β-Cyclodextrin Based Nanosponges in Organic Synthesis

Author(s): Ali R. Kiasat, Seyyed J. Saghanezhad*, Samaneh Noori

Journal Name: Current Organic Chemistry

Volume 23 , Issue 21 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The particular β-cyclodextrin 3D structure, with its hydrophilic surface and apolar cavity, has enabled to partially or totally encapsulate hydrophobic molecules of appropriated size and shape in aqueous solution as well as in solid-state through the formation of a reversible host–guest complex. Accordingly, β-cyclodextrin based nanosponges have been prepared and used in previous years for the synthesis of organic compounds. In this review, we are going to mention some of the recent reports on the application of β- cyclodextrin 3D nanosponges in organic synthesis catalysis. Furthermore, it should be mentioned that these compounds have also been utilized for numerous applications including drug delivery, gas storage, rubber manufacture, diagnostics, cosmetics, agriculture, smart fabrics, water purification, and flame retardants.

Keywords: 3D network, β-Cyclodextrin, nanosponges, organic reaction, nanoporous framework, nanocatalyst.

[1]
Caldera, F.; Tannous, M.; Cavalli, R.; Zanetti, M.; Trotta, F. Evolution of cyclodextrin nanosponges. Int. J. Pharm., 2017, 531(2), 470-479.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.072] [PMID: 28645630]
[2]
S, S.; S, A.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: A novel class of drug delivery system--review. J. Pharm. Pharm. Sci., 2012, 15(1), 103-111.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[3]
Krishnamoorthy, K.; Rajappan, M. Nanosponges: A novel class of drug delivery system-review. J. Pharm. Pharm. Sci., 2012, 15(1), 103-111.
[4]
Cavalli, R.; Trotta, F.; Tumiatti, W. Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem., 2006, 56(1-2), 209-213.
[http://dx.doi.org/10.1007/s10847-006-9085-2]
[5]
Setijadi, E.; Tao, L.; Liu, J.; Jia, Z.; Boyer, C.; Davis, T.P. Biodegradable star polymers functionalized with β-cyclodextrin inclusion complexes. Biomacromolecules, 2009, 10(9), 2699-2707.
[http://dx.doi.org/10.1021/bm900646g] [PMID: 19663421]
[6]
Davankov, V.; Ilyin, M.; Tsyurupa, M.; Timofeeva, G.; Dubrovina, L. From a dissolved polystyrene coil to an intramolecularly-hyper-cross-linked “Nanosponge”. Macromolecules, 1996, 29(26), 8398-8403.
[http://dx.doi.org/10.1021/ma951673i]
[7]
Naga Silpa, J.; Nissankararao, S.; Ramadevi Bhimavarapu, L.S.S.; Vinusha, K.; Renuka, K. Nanosponges: A versatile drug delivery system. Int. J. of Pharm. Life Sci. [IJPLS], 2013, 4(8), 2920-2925.
[8]
Guo, L.; Gao, G.; Liu, X.; Liu, F. Preparation and characterization of TiO2 nanosponge. Mater. Chem. Phys., 2008, 111(2-3), 322-325.
[http://dx.doi.org/10.1016/j.matchemphys.2008.04.016]
[9]
Zuruzi, A.; Kolmakov, A.; MacDonald, N.; Moskovits, M. Highly sensitive gas sensor based on integrated titania nanosponge arrays. Appl. Phys. Lett., 2006, 88(10)102904
[http://dx.doi.org/10.1063/1.2185247]
[10]
Zuruzi, A.S.; MacDonald, N.C.; Moskovits, M.; Kolmakov, A. Metal oxide “nanosponges” as chemical sensors: highly sensitive detection of hydrogen with nanosponge titania. Angew. Chem. Int. Ed. Engl., 2007, 46(23), 4298-4301.
[http://dx.doi.org/10.1002/anie.200700006] [PMID: 17458845]
[11]
Subramanian, S.; Limaye, S.; Farrell, D. Silicon nanosponge particles. Ireland Patent WO/2006/121870. 2006.
[12]
Lian, K.; Wu, Q. Carbon-encased metal nanoparticles and sponges, methods of synthesis, and methods of use. Google Patents, US20090098033A1. 2012.
[13]
Trotta, F. Cyclodextrin nanosponges and their applications. In: Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: Current and Future Industrial Applications; John Wiley & Sons, Inc., 2011; pp. 323-342.
[http://dx.doi.org/10.1002/9780470926819.ch17]
[14]
Bender, M.L.; Komiyama, M. Cyclodextrin chemistry; Springer Science & Business Media, 2012.
