect. Immun., 2000, 68(3), 1649-1654.
[http://dx.doi.org/10.1128/IAI.68.3.1649-1654.2000] [PMID: 10678984]
[85]
Bacci, A.; Montagnoli, C.; Perruccio, K.; Bozza, S.; Gaziano, R.; Pitzurra, L.; Velardi, A.; d’Ostiani, C.F.; Cutler, J.E.; Romani, L. Dendritic cells pulsed with fungal RNA induce protective immunity to Candida albicans in hematopoietic transplantation. J. Immunol., 2002, 168(6), 2904-2913.
[http://dx.doi.org/10.4049/jimmunol.168.6.2904] [PMID: 11884461]
[86]
van de Veerdonk, F.L.; Netea, M.G.; Joosten, L.A.; van der Meer, J.W.; Kullberg, B.J. Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. Fed. Eur. Microbiol. Soc., 2010, 34, 1063-1075.
[87]
Pupo, Y.M.; Gomes, G.M.; Santos, E.B.; Chaves, L.; Michel, M.D.; Kozlowski, V.A., Jr; Gomes, O.M.M.; Gomes, J.C. Susceptibility of Candida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes. Acta Odontol. Latinoam., 2011, 24(2), 188-192.
[PMID: 22165318]
[88]
Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst., 1998, 90(12), 889-905.
[http://dx.doi.org/10.1093/jnci/90.12.889] [PMID: 9637138]
[89]
Hsieh, Y.H.; Chuang, W.C.; Yu, K.H.; Jheng, C.P.; Lee, C.I. Sequential photodynamic therapy with phthalocyanine encapsulated chitosan-tripolyphosphate nanoparticles and flucytosine treatment against Candida tropicalis. Pharmaceutics, 2019, 11(1), 16.
[http://dx.doi.org/10.3390/pharmaceutics11010016] [PMID: 30621174]
[90]
Afroozi, B.; Zomorodian, K.; Lavaee, F.; Zare Shahrabadi, Z.; Mardani, M. Comparison of the efficacy of indocyanine green-mediated photodynamic therapy and nystatin therapy in treatment of denture stomatitis. Photodiagn. Photodyn. Ther., 2019, 27, 193-197.
[http://dx.doi.org/10.1016/j.pdpdt.2019.06.005] [PMID: 31185323]
[91]
Fujimoto, K.; Takemoto, K. Efficacy of liposomal amphotericin B against four species of Candida biofilms in an experimental mouse model of intravascular catheter infection. J. Infect. Chemother., 2018, 24(12), 958-964.
[http://dx.doi.org/10.1016/j.jiac.2018.08.011] [PMID: 30209024]
[92]
Romio, K.B.; Dos Santos, K.F.; da Silva, R.J.; Pedro, M.F.C.; Kalck, A.S.; da Silva Sousa, M.; Possamai, L.M.; Souto, P.C.S.; Silva, J.R.; de Souza, N.C. Incorporation of triclosan and acridine orange into liposomes for evaluating the susceptibility of Candida albicans. J. Photochem. Photobiol. B, 2017, 173, 514-521.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.034] [PMID: 28683399]
[93]
Perez, A.P.; Altube, M.J.; Schilrreff, P.; Apezteguia, G.; Celes, F.S.; Zacchino, S.; de Oliveira, C.I.; Romero, E.L.; Morilla, M.J. Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf. B Biointerfaces, 2016, 139, 190-198.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.003] [PMID: 26709977]
[94]
Chien, H.F.; Chen, C.P.; Chen, Y.C.; Chang, P.H.; Tsai, T.; Chen, C.T. The use of Chitosan to enhance photodynamic inactivation against Candida albicans and its drug-resistant clinical isolates. Int. J. Mol. Sci., 2013, 14(4), 7445-7456.
