Drug Delivery and Targeting to the Brain Through Nasal Route: Mechanisms, Applications and Challenges

Author(s): Kanchan Kashyap, Rahul Shukla*

Journal Name: Current Drug Delivery

Volume 16 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Blood-brain barrier (BBB) provides restrictions for the transportation of various therapeutic agents to the brain. Efforts to directly target the brain by olfactory as well as trigeminal nerve pathway, bypassing BBB, have grown significantly in recent times. The intranasal route of transportation of the drug encompasses ability for the delivery of drug directly to the brain, improves site-specificity in the brain and avoids systemic side effects. In the current era, novel drug delivery systems are useful tools for targeting the brain without providing any harmful effects in nasal mucosa as well as the central nervous system. The complex structure of nasal cavity, mucociliary clearance, degradation by the enzymes present in nasal cavity and pathological conditions like rhinitis, common cold, etc. are the major disputes for nasal drug delivery. The use of nanotechnological approaches like solid lipid nanoparticles, polymeric nanoparticles, nanoemulsions, liposomes and polymeric micelles provides the ability to overcome these barriers. There are several emerging nasal drug delivery technologies produced by various pharmaceutical companies to conquer these hurdles. This review tries to address the recent developments in the area of direct drug delivery to the brain through the nasal route.

Keywords: Blood-brain barrier, intranasal delivery, brain targeting, nanoparticles, intranasal delivery devices, nasal route.

[1]
Kaushik, A.; Jayant, R.D.; Bhardwaj, V.; Nair, M. Personalized nanomedicine for CNS diseases. Drug Discov. Today, 2018, 23(5), 1007-1015.
[http://dx.doi.org/10.1016/j.drudis.2017.11.010] [PMID: 29155026]
[2]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release, 2018, 281, 139-177.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[3]
Dubois, L.G.; Campanati, L.; Righy, C. Dâ€TMAndrea-Meira, I.; Spohr, T.C.L. de S.E; Porto-Carreiro, I.; Pereira, C.M.; Balça-Silva, J.; Kahn, S.A.; DosSantos, M.F.; Oliveira, M.de A.; Ximenes-da-Silva, A.; Lopes, M.C.; Faveret, E.; Gasparetto, E.L.; Moura-Neto, V. Gliomas and the vascular fragility of the blood brain barrier. Front. Cell. Neurosci., 2014, 8, 418.
[http://dx.doi.org/10.3389/fncel.2014.00418] [PMID: 25565956]
[4]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiology of disease., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030]
[5]
Bitter, C.; Suter-Zimmermann, K.; Surber, C. Nasal drug delivery in humans. Curr. Probl. Dermatol., 2011, 20-35.
[http://dx.doi.org/10.1159/000321044] [PMID: 21325837]
[6]
Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci., 2018, 195, 44-52.
[http://dx.doi.org/10.1016/j.lfs.2017.12.025] [PMID: 29277310]
[7]
Illum, L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci., 2000, 11, 1-18.
[http://dx.doi.org/10.1016/S0928-0987(00)00087-7]
[8]
Gizurarson, S. The relevance of nasal physiology to the design of drug absorption studies. Adv. Drug Deliv. Rev., 1993, 11(3), 329-347.
[http://dx.doi.org/10.1016/0169-409X(93)90015-V]
[9]
Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol., 2001, 53(1), 3-21.
[http://dx.doi.org/10.1211/0022357011775145] [PMID: 11206189]
[10]
Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol., 2007, 25, 381-418.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141634]
[11]
Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 614-628.
[http://dx.doi.org/10.1016/j.addr.2011.11.002]
[12]
Bergmann, O.; Liebl, J.; Bernard, S.; Alkass, K.; Yeung, M.S.Y.; Steier, P.; Kutschera, W.; Johnson, L.; Landén, M.; Druid, H.; Spalding, K.L.; Frisén, J. The age of olfactory bulb neurons in humans. Neuron, 2012, 74(4), 634-639.
[http://dx.doi.org/10.1016/j.neuron.2012.03.030] [PMID: 22632721]
[13]
Costantino, H.R.; Leonard, A.K.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal administration of acetylcholinesterase inhibitors. BMC Neurosci, 2008, 9(3), (Suppl. 6).