[15]
Li, D.; Ma, M. Nanosponges for water purification. Clean Prod. Process., 2000, 2(2), 112-116.
[http://dx.doi.org/10.1007/s100980000061]
[16]
Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem., 2012, 8(1), 2091-2099.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[17]
Sheng, W.C.; Teng, W.; Ying Zhe, L.; Peng, L.; Christophe, C.; Xue Guang, S. Free energy calculations for cyclodextrin inclusion complexes. Curr. Org. Chem., 2011, 15(6), 839-847.
[http://dx.doi.org/10.2174/138527211794518853]
[18]
Fraceto, L.F.; Grillo, R.; Sobarzo-Sánchez, E. Cyclodextrin inclusion complexes loaded in particles as drug carrier systems. Curr. Top. Med. Chem., 2014, 14(4), 518-525.
[http://dx.doi.org/10.2174/1568026613666131219124847] [PMID: 24354668]
[19]
Kim, S.P.; Leach, A.G.; Houk, K.N. The origins of noncovalent catalysis of intermolecular Diels-Alder reactions by cyclodextrins, self-assembling capsules, antibodies, and RNAses. J. Org. Chem., 2002, 67(12), 4250-4260.
[http://dx.doi.org/10.1021/jo011180d] [PMID: 12054961]
[20]
Peila, R.; Scordino, P.; Shanko, D.; Caldera, F.; Trotta, F.; Ferri, A. Synthesis and characterization of β-cyclodextrin nanosponges for N, N-diethyl-meta-toluamide complexation and their application on polyester fabrics. React. Funct. Polym., 2017, 119, 87-94.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.08.008]
[21]
Kiasat, A.R.; Nazari, S.; Davarpanah, J. β-Cyclodextrin–polyurethane polymer: A neutral and eco-friendly heterogeneous catalyst for the one-pot synthesis of 1, 4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch reaction under solvent-free conditions. J. Serb. Chem. Soc., 2014, 79, 401-410.
[http://dx.doi.org/10.2298/JSC130112130K]
[22]
He, J-L.; Yang, Y.; Yang, X.; Liu, Y-L.; Liu, Z-H.; Shen, G-L.; Yu, R-Q. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sens. Actuators B Chem., 2006, 114(1), 94-100.
[http://dx.doi.org/10.1016/j.snb.2005.04.009]
[23]
Hu, Y.F.; Zhang, Z.H.; Zhang, H.B.; Luo, L.J.; Yao, S.Z. Electrochemical determination of L-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol-gel film. Talanta, 2011, 84(2), 305-313.
[http://dx.doi.org/10.1016/j.talanta.2011.01.010] [PMID: 21376949]
[24]
Wang, Z.; Xiao, S.; Chen, Y. β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J. Electroanal. Chem., 2006, 589(2), 237-242.
[http://dx.doi.org/10.1016/j.jelechem.2006.02.014]
[25]
Concheiro, A.; Alvarez-Lorenzo, C. Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv. Drug Deliv. Rev., 2013, 65(9), 1188-1203.
[http://dx.doi.org/10.1016/j.addr.2013.04.015] [PMID: 23631979]
[26]
Tan, S.; Ladewig, K.; Fu, Q.; Blencowe, A.; Qiao, G.G. Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol. Rapid Commun., 2014, 35(13), 1166-1184.
[http://dx.doi.org/10.1002/marc.201400080] [PMID: 24715693]
[27]
Xu, J.; Li, X.; Sun, F. Cyclodextrin-containing hydrogels for contact lenses as a platform for drug incorporation and release. Acta Biomater., 2010, 6(2), 486-493.
[http://dx.doi.org/10.1016/j.actbio.2009.07.021] [PMID: 19619677]
[28]
Harada, A. Cyclodextrins-Based Supramolecular Polymers. In: Encyclopedia of Polymeric Nanomaterials; Springer, 2015; pp. 517-523.
[http://dx.doi.org/10.1007/978-3-642-29648-2_43]
[29]
Yu, C.; Ganlin, S.; Yihui, Q.; Huimin, T.; Yanchun, Y.; Yanwen, G. The recent progress in the preparation of chitosan 6-OH immobilized cyclodextrin and its application. Mini Rev. Org. Chem., 2016, 13(2), 154-163.