[http://dx.doi.org/10.3390/ijms14047445] [PMID: 23552829]
[95]
Hsieh, Y.H.; Zhang, J.H.; Chuang, W.C.; Yu, K.H.; Huang, X.B.; Lee, Y.C.; Lee, C.I. An in vitro study on the effect of combined treatment with photodynamic and chemical therapies on candida albicans. Int. J. Mol. Sci., 2018, 19(2), 337.
[http://dx.doi.org/10.3390/ijms19020337] [PMID: 29364155]
[96]
Alhowyan, A.A.; Altamimi, M.A.; Kalam, M.A.; Khan, A.A.; Badran, M.; Binkhathlan, Z.; Alkholief, M.; Alshamsan, A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. J. Microbiol. Methods, 2019, 161, 87-95.
[http://dx.doi.org/10.1016/j.mimet.2019.01.020] [PMID: 30738109]
[97]
Amaral, A.C.; Bocca, A.L.; Ribeiro, A.M.; Nunes, J.; Peixoto, D.L.G.; Simioni, A.R.; Primo, F.L.; Lacava, Z.G.M.; Bentes, R.; Titze-de-Almeida, R.; Tedesco, A.C.; Morais, P.C.; Felipe, M.S. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. J. Antimicrob. Chemother., 2009, 63(3), 526-533.
[http://dx.doi.org/10.1093/jac/dkn539] [PMID: 19151037]
[98]
Jothiprakasam, V.; Sambantham, M.; Chinnathambi, S.; Vijayaboopathi, S. Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA. Arch. Oral Biol., 2017, 73, 21-24.
[http://dx.doi.org/10.1016/j.archoralbio.2016.09.003] [PMID: 27653145]
[99]
Ing, L.Y.; Zin, N.M.; Sarwar, A.; Katas, H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater., 2012, 2012632698
[http://dx.doi.org/10.1155/2012/632698] [PMID: 22829829]
[100]
Peng, H.S.; Liu, X.J.; Lv, G.X.; Sun, B.; Kong, Q.F.; Zhai, D.X.; Wang, Q.; Zhao, W.; Wang, G.Y.; Wang, D.D.; Li, H.L.; Jin, L.H.; Kostulas, N. Voriconazole into PLGA nanoparticles: improving agglomeration and antifungal efficacy. Int. J. Pharm., 2008, 352(1-2), 29-35.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.009] [PMID: 18053659]
[101]
El-Housiny, S.; Shams Eldeen, M.A.; El-Attar, Y.A.; Salem, H.A.; Attia, D.; Bendas, E.R.; El-Nabarawi, M.A.; El-nabarawi, M.A.; Atef, M.; Eldeen, S.; El-attar, Y.A. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv., 2018, 25(1), 78-90.
[http://dx.doi.org/10.1080/10717544.2017.1413444] [PMID: 29239242]
[102]
Butani, D.; Yewale, C.; Misra, A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf. B Biointerfaces, 2016, 139, 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.032] [PMID: 26700229]
[103]
Aljaeid, B.M.; Hosny, K.M. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int. J. Nanomedicine, 2016, 11, 441-447.
[http://dx.doi.org/10.2147/IJN.S100625] [PMID: 26869787]
[104]
Mukherjee, S.; Ray, S.; Thakur, R.S. Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy. Pak. J. Pharm. Sci., 2009, 22(2), 131-138.
[PMID: 19339221]
[105]
Bianco, M.A.; Gallarate, M.; Trotta, M.B.L. Amphotericin B loaded SLN prepared with the coacervation technique. J. Drug Deliv. Sci. Technol., 2010, 10, 187-191.
[http://dx.doi.org/10.1016/S1773-2247(10)50028-5]
[106]
Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Hydrogel of ketoconazole and PAMAM dendrimers: formulation and antifungal activity. Molecules, 2012, 17(4), 4612-4624.
[http://dx.doi.org/10.3390/molecules17044612] [PMID: 22513487]
[107]
Winnicka, K.; Sosnowska, K.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Poly(amidoamine) dendrimers increase antifungal activity of clotrimazole. Biol. Pharm. Bull., 2011, 34(7), 1129-1133.