[http://dx.doi.org/10.1186/1471-2202-9-S2-S6]
[14]
Leopold, D.A. The relationship between nasal anatomy and human olfaction. Laryngoscope, 1988, 98(11), 1232-1238.
[http://dx.doi.org/10.1288/00005537-198811000-00015]
[15]
Dhuria, S.V.; Hanson, L.R.; Frey, W.H. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci., 2010, 99(4), 1654-1673.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[16]
Illum, L. Is nose-to-brain transport of drugs in man a reality? J. Pharm. Pharmacol., 2004, 56(1), 3-17.
[http://dx.doi.org/10.1211/0022357022539] [PMID: 14979996]
[17]
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm., 2018, 128, 337-362.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[18]
Renner, D.B.; Svitak, A.L.; Gallus, N.J.; Ericson, M.E.; Frey, W.H.; Hanson, L.R. Intranasal delivery of insulin via the olfactory nerve pathway. J. Pharm. Pharmacol., 2012, 64(12), 1709-1714.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01555.x] [PMID: 23146033]
[19]
Gottofrey, J.; Tjalve, H. Axonal transport of cadmium in the olfactory nerve of the pike. Pharmacol. Toxicol., 1991, 69(4), 242-252.
[http://dx.doi.org/10.1111/bcpt.1991.69.4.242] [PMID: 1720248]
[20]
Enrique Cometto-Muñiz, J.; Simons, C. Trigeminal Chemesthesis. In Handbook of Olfaction and Gustation: 3rd Ed, 2015, pp 1089- 1112.
[http://dx.doi.org/10.1002/9781118971758.ch50]
[21]
Johnson, N.J.; Hanson, L.R.; Frey, W.H. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol. Pharm., 2010, 7(3), 884-893.
[http://dx.doi.org/10.1021/mp100029t] [PMID: 20420446]
[22]
Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release, 2014, 190, 189-200.
[http://dx.doi.org/DOI 10.1016/j.jconrel.2014.05.003]
[23]
Nicholls, A.R.; Holt, R.I.G. Growth hormone and insulin-like growth factor-1. Front. Horm. Res., 2016, 47, 101-114.
[http://dx.doi.org/10.1159/000445173]
[24]
Pardeshi, C.V.; Belgamwar, V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10(7), 957-972.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[25]
Illum, L. Nasal drug delivery - possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[26]
Illum, L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci., 2000, 11, 1-8.
[http://dx.doi.org/10.1016/S0928-0987(00)00087-7]
[27]
Edeling, M.A.; Smith, C.; Owen, D. Life of a clathrin coat: Insights from Clathrin and AP structures. Nat. Rev. Mol. Cell Biol., 2006, 7(1), 32-44.
[http://dx.doi.org/10.1038/nrm1786] [PMID: 16493411]
[28]
Miyamoto, M.; Natsume, H.; Iwata, S.; Ohtake, K.; Yamaguchi, M.; Kobayashi, D.; Sugibayashi, K.; Yamashina, M.; Morimoto, Y. Improved nasal absorption of drugs using Poly-L-Arginine: Effects of concentration and molecular weight of Poly-L-Arginine on the nasal absorption of fluorescein Isothiocyanate-Dextran in rats. Eur. J. Pharm. Biopharm., 2001, 52(1), 21-30.
[http://dx.doi.org/10.1016/S0939-6411(01)00149-7] [PMID: 11438420]
[29]
Van Itallie, C.M.; Anderson, J.M. Claudins and epithelial paracellular transport. Annu. Rev. Physiol., 2006, 68(1), 403-429.
[http://dx.doi.org/10.1146/annurev.physiol.68.040104.131404]
[30]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm., 2009, 379(1), 146-157.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.019]
[31]
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm., 2008, 69(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.001] [PMID: 17826969]
[32]
Önerci, T.M., Ed.; Nasal Physiology and Pathophysiology of Nasal Disorders; , 2013.