[http://dx.doi.org/10.2174/1570193X13666160225000901]
[30]
Zolfaghari, G. β-Cyclodextrin incorporated nanoporous carbon: host-guest inclusion for removal of p-Nitrophenol and pesticides from aqueous solutions. Chem. Eng. J., 2016, 283, 1424-1434.
[http://dx.doi.org/10.1016/j.cej.2015.08.110]
[31]
Huq, R.; Mercier, L.; Kooyman, P. Incorporation of cyclodextrin into mesostructured silica. Chem. Mater., 2001, 13(12), 4512-4519.
[http://dx.doi.org/10.1021/cm010171i]
[32]
Jia, D.; Dai, J.; Yuan, H.; Lei, L.; Xiao, D. Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Talanta, 2011, 85(5), 2344-2351.
[http://dx.doi.org/10.1016/j.talanta.2011.07.067] [PMID: 21962652]
[33]
Yu, F.; Chen, D.; Ma, J. Synthesis of cyclodextrin-based adsorbents and its application for organic pollutant removal from water. Curr. Org. Chem., 2017, 21(19), 1976-1990.
[34]
Osmani, R.A. Kulkarni, P.; Manjunatha, S.; Vaghela, R.; Bhosale, R. Organic Materials as Smart Nanocarriers for Drug Delivery; Elsevier, 2018, pp. 659-717.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00016-6]
[35]
Trotta, F.; Cavalli, R.; Martina, K.; Biasizzo, M.; Vitillo, J.; Bordiga, S.; Vavia, P.; Ansari, K. Cyclodextrin nanosponges as effective gas carriers. J. Incl. Phenom. Macrocycl. Chem., 2011, 71(1-2), 189-194.
[http://dx.doi.org/10.1007/s10847-011-9926-5]
[36]
Ansari, K.A.; Torne, S.J.; Vavia, P.R.; Trotta, F.; Cavalli, R. Paclitaxel loaded nanosponges: In vitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr. Drug Deliv., 2011, 8(2), 194-202.
[http://dx.doi.org/10.2174/156720111794479934] [PMID: 21235471]
[37]
Hariri, G.; Edwards, A.D.; Merrill, T.B.; Greenbaum, J.M.; van der Ende, A.E.; Harth, E. Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked “nanosponge” network for lung cancer chemotherapy. Mol. Pharm., 2014, 11(1), 265-275.
[http://dx.doi.org/10.1021/mp400432b] [PMID: 24215299]
[38]
Mognetti, B.; Barberis, A.; Marino, S.; Berta, G.; De Francia, S.; Trotta, F.; Cavalli, R. In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J. Incl. Phenom. Macrocycl. Chem., 2012, 74(1-4), 201-210.
[http://dx.doi.org/10.1007/s10847-011-0101-9]
[39]
Torne, S.J.; Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv., 2010, 17(6), 419-425.
[http://dx.doi.org/10.3109/10717541003777233] [PMID: 20429848]
[40]
Gigliotti, C.L.; Minelli, R.; Cavalli, R.; Occhipinti, S.; Barrera, G.; Pizzimenti, S.; Cappellano, G.; Boggio, E.; Conti, L.; Fantozzi, R.; Giovarelli, M.; Trotta, F.; Dianzani, U.; Dianzani, C. In vitro and in vivo therapeutic evaluation of camptothecin-encapsulated β-cyclodextrin nanosponges in prostate cancer. J. Biomed. Nanotechnol., 2016, 12(1), 114-127.
[http://dx.doi.org/10.1166/jbn.2016.2144] [PMID: 27301177]
[41]
Minelli, R.; Cavalli, R.; Ellis, L.; Pettazzoni, P.; Trotta, F.; Ciamporcero, E.; Barrera, G.; Fantozzi, R.; Dianzani, C.; Pili, R. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur. J. Pharm. Sci., 2012, 47(4), 686-694.
[http://dx.doi.org/10.1016/j.ejps.2012.08.003] [PMID: 22917641]
[42]
Swaminathan, S.; Pastero, L.; Serpe, L.; Trotta, F.; Vavia, P.; Aquilano, D.; Trotta, M.; Zara, G.; Cavalli, R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm., 2010, 74(2), 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[43]
Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R. Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J. Biomed. Nanotechnol., 2013, 9(6), 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594] [PMID: 23858964]
[44]
Riyaz Ali, M.O.; Rohit, R.B.; Umme, H.; Rudra, V.; Parthasarathi, K.K. Cyclodextrin based nanosponges: impending carters in drug delivery and nanotherapeutics. Curr. Drug Ther., 2015, 10(1), 3-19.