[http://dx.doi.org/10.1248/bpb.34.1129] [PMID: 21720026]
[108]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to Date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[109]
Caster, J.M.; Patel, A.N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1)e1416
[http://dx.doi.org/10.1002/wnan.1416] [PMID: 27312983]
[110]
Ventola, C.L. The nanomedicine revolution: part 1: emerging concepts. P&T, 2012, 37(9), 512-525.
[PMID: 23066345]
[111]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[112]
Souza, A.C.O.; Amaral, A.C. Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front. Microbiol., 2017, 8, 336.
[http://dx.doi.org/10.3389/fmicb.2017.00336] [PMID: 28326065]
[113]
Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. fungi (Basel, Switzerland), 2017, 3, 1-29.
[114]
Gauniyal, P.; Vir, U.; Teotia, S.; Ethanolic, C. Antimicrobial activity and phytochemical analysis of ethanolic extracts of twelve medicinal plants against oral micro organisms. Int. J. Pharm. Med. Res., 2014, 2, 21-27.
[115]
Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. Mycol. Med., 2017, 27(1), 1-19.
[http://dx.doi.org/10.1016/j.mycmed.2016.10.002] [PMID: 27842800]
[116]
Baldim, I.; Tonani, L.; Regina, M.; Kress, V.Z.; Oliveira, W.P. Industrial crops & products lippia sidoides essential oil encapsulated in lipid nanosystem as an anti- candida agent. Ind. Crops Prod., 2019, 127, 73-81.
[http://dx.doi.org/10.1016/j.indcrop.2018.10.064]
[117]
Donadu, M.G.; Usai, D.; Marchetti, M.; Usai, M.; Mazzarello, V.; Molicotti, P.; Montesu, M.A.; Delogu, G.; Zanetti, S. Antifungal activity of oils macerates of North Sardinia plants against Candida species isolated from clinical patients with candidiasis. Nat. Prod. Res., 2019, 22, 1-5.
[http://dx.doi.org/10.1080/14786419.2018.1557175] [PMID: 30676066]
[118]
Mahboubi, M.; Attaran, B. Satureja khuzistanica jamzad essential oil and its anti-candidal activities against clinical isolates of candida albicans isolated from women with candidiasis. Infectio, 2018, 23, 16.
[http://dx.doi.org/10.22354/in.v23i1.750]
[119]
Ariamanesh, H.; Tamizi, N.; Yazdinezhad, A.; Salah, S.; Motamed, N.; Amanloo, S. The effectiveness of nigella sativa alcoholic extract on the inhibition of candida albicans colonization and formation of plaque on acrylic denture plates: an in vitro study. J. Dent. (Shiraz), 2019, 20(3), 171-177.
[PMID: 31579691]
[120]
Carvalho, P.C. de L.; de Sá, N.P.; Lacerda, I.C.A.; Pataro, C.; Rosa, L.H.; Alves, R.S.; Lyon, J.P.; Rosa, C.A.; Johann, S. Anti-Candida activity of cinnamon inhibition of virulence factors of clinical strains of candida albicans by essential oil of cinnamomum zeylanicum. PSM Microbiol., 2018, 3, 4-12.
[121]
Napagoda, M.; Gerstmeier, J.; Butschek, H.; Lorenz, S.; Kanatiwela, D.; Qader, M.; Nagahawatte, A.; De Soyza, S.; Wijayaratne, G.B.; Svatoš, A.; Jayasinghe, L.; Koeberle, A.; Werz, O. Lipophilic extracts of Leucas zeylanica, a multi-purpose medicinal plant in the tropics, inhibit key enzymes involved in inflammation and gout. J. Ethnopharmacol., 2018, 224, 474-481.
[http://dx.doi.org/10.1016/j.jep.2018.04.042] [PMID: 29727733]
[122]
Ngo-Mback, M.N.L. MubarakAli, D.; Dongmo, P.M.J.; Boyom, F.F.; Thajuddin, N. Anti-candidal biofilm potential of solvent extracts of aeollanthus cucullathus (ryding) and its chemical analysis. Biocatal. Agric. Biotechnol., 2019, 17, 595-604.