[http://dx.doi.org/10.1007/978-3-642-37250-6]
[33]
Di Gioia, S.; Trapani, A.; Mandracchia, D.; De Giglio, E.; Cometa, S.; Mangini, V.; Arnesano, F.; Belgiovine, G.; Castellani, S.; Pace, L.; Lavecchia, M.A.; Trapani, G.; Conese, M.; Puglisi, G.; Cassano, T. Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur. J. Pharm. Biopharm., 2015, 94(1), 180-193.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.019] [PMID: 26032293]
[34]
Rassu, G.; Soddu, E.; Cossu, M.; Brundu, A.; Cerri, G.; Marchetti, N.; Ferraro, L.; Regan, R.F.; Giunchedi, P.; Gavini, E.; Dalpiaz, A. Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J. Control. Release, 2015, 201, 68-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.025] [PMID: 25620068]
[35]
Noback, M.L.; Harvati, K.; Spoor, F. Climate-related variation of the human nasal cavity. Am. J. Phys. Anthropol., 2011, 145(4), 599-614.
[http://dx.doi.org/10.1002/ajpa.21523] [PMID: 21660932]
[36]
Puttipipatkhachorn, S.; Nunthanid, J.; Yamamoto, K.; Peck, G.E. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J. Control. Release, 2001, 75(1-2), 143-153.
[http://dx.doi.org/10.1016/S0168-3659(01)00389-3] [PMID: 11451504]
[37]
Mistry, A.; Stolnik, S.; Illum, L. Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol. Pharm., 2015, 12(8), 2755-2766.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00088] [PMID: 25997083]
[38]
Chang, S.F.; Chien, Y.W. Nasal drug delivery.In Treatise on Controlled Drug Delivery; Fundamentals-Optimization-Applications, 2017.
[http://dx.doi.org/10.1201/9780203735022]
[39]
Dey, S.; Mahanti, B.; Mazumder, B.; Malgope, A.; Sandeepan, A. Dasgupta. Nasal drug delivery: An approach of drug delivery through nasal route. Der Chemica Sinica, 2011, 2(3), 94-106.
[40]
Pezron, I.; Mitra, A.K.; Duvvuri, S.; Tirucherai, G.S. Prodrug strategies in nasal drug delivery. Expert Opinion on Therapeutic Patents., 2004, 12(3), 331-340.
[http://dx.doi.org/10.1517/13543776.12.3.331]
[41]
Khan, A.R.; Liu, M.; Khan, M.W.; Zhai, G. Progress in brain targeting drug delivery system by nasal route. J. Control. Release, 2017, 364-389.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.001] [PMID: 28887135]
[42]
Alpar, H.O.; Somavarapu, S.; Atuah, K.N.; Bramwell, V.W. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev., 2005.
[http://dx.doi.org/10.1016/j.addr.2004.09.004] [PMID: 15560949]
[43]
Dua, R.; Zia, H.; Needham, T. The influence of tonicity and viscosity on the intranasal absorption of salmon calcitonin in rabbits. Int. J. Pharm., 1997, 2, 233-242.
[http://dx.doi.org/10.1016/S0378-5173(96)04817-X]
[44]
Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine, 2007, 669-680.
[http://dx.doi.org/10.2217/17435889.2.5.669]
[45]
Warnken, Z.N.; Smyth, H.D.C.; Watts, A.B.; Weitman, S.; Kuhn, J.G.; Williams, R.O. Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci. Technol., 2016, 35, 213-222.
[http://dx.doi.org/10.1016/j.jddst.2016.05.003]
[46]
Soane, R.J.; Frier, M.; Perkins, A.C.; Jones, N.S.; Davis, S.S.; Illum, L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int. J. Pharm., 1999, 178(1), 55-65.
[http://dx.doi.org/10.1016/S0378-5173(98)00367-6] [PMID: 10205625]
[47]
Smith, E.L.; Hill, R.L.; Borman, A. Activity of insulin degraded by leucine aminopeptidase. Biochim. Biophys. Acta, 1958, 29(1), 207-208.
[http://dx.doi.org/10.1016/0006-3002(58)90166-5] [PMID: 13560467]
[48]
Lee, V.H.L.; Yamamoto, A. Penetration and enzymatic barriers to peptide and protein absorption. Adv. Drug Deliv. Rev., 1989, 4(2), 171-207.