[http://dx.doi.org/10.2174/157488551001150825095513]
[45]
Massaro, M.; Colletti, C.G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S. Synthesis and characterization of halloysite-cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustain. Chem.& Eng., 2017, 5(4), 3346-3352.
[http://dx.doi.org/10.1021/acssuschemeng.6b03191]
[46]
Li, H.; Lv, N.; Li, X.; Liu, B.; Feng, J.; Ren, X.; Guo, T.; Chen, D.; Fraser Stoddart, J.; Gref, R.; Zhang, J. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale, 2017, 9(22), 7454-7463.
[http://dx.doi.org/10.1039/C6NR07593B] [PMID: 28530283]
[47]
Gassensmith, J.J.; Furukawa, H.; Smaldone, R.A.; Forgan, R.S.; Botros, Y.Y.; Yaghi, O.M.; Stoddart, J.F. Strong and reversible binding of carbon dioxide in a green metal-organic framework. J. Am. Chem. Soc., 2011, 133(39), 15312-15315.
[http://dx.doi.org/10.1021/ja206525x] [PMID: 21877735]
[48]
Hartlieb, K.J.; Peters, A.W.; Wang, T.C.; Deria, P.; Farha, O.K.; Hupp, J.T.; Stoddart, J.F. Functionalised cyclodextrin-based metal-organic frameworks. Chem. Commun. (Camb.), 2017, 53(54), 7561-7564.
[http://dx.doi.org/10.1039/C7CC03345A] [PMID: 28634605]
[49]
Hartlieb, K.J.; Holcroft, J.M.; Moghadam, P.Z.; Vermeulen, N.A.; Algaradah, M.M.; Nassar, M.S.; Botros, Y.Y.; Snurr, R.Q.; Stoddart, J.F. CD-MOF: a versatile separation medium. J. Am. Chem. Soc., 2016, 138(7), 2292-2301.
[http://dx.doi.org/10.1021/jacs.5b12860] [PMID: 26812983]
[50]
Wu, D.; Gassensmith, J.J.; Gouvêa, D.; Ushakov, S.; Stoddart, J.F.; Navrotsky, A. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J. Am. Chem. Soc., 2013, 135(18), 6790-6793.
[http://dx.doi.org/10.1021/ja402315d] [PMID: 23611694]
[51]
Rajkumar, T.; Kukkar, D.; Kim, K-H.; Sohn, J.R.; Deep, A. Cyclodextrin-metal-organic framework (CD-MOF): From synthesis to applications. J. Ind. Eng. Chem., 2019, 72, 50-66.
[http://dx.doi.org/10.1016/j.jiec.2018.12.048]
[52]
Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym., 2017, 173, 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[53]
Tejashri, G.; Amrita, B.; Darshana, J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm., 2013, 63(3), 335-358.
[http://dx.doi.org/10.2478/acph-2013-0021] [PMID: 24152895]
[54]
Chilajwar, S.V.; Pednekar, P.P.; Jadhav, K.R.; Gupta, G.J.; Kadam, V.J. Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opin. Drug Deliv., 2014, 11(1), 111-120.
[http://dx.doi.org/10.1517/17425247.2014.865013] [PMID: 24298891]
[55]
Trotta, F.; Tumiatti, W. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. Google Patents WO2006002814A1. 2005.
[56]
Trotta, F.; Tumiatti, V.; Cavalli, R.; Roggero, C.; Mognetti, B.; Berta, G. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs WO, 2009, 3656, A1. 2009.
[57]
Trotta, F.; Cavalli, R.; Tumiatti, W.; Zerbinati, O.; Roggero, C.; Vallero, R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. Google Patents, U.S. Patent Application 11/630,403. 2008.
[58]
Anandam, S.; Selvamuthukumar, S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J. Porous Mater., 2014, 21(6), 1015-1023.
[http://dx.doi.org/10.1007/s10934-014-9851-2]
[59]
Bhosale, S.V.; Bhosale, S.V. β-Cyclodextrin as a catalyst in organic synthesis. Mini Rev. Org. Chem., 2007, 4(3), 231-242.
[http://dx.doi.org/10.2174/157019307781369922]
[60]
Kaboudin, B.; Sorbiun, M. β-Cyclodextrin as an efficient catalyst for the one-pot synthesis of 1-aminophosphonic esters in water. Tetrahedron Lett., 2007, 48(51), 9015-9017.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.082]
[61]
Kanagaraj, K.; Pitchumani, K. Per-6-amino-β-cyclodextrin as a chiral base catalyst promoting one-pot asymmetric synthesis of 2-aryl-2,3-dihydro-4-quinolones. J. Org. Chem., 2013, 78(2), 744-751.