[http://dx.doi.org/10.1016/j.bcab.2019.01.012]
[123]
da Costa Cordeiro, B.M.P.; de Lima Santos, N.D.; Ferreira, M.R.A.; de Araújo, L.C.C.; Junior, A.R.C.; da Conceição Santos, A.D.; de Oliveira, A.P.; da Silva, A.G.; da Silva Falcão, E.P.; Dos Santos Correia, M.T.; da Silva Almeida, J.R.G.; da Silva, L.C.N.; Soares, L.A.L.; Napoleão, T.H.; da Silva, M.V.; Paiva, P.M.G. Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. BMC Complement. Altern. Med., 2018, 18(1), 284.
[http://dx.doi.org/10.1186/s12906-018-2350-2] [PMID: 30340567]
[124]
Duarte, M.C.T.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.G.; Delarmelina, C. Anti-candida activity of brazilian medicinal plants. J. Ethnopharmacol., 2005, 97(2), 305-311.
[http://dx.doi.org/10.1016/j.jep.2004.11.016] [PMID: 15707770]
[125]
D’Arrigo, M.; Bisignano, C.; Irrera, P.; Smeriglio, A.; Zagami, R.; Trombetta, D.; Romeo, O.; Mandalari, G. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp. BMC Complement. Altern. Med., 2019, 19(1), 6.
[http://dx.doi.org/10.1186/s12906-018-2425-0] [PMID: 30612544]
[126]
Tobudic, S.; Lassnigg, A.; Kratzer, C.; Graninger, W.; Presterl, E. Antifungal activity of amphotericin B, caspofungin and posaconazole on Candida albicans biofilms in intermediate and mature development phases. Mycoses, 2010, 53(3), 208-214.
[http://dx.doi.org/10.1111/j.1439-0507.2009.01690.x] [PMID: 19298353]
[127]
Lu, Y.; Zhou, Z.; Mo, L.; Guo, Q.; Peng, X.; Hu, T.; Zhou, X.; Ren, B.; Xu, X. Fluphenazine antagonizes with fluconazole but synergizes with amphotericin B in the treatment of candidiasis. Appl. Microbiol. Biotechnol., 2019, 103(16), 6701-6709.
[http://dx.doi.org/ 10.1007/s00253-019-09960-3]
[128]
Gong, Y.; Liu, W.; Huang, X.; Hao, L.; Li, Y.; Sun, S. Antifungal activity and potential mechanism of n-butylphthalide alone and in combination with fluconazole against candida albicans. Front. Microbiol., 2019, 10, 1461.
[http://dx.doi.org/10.3389/fmicb.2019.01461] [PMID: 31312187]
[129]
Yousfi, H.; Ranque, S.; Rolain, J-M.; Bittar, F. In vitro polymyxin activity against clinical multidrug-resistant fungi. Antimicrob. Resist. Infect. Control, 2019, 8, 66.
[http://dx.doi.org/10.1186/s13756-019-0521-7] [PMID: 31044071]
[130]
Cui, J.; Ren, B.; Tong, Y.; Dai, H.; Zhang, L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence, 2015, 6(4), 362-371.
[http://dx.doi.org/10.1080/21505594.2015.1039885] [PMID: 26048362]
[131]
Berzaghi, R.; Agócs, A.; Curto, M.A.; Gulyás-Fekete, G.; Kocsis, B.; Ribas, J.C.; Lóránd, T. Novel cell wall antifungals reveal a special synergistic activity in PBR1 mutants resistant to the glucan synthesis antifungals papulacandins and echinocandins. Front. Microbiol., 2019, 10, 1692.
[http://dx.doi.org/10.3389/fmicb.2019.01692] [PMID: 31428061]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 28
Year: 2019
Page: [2610 - 2628]
Pages: 19
DOI: 10.2174/1568026619666191029145209
Price: $65

Article Metrics

PDF: 27
HTML: 4