[http://dx.doi.org/10.1016/0169-409X(89)90018-5]
[49]
Pires, A.; Fortuna, A.; Alves, G.; Falcão, A. Intranasal drug delivery: How, why and what for? J. Pharm. Pharm. Sci., 2009, 12(3), 288-311.
[http://dx.doi.org/10.18433/J3NC79] [PMID: 20067706]
[50]
Bennett, D.A.; Lal, H. Discriminative stimulus properties of the vasodilator, hydralazine: Differential generalization with Alpha1 and Alpha2 adrenoreceptor drugs. Prog. Neuro-Psychopharmacol. Biol. Psych, 1982, 6(1), 17-26.
[http://dx.doi.org/10.1016/S0364-7722(82)80103-3]
[51]
Marttin, E.; Schipper, N.G.M.; Coos Verhoef, J.; Merkus, F.W.H.M. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev., 1998, 29(1-2), 13-38.
[http://dx.doi.org/10.1016/S0169-409X(97)00059-8] [PMID: 10837578]
[52]
Graff, C.L.; Pollack, G.M. Functional evidence for P-Glycoprotein at the nose-brain barrier. Pharm. Res., 2005, 22(1), 86-93.
[http://dx.doi.org/10.1007/s11095-004-9013-3] [PMID: 15771234]
[53]
Westin, U.; Piras, E.; Jansson, B.; Bergström, U.; Dahlin, M.; Brittebo, E.; Björk, E. Transfer of Morphine along the Olfactory Pathway to the Central Nervous System after Nasal Administration to Rodents. Eur. J. Pharm. Sci., 2005, 24(5), 565-573.
[http://dx.doi.org/10.1016/j.ejps.2005.01.009] [PMID: 15784346]
[54]
Holsti, M.; Sill, B.L.; Firth, S.D.; Filloux, F.M.; Joyce, S.M.; Furnival, R.A. Prehospital intranasal midazolam for the treatment of pediatric seizures. Pediatr. Emerg. Care, 2007, 23(3), 148-153.
[http://dx.doi.org/10.1097/PEC.0b013e3180328c92]
[55]
Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal Delivery of High Molecular Weight Drugs. Molecules, 2009, 14(9), 3754-3779.
[http://dx.doi.org/10.3390/molecules14093754]
[56]
Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Therapeutic Delivery, 2014, 4(11), 1443-1467.
[http://dx.doi.org/10.4155/tde.13.104.Basics] [PMID: 24228993]
[57]
Juillerat-Jeanneret, L.; Schmitt, F. Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: Looking for the grail. Med. Res. Rev., 2007, 4, 574-590.
[http://dx.doi.org/10.1002/med.20086]
[58]
Kapoor, M.; Cloyd, J.C.; Siegel, R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control. Release, 2016, 237, 147-159.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.001] [PMID: 27397490]
[59]
Ugwoke, M.I.; Agu, R.U.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv. Drug Deliv. Rev., 2005, 57(11), 1640-1665.
[http://dx.doi.org/10.1016/j.addr.2005.07.009] [PMID: 16182408]
[60]
Duan, X.; Mao, S. New strategies to improve the intranasal absorption of insulin. Drug Discov. Today, 2010, 15(11-12), 416-427.
[http://dx.doi.org/10.1016/j.drudis.2010.03.011] [PMID: 20359545]
[61]
Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the Challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov., 2014, 13(9), 655-672.
[http://dx.doi.org/10.1038/nrd4363] [PMID: 25103255]
[62]
Davis, S.S.; Illum, L. Absorption enhancers for nasal drug delivery. Clin. Pharmacokinet., 2003, 42(13), 1107-1128.
[http://dx.doi.org/10.2165/00003088-200342130-00003]
[63]
Ghori, M.U.; Mahdi, A.M.; Smith, A.M.; Conway, B.R. Nasal drug delivery systems: An overview. Am. J. Pharmacol. Sci., 2015, 3(5), 110-119.