[http://dx.doi.org/10.1021/jo302173a] [PMID: 23245355]
[62]
Kumar, A.; Tripathi, V.D.; Kumar, P. β-Cyclodextrin catalysed synthesis of tryptanthrin in water. Green Chem., 2011, 13(1), 51-54.
[http://dx.doi.org/10.1039/C0GC00523A]
[63]
Liberto, N.A.; de Paiva Silva, S.; de Fátima, Â.; Fernandes, S.A. β-Cyclodextrin-assisted synthesis of Biginelli adducts under solvent-free conditions. Tetrahedron, 2013, 69(38), 8245-8249.
[http://dx.doi.org/10.1016/j.tet.2013.07.024]
[64]
Londhe, B.S.; Pratap, U.R.; Mali, J.R.; Mane, R.A. Synthesis of 2-arylbenzothiazoles catalyzed by biomimetic catalyst, β-cyclodextrin. Bull. Korean Chem. Soc., 2010, 31(8), 2329.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2329]
[65]
Murthy, S.N.; Madhav, B.; Reddy, V.P.; Nageswar, Y. One-pot synthesis of 2-amino-4H-chromen-4-yl phosphonate derivatives using β-cyclodextrin as reusable catalyst in water. Tetrahedron Lett., 2010, 51(28), 3649-3653.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.028]
[66]
Song, J.; Zhang, Z.; Han, B.; Hu, S.; Li, W.; Xie, Y. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin. Green Chem., 2008, 10(12), 1337-1341.
[http://dx.doi.org/10.1039/b815105a]
[67]
Surendra, K.; Krishnaveni, N.S.; Mahesh, A.; Rao, K.R. Supramolecular catalysis of Strecker reaction in water under neutral conditions in the presence of β-cyclodextrin. J. Org. Chem., 2006, 71(6), 2532-2534.
[http://dx.doi.org/10.1021/jo052510n] [PMID: 16526812]
[68]
Surendra, K.; Krishnaveni, N.S.; Nageswar, Y.V.; Rao, K.R. Highly regioselective ring opening of oxiranes with phenoxides in the presence of β-cyclodextrin in water. J. Org. Chem., 2003, 68(12), 4994-4995.
[http://dx.doi.org/10.1021/jo034194n] [PMID: 12790620]
[69]
Surendra, K.; Krishnaveni, N.S.; Sridhar, R.; Rao, K.R. β-Cyclodextrin promoted aza-Michael addition of amines to conjugated alkenes in water. Tetrahedron Lett., 2006, 47(13), 2125-2127.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.124]
[70]
Vishwanath, S.B.; Vishwanath, S.B. Cyclodextrin as a catalyst in organic synthesis. Mini Rev. Org. Chem., 2007, 4(3), 231-242.
[http://dx.doi.org/10.2174/157019307781369922]
[71]
Breslow, R.; Dong, S.D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev., 1998, 98(5), 1997-2012.
[http://dx.doi.org/10.1021/cr970011j] [PMID: 11848956]
[72]
Takahashi, K. Organic reactions mediated by cyclodextrins. Chem. Rev., 1998, 98(5), 2013-2034.
[http://dx.doi.org/10.1021/cr9700235] [PMID: 11848957]
[73]
Bonnet, V.; Gervaise, C.; Favrelle, A.; Sarazin, C.; Djedaini-Pilard, F. Enzymatic catalysis in presence of cyclodextrins. Curr. Org. Chem., 2010, 14(13), 1323-1336.
[http://dx.doi.org/10.2174/138527210791616849]
[74]
Hamideh, A.; Ali, R. General overview on cyclodextrin-based artificial enzyme’s activity. Curr. Org. Chem., 2016, 20(26), 2817-2836.
[http://dx.doi.org/10.2174/1385272820666160328201207]
[75]
Madhulika, S.; Pratibha, R.; Jaya, S.; Snehlata, Y.; Bhartendu Pati, T.; Jagdamba, S. Role of β-CD in water as supramolecular catalysis. Curr. Organocatal., 2016, 3(1), 32-38.
[76]
Chau, N.T.T.; Handjani, S.; Guegan, J-P.; Guerrero, M.; Monflier, E.; Philippot, K.; Denicourt-Nowicki, A.; Roucoux, A. Methylated β-cyclodextrin-capped ruthenium nanoparticles: synthesis strategies, characterization, and application in hydrogenation reactions. ChemCatChem, 2013, 5(6), 1497-1503.
[http://dx.doi.org/10.1002/cctc.201200718]
[77]
Chen, L.; Berry, R.M.; Tam, K.C. Synthesis of β-cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain. Chem. Eng., 2014, 2(4), 951-958.
[http://dx.doi.org/10.1021/sc400540f]
[78]
Gao, J.; Guo, Z.; Su, F.; Gao, L.; Pang, X.; Cao, W.; Du, B.; Wei, Q. Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody. Biosens. Bioelectron., 2015, 63, 465-471.
[http://dx.doi.org/10.1016/j.bios.2014.07.081] [PMID: 25129508]
[79]
Gogoi, A.; Sarma, K.C. Synthesis of the novel β-cyclodextrin supported CeO2 nanoparticles for the catalytic degradation of methylene blue in aqueous suspension. Mater. Chem. Phys., 2017, 194, 327-336.
[http://dx.doi.org/10.1016/j.matchemphys.2017.04.003]
[80]
Herbois, R.; Noël, S.; Léger, B.; Tilloy, S.; Menuel, S.; Addad, A.; Martel, B.; Ponchel, A.; Monflier, E. Ruthenium-containing β-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds. Green Chem., 2015, 17(4), 2444-2454.
[http://dx.doi.org/10.1039/C5GC00005J]
[81]
Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. Fe3O4 nanoparticle-supported Cu(ii)-β-cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1,2,3-triazoles from aryl boronic acids. Green Chem., 2013, 15(8), 2266-2274.
[http://dx.doi.org/10.1039/c3gc40753e]
[82]
Kang, Y.; Zhou, L.; Li, X.; Yuan, J. β-Cyclodextrin-modified hybrid magnetic nanoparticles for catalysis and adsorption. J. Mater. Chem., 2011, 21(11), 3704-3710.
[http://dx.doi.org/10.1039/c0jm03513k]
[83]
Kiasat, A.R.; Nazari, S. β-Cyclodextrin conjugated magnetic nanoparticles as a novel magnetic microvessel and phase transfer catalyst: synthesis and applications in nucleophilic substitution reaction of benzyl halides. J. Incl. Phenom. Macrocycl. Chem., 2013, 76(3), 363-368.
[http://dx.doi.org/10.1007/s10847-012-0207-8]
[84]
Li, X.; Qi, Z.; Liang, K.; Bai, X.; Xu, J.; Liu, J.; Shen, J. An artificial supramolecular nanozyme based on β-cyclodextrin-modified gold nanoparticles. Catal. Lett., 2008, 124(3), 413-417.
[http://dx.doi.org/10.1007/s10562-008-9494-5]
[85]
Liang, L.; Diallo, A.K.; Salmon, L.; Ruiz, J.; Astruc, D. Catalysis of C–C cross-coupling reactions in aqueous solvent by bis- and tris(ferrocenyltriazolylmethyl)arene–β-cyclodextrin-stabilized Pd0 nanoparticles. Eur. J. Inorg. Chem., 2012, 2012(17), 2950-2958.
[http://dx.doi.org/10.1002/ejic.201200098]
[86]
Putta, C.; Sharavath, V.; Sarkar, S.; Ghosh, S. Palladium nanoparticles on β-cyclodextrin functionalised graphene nanosheets: a supramolecular based heterogeneous catalyst for C–C coupling reactions under green reaction conditions. RSC Advances, 2015, 5(9), 6652-6660.
[http://dx.doi.org/10.1039/C4RA14323J]
[87]
Rostamnia, S.; Doustkhah, E. Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik–Fields multicomponent reaction. J. Magn. Magn. Mater., 2015, 386, 111-116.
[http://dx.doi.org/10.1016/j.jmmm.2015.03.064]
[88]
Strimbu, L.; Liu, J.; Kaifer, A.E. Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction. Langmuir, 2003, 19(2), 483-485.
[http://dx.doi.org/10.1021/la026550n]
[89]
Wang, N.; Zhou, L.; Guo, J.; Ye, Q.; Lin, J-M.; Yuan, J. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin. Appl. Surf. Sci., 2014, 305, 267-273.
[http://dx.doi.org/10.1016/j.apsusc.2014.03.054]
[90]
Xue, C.; Palaniappan, K.; Arumugam, G.; Hackney, S.A.; Liu, J.; Liu, H. Sonogashira reactions catalyzed by water-soluble, β-cyclodextrin-capped palladium nanoparticles. Catal. Lett., 2007, 116(3), 94-100.