[http://dx.doi.org/10.12691/ajps-3-5-2]
[64]
Tiozzo Fasiolo, L.; Manniello, M.D.; Tratta, E.; Buttini, F.; Rossi, A.; Sonvico, F.; Bortolotti, F.; Russo, P.; Colombo, G. Opportunity and challenges of nasal powders: Drug formulation and delivery. Eur. J. Pharm., 2018, 113, 2-17.
[http://dx.doi.org/10.1016/j.ejps.2017.09.027]
[65]
Oliveira, P.; Fortuna, A.; Alves, G.; Falcao, A. Drug-metabolizing enzymes and efflux transporters in nasal epithelium: Influence on the bioavailability of intranasally administered drugs. Curr. Drug Metab., 2016, 17(7), 628-647.
[http://dx.doi.org/10.2174/1389200217666160406120509]
[66]
Brannon-Peppas, L. Handbook of pharmaceutical excipients: Wade, A.; Weller, P.J. (Eds.), 2nd Edn., American Pharmaceutical Association, Washington and The Pharmaceutical Press, London. J. Control. Release, 1994, 40(3), 327-328.
[http://dx.doi.org/10.1016/0168-3659(95)00170-0]
[67]
Landis, M.S.; Boyden, T.; Pegg, S. Nasal-to-CNS drug delivery: Where are we now and where are we heading? An industrial perspective. Ther. Deliv., 2012, 3(2), 195-208.
[http://dx.doi.org/10.4155/tde.11.149]
[68]
Shukla, R.; Gupta, J.; Shukla, P.; Dwivedi, P.; Tripathi, P.; Bhattacharya, S.M.; Mishra, P.R. Chitosan coated alginate micro particles for the oral delivery of antifilarial drugs and combinations for intervention in brugia malayi induced lymphatic filariasis. RSC Advances, 2015, 5(85), 69047-69056.
[http://dx.doi.org/10.1039/c5ra06982c]
[69]
Des Rieux, A.; Des Ragnarsson, E.G.E.; Gullberg, E.; Préat, V.; Schneider, Y.J.; Artursson, P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm., 2005, 25(4-5), 455-465.
[http://dx.doi.org/10.1016/j.ejps.2005.04.015]
[70]
van Woensel, M.; Wauthoz, N.; Rosière, R.; Amighi, K.; Mathieu, V.; Lefranc, F.; van Gool, S.W.; de Vleeschouwer, S. Formulations for intranasal delivery of pharmacological agents to combat brain disease: A new opportunity to tackle gbm? Cancers, 2013, 5(3), 1020-1048.
[http://dx.doi.org/10.3390/cancers5031020] [PMID: 24202332]
[71]
Tafaghodi, M.; Tabassi, S.A.S.; Jaafari, M.R.; Zakavi, S.R.; Momen-Nejad, M. Evaluation of the clearance characteristics of various microspheres in the human nose by Gamma-Scintigraphy. Int. J. Pharm., 2004, 280(1-2), 125-135.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.009]
[72]
Wong, H.L.; Chattopadhyay, N.; Wu, X.Y.; Bendayan, R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv. Drug Deliv. Rev., 2010, 62(4-5), 503-517.
[http://dx.doi.org/10.1016/j.addr.2009.11.020]
[73]
Gartziandia, O.; Herran, E.; Pedraz, J.L.; Carro, E.; Igartua, M.; Hernandez, R.M. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf. B Biointerfaces, 2015, 134, 304-313.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.054]
[74]
Vyas, T.K.; Shahiwala, A.; Amiji, M.M. Improved oral bioavailability and brain transport of saquinavir upon administration in novel nanoemulsion formulations. Int. J. Pharm., 2008, 347(1-2), 93-101.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.016]
[75]
Jain, R.; Nabar, S.; Dandekar, P.; Vandana, P. Micellar nanocarriers: Potential nose-to-brain delivery of zolmitriptan as novel migraine therapy. Pharm. Res., 2010, 27(4), 655-664.
[http://dx.doi.org/10.1007/s11095-009-0041-x]
[76]
Suman, J.D.; Laube, B.L.; Dalby, R. Comparison of nasal deposition and clearance of aerosol generated by a nebulizer and an aqueous spray pump. Pharm. Res., 1999, 16(10), 1648-1652.