[http://dx.doi.org/10.1007/s10562-007-9108-7]
[91]
Zhang, X.; Wu, F.; Deng, N. Efficient photodegradation of dyes using light-induced self assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation. J. Hazard. Mater., 2011, 185(1), 117-123.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.005] [PMID: 20880630]
[92]
Kiasat, A.R.; Nazari, S. β-Cyclodextrin based polyurethane as eco-friendly polymeric phase transfer catalyst in nucleophilic substitution reactions of benzyl halides in water: An efficient route to synthesis of benzyl thiocyanates and acetates. Catal. Sci. Technol., 2012, 2(5), 1056-1058.
[http://dx.doi.org/10.1039/c2cy00375a]
[93]
Salgın, S.; Salgın, U.; Vatansever, Ö. Synthesis and characterization of β-cyclodextrin nanosponge and its application for the removal of p-nitrophenol from water. Clean–Soil, Air. Water, 2017, 45(10) 1500837
[94]
Sadjadi, S.; Heravi, M.M.; Daraie, M. Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes. Res. Chem. Intermed., 2017, 43(2), 843-857.
[http://dx.doi.org/10.1007/s11164-016-2668-7]
[95]
Sadjadi, S.; Heravi, M.M.; Daraie, M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liq., 2017, 231, 98-105.
[http://dx.doi.org/10.1016/j.molliq.2017.01.072]
[96]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Bio-assisted synthesized Ag (0) nanoparticles immobilized on SBA-15/cyclodextrin nanosponge adduct: Efficient heterogeneous catalyst for the ultrasonic-assisted synthesis of benzopyranopyrimidines. Appl. Organomet. Chem., 2018, 32(4) e4286
[http://dx.doi.org/10.1002/aoc.4286]
[97]
Sabzi, N.E.; Kiasat, A. β-Cyclodextrin based nanosponge as a biodegradable porous three-dimensional nanocatalyst in the one-pot synthesis of N-containing organic scaffolds. Catal. Lett., 2018, 148(9), 2654-2664.
[http://dx.doi.org/10.1007/s10562-018-2484-3]
[98]
Sadjadi, S.; Heravi, M.M.; Raja, M.; Kahangi, F.G. Palladium nanoparticles immobilized on sepiolite-cyclodextrin nanosponge hybrid: Efficient heterogeneous catalyst for ligand-and copper-free C-C coupling reactions. Appl. Organomet. Chem., 2018, 32(10) e4508
[http://dx.doi.org/10.1002/aoc.4508]
[99]
Kobayashi, N.; Shirai, H.; Hojo, N. Virtues of a poly-cyclodextrin for the de-aggregation of organic molecules in water. J. Polym. Sci. C, 1989, 27(6), 191-195.
[http://dx.doi.org/10.1002/pol.1989.140270603]
[100]
Crini, G.; Cosentino, C.; Bertini, S.; Naggi, A.; Torri, G.; Vecchi, C.; Janus, L.; Morcellet, M. Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose (β-cyclodextrin) crosslinked with epichlorohydrin. Carbohydr. Res., 1998, 308(1-2), 37-45.
[http://dx.doi.org/10.1016/S0008-6215(98)00077-9] [PMID: 9675355]
[101]
Nasab, M.J.; Kiasat, A.R.; Zarasvandi, R. β-Cyclodextrin nanosponge polymer: a basic and eco-friendly heterogeneous catalyst for the one-pot four-component synthesis of pyranopyrazole derivatives under solvent-free conditions. React. Kinet. Mech. Catal., 2018, 1-12.
[102]
Du, X.; He, J.; Zhu, J.; Sun, L.; An, S. Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl. Surf. Sci., 2012, 258(7), 2717-2723.
[http://dx.doi.org/10.1016/j.apsusc.2011.10.122]
[103]
Gill, C.S.; Price, B.A.; Jones, C.W. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J. Catal., 2007, 251(1), 145-152.
[http://dx.doi.org/10.1016/j.jcat.2007.07.007]
[104]
Fan, L.; Li, M.; Lv, Z.; Sun, M.; Luo, C.; Lu, F.; Qiu, H. Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids Surf. B Biointerfaces, 2012, 95, 42-49.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.007] [PMID: 22445236]
[105]
Pyun, J. Nanocomposite materials from functional polymers and magnetic colloids. Polym. Rev. (Phila. Pa.), 2007, 47(2), 231-263.
[http://dx.doi.org/10.1080/15583720701271294]
[106]
Kassaee, M.Z.; Masrouri, H.; Movahedi, F. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl. Catal. A Gen., 2011, 395(1-2), 28-33.
[http://dx.doi.org/10.1016/j.apcata.2011.01.018]
[107]
Badruddoza, A.Z.; Hidajat, K.; Uddin, M.S. Synthesis and characterization of β-cyclodextrin-conjugated magnetic nanoparticles and their uses as solid-phase artificial chaperones in refolding of carbonic anhydrase bovine. J. Colloid Interface Sci., 2010, 346(2), 337-346.
[http://dx.doi.org/10.1016/j.jcis.2010.03.004] [PMID: 20350725]
[108]
Badruddoza, A.Z.; Tay, A.S.; Tan, P.Y.; Hidajat, K.; Uddin, M.S. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J. Hazard. Mater., 2011, 185(2-3), 1177-1186.
[http://dx.doi.org/10.1016/j.jhazmat.2010.10.029] [PMID: 21081259]
[109]
Cao, H.; He, J.; Deng, L.; Gao, X. Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core-shell nanoparticles via layer-by-layer method. Appl. Surf. Sci., 2009, 255(18), 7974-7980.
[http://dx.doi.org/10.1016/j.apsusc.2009.04.199]
[110]
Akoz, E.; Erdemir, S.; Yilmaz, M. Immobilization of novel the semicarbazone derivatives of calix [4] arene onto magnetite nanoparticles for removal of Cr (VI) ion. J. Incl. Phenom. Macrocycl. Chem., 2012, 73(1-4), 449-458.
[http://dx.doi.org/10.1007/s10847-011-0083-7]
[111]
Wang, H.; Zhou, Y.; Guo, Y.; Liu, W.; Dong, C.; Wu, Y.; Li, S.; Shuang, S. β-Cyclodextrin/Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sens. Actuators B Chem., 2012, 163(1), 171-178.
[http://dx.doi.org/10.1016/j.snb.2012.01.031]
[112]
Kiasat, A.R.; Nazari, S. Magnetic nanoparticles grafted with β-cyclodextrin–polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water. J. Mol. Catal. Chem., 2012, 365, 80-86.
[http://dx.doi.org/10.1016/j.molcata.2012.08.012]
[113]
Lin, B-N.; Huang, S-H.; Wu, W-Y.; Mou, C-Y.; Tsai, F-Y. Sonogashira reaction of aryl and heteroaryl halides with terminal alkynes catalyzed by a highly efficient and recyclable nanosized MCM-41 anchored palladium bipyridyl complex. Molecules, 2010, 15(12), 9157-9173.
[http://dx.doi.org/10.3390/molecules15129157] [PMID: 21150831]
[114]
Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev., 2011, 40(10), 5084-5121.
[http://dx.doi.org/10.1039/c1cs15071e] [PMID: 21655588]
[115]
Camacho, A.S.; Martín-García, I.; Contreras-Celedón, C.; Chacón-García, L.; Alonso, F. DNA-supported palladium nanoparticles as a reusable catalyst for the copper-and ligand-free Sonogashira reaction. Catal. Sci. Technol., 2017, 7(11), 2262-2273.
[http://dx.doi.org/10.1039/C7CY00001D]
[116]
Sadjadi, S.; Majid, M.H.; Malmir, M. Pd (0) nanoparticle immobilized on cyclodextrin-nanosponge-decorated Fe2O3@ SiO2 core-shell hollow sphere: An efficient catalyst for CC coupling reactions. J. Taiwan Ins. Chem. Eng., 2018, 86, 240-251.
[http://dx.doi.org/10.1016/j.jtice.2018.02.033]
[117]
Sadjadi, S.; Malmir, M.; Heravi, M.M.; Raja, M. Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: Efficient catalytic support for immobilization of Pd nanoparticles. Int. J. Biol. Macromol., 2019, 128, 638-647.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.181] [PMID: 30708003]
[118]
Sadjadi, S.; Heravi, M.M.; Raja, M. Composite of ionic liquid decorated cyclodextrin nanosponge, graphene oxide and chitosan: A novel catalyst support. Int. J. Biol. Macromol., 2019, 122, 228-237.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.160] [PMID: 30393138]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 21
Year: 2019
Published on: 09 January, 2020
Page: [2366 - 2377]
Pages: 12
DOI: 10.2174/1385272823666191029115623
Price: $58

Article Metrics

PDF: 21
HTML: 2