[http://dx.doi.org/10.1023/A:1011933410898]
[77]
Gorain, B.; Choudhury, H.; Pandey, M.; Nair, A.B.; Iqbal Mohd Amin, M.C.; Molugulu, N.; Deb, P.K.; Tripathi, P.K.; Khurana, S.; Shukla, R.; Kohli, K. Dendrimer-based nanocarriers in lung cancer therapy.Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; Academic Press, 2019, pp. 161-192.
[http://dx.doi.org/10.1016/b978-0-12-815720-6.00007-1]
[78]
Pozzoli, M.; Rogueda, P.; Zhu, B.; Smith, T.; Young, P.M.; Traini, D.; Sonvico, F. Dry powder nasal drug delivery: Challenges, opportunities and a study of the commercial teijin puvlizer rhinocort device and formulation. Drug Dev. Ind. Pharm., 2016, 42(10), 1660-1668.
[http://dx.doi.org/10.3109/03639045.2016.1160110] [PMID: 26953090]
[79]
Berger, W.E.; Godfrey, J.W.; Slater, A.L. Intranasal corticosteroids: The development of a drug delivery device for fluticasone furoate as a potential step toward improved compliance. Expert Opin. Drug Deliv., 2007, 4(6), 689-701.
[http://dx.doi.org/10.1517/17425247.4.6.689] [PMID: 17970670]
[80]
Merkus, P.; Ebbens, F.A.; Muller, B.; Fokkens, W.J. Influence of anatomy and head position on intranasal drug deposition. Eur. Arch. Otorhinolaryngol., 2006, 263(9), 827-832.
[http://dx.doi.org/10.1007/s00405-006-0071-5] [PMID: 16807754]
[81]
Kublik, H.; Vidgren, M. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev., 1998, 29(1), 157-177.
[http://dx.doi.org/10.1016/S0169-409X(97)00067-7] [PMID: 10837586]
[82]
Djupesland, P.G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res., 2013, 3(1), 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[83]
Marple, B.; Roland, P.; Benninger, M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: An overview of conflicting data and opinions. Otolaryngol. Head Neck Surg., 2004, 130(1), 131-141.
[http://dx.doi.org/10.1016/j.otohns.2003.07.005] [PMID: 14726922]
[84]
Rapoport, A.; Winner, P. Nasal delivery of antimigraine drugs: Clinical rationale and evidence base. Headache, 2006, 46(Suppl. 4), S192-S201.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00603.x] [PMID: 17078851]
[85]
Hankin, C.S.; Cox, L.; Lang, D.; Bronstone, A.; Wang, Z.; Lepore, M.S.; Buck, P.O. Medical costs and adherence in patients receiving aqueous versus pressurized aerosol formulations of intranasal corticosteroids. Allergy Asthma Proc., 2012, 33(3), 258-264.
[http://dx.doi.org/10.2500/aap.2012.33.3565] [PMID: 22737709]
[86]
Heslop, K. How to use pressurised metered dose inhalers. Nurs. Times, 2008, 104(47), 78-80.
[87]
Hoekman, J.D.; Ho, R.J.Y. Enhanced analgesic responses after preferential delivery of morphine and fentanyl to the olfactory epithelium in rats. Anesth. Analg., 2011, 113(3), 641-651.
[http://dx.doi.org/10.1213/ANE.0b013e3182239b8c] [PMID: 21709146]
[88]
Gadhave, D.; Gorain, B.; Tagalpallewar, A.; Kokare, C. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. J. Drug Deliv. Sci. Technol., 2019, 51, 276-289.
[http://dx.doi.org/10.1016/j.jddst.2019.02.013]
[89]
Colombo, M.; Figueiró, F.; de Fraga Dias, A.; Teixeira, H.F.; Battastini, A.M.O.; Koester, L.S. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Inter Int. J. Pharm., 2018, 543(1-2), 214-223.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.055] [PMID: 29605695]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 10
Year: 2019
Page: [887 - 901]
Pages: 15
DOI: 10.2174/1567201816666191029122740
Price: $65

Article Metrics

PDF: 48
HTML: 6