Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

An Insight into the Synthesis and SAR of 2,4-Thiazolidinediones (2,4-TZD) as Multifunctional Scaffold: A Review

Author(s): Navjot Singh Sethi, Deo Nandan Prasad and Rajesh Kumar Singh*

Volume 20, Issue 4, 2020

Page: [308 - 330] Pages: 23

DOI: 10.2174/1389557519666191029102838

Price: $65

Abstract

2,4-Thiazolidinedione (2,4-TZD) is a versatile pharmacophore, a privileged scaffold, and a remarkable sulphur-containing heterocyclic compound with diverse pharmacological activities. The multifarious biological activities, due to different mechanisms of action, low cost, and easy availability of 2,4-TZD impressed medicinal chemists to integrate this moiety to develop various lead compounds with diverse therapeutic actions. This resulted in the swift development in the last decade for generating different new potential molecules bearing 2,4-TZD. In this review, the authors attempt to shape and present the latest investigations (2012 onwards) going on in generating promising 2,4-TZD containing lead compounds. The data has been collected and analyzed to develop the structure-activity relationship (SAR). The SAR and active pharmacophores of various leads accountable for antidiabetic, anticancer, antimicrobial, and antioxidant activities have also been illustrated. This review also highlighted some of the important chemical synthetic routes for the preparation of various 2,4-TZD derivatives. This review will definitely serve as a useful source of structural information to medicinal chemists and may be utilized for the strategic design of potent 2,4-TZD derivatives in the future.

Keywords: 2, 4-Thiazolidinedione, heterocyclic, antidiabetic, anticancer, antimicrobial, antioxidant.

Graphical Abstract
[1]
Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723]
[2]
Ortiz, A.; Sansinenea, E. Synthetic thiazolidinediones: Potential antidiabetic compounds. Curr. Org. Chem., 2011, 15, 108-127.
[http://dx.doi.org/10.2174/138527211793797774]
[3]
Chen, X.; Feng, Y.; Yang, W.J.; Shu, G.; Jiang, Q.Y.; Wang, X.Q. Effects of dietary thiazolidinedione supplementation on growth performance, intramuscular fat and related genes mRNA abundance in the longissimus dorsi muscle of finishing pigs. Asian-Aust. J. Anim. Sci., 2013, 26, 1012-1020.
[http://dx.doi.org/10.5713/ajas.2012.12722]
[4]
Jin, C.L.; Gao, C.Q.; Wang, Q.; Zhang, Z.M.; Xu, Y.L.; Li, H.C.; Yan, H.C.; Wang, X.Q. Effects of pioglitazone hydrochloride and vitamin E on meat quality, antioxidant status and fatty acid profiles in finishing pigs. Meat Sci., 2018, 145, 340-346.
[http://dx.doi.org/10.1016/j.meatsci.2018.07.008] [PMID: 30015164]
[5]
Jin, C.L.; Wang, Q.; Zhang, Z.M.; Xu, Y.L.; Yan, H.C.; Li, H.C.; Gao, C.Q.; Wang, X.Q. Dietary supplementation with pioglitazone hydrochloride and chromium methionine improves growth performance, meat quality, and antioxidant ability in finishing pigs. J. Agric. Food Chem., 2018, 66(17), 4345-4351.
[http://dx.doi.org/10.1021/acs.jafc.8b01176] [PMID: 29682966]
[6]
Chadha, N.; Bahia, M.S.; Kaur, M.; Silakari, O. Thiazolidine-2,4-dione derivatives: programmed chemical weapons for key protein targets of various pathological conditions. Bioorg. Med. Chem., 2015, 23(13), 2953-2974.
[http://dx.doi.org/10.1016/j.bmc.2015.03.071] [PMID: 25890697]
[7]
Verma, A.; Saraf, S.K. 4-thiazolidinone--a biologically active scaffold. Eur. J. Med. Chem., 2008, 43(5), 897-905.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.017] [PMID: 17870209]
[8]
Sucheta; Tahlan, S.; Verma, P.K. Biological potential of thiazolidinedione derivatives of synthetic origin. Chem. Cent. J., 2017, 11(1), 130.
[http://dx.doi.org/10.1186/s13065-017-0357-2] [PMID: 29222671]
[9]
Jain, V.S.; Vora, D.K.; Ramaa, C.S. Thiazolidine-2,4-diones: Progress towards multifarious applications. Bioorg. Med. Chem., 2013, 21(7), 1599-1620.
[http://dx.doi.org/10.1016/j.bmc.2013.01.029] [PMID: 23419324]
[10]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[11]
Janani, C.; Ranjitha Kumari, B.D. PPAR gamma gene--a review. Diabetes Metab. Syndr., 2015, 9(1), 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[12]
Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem., 2018, 77, 548-567.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[13]
Colca, J.R. The TZD insulin sensitizer clue provides a new route into diabetes drug discovery. Expert Opin. Drug Discov., 2015, 10(12), 1259-1270.
[http://dx.doi.org/10.1517/17460441.2015.1100164] [PMID: 26479699]
[14]
Lewis, J.D.; Ferrara, A.; Peng, T.; Hedderson, M.; Bilker, W.B.; Quesenberry, C.P., Jr; Vaughn, D.J.; Nessel, L.; Selby, J.; Strom, B.L. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care, 2011, 34(4), 916-922.
[http://dx.doi.org/10.2337/dc10-1068] [PMID: 21447663]
[15]
Hsiao, F.Y.; Hsieh, P.H.; Huang, W.F.; Tsai, Y.W.; Gau, C.S. Risk of bladder cancer in diabetic patients treated with rosiglitazone or pioglitazone: A nested case–control study. Drug Saf., 2013, 36(8), 643-649.
[http://dx.doi.org/10.1007/s40264-013-0080-4] [PMID: 23797604]
[16]
Gallagher, A.M.; Smeeth, L.; Seabroke, S.; Leufkens, H.G.; van Staa, T.P. Risk of death and cardiovascular outcomes with thiazolidinediones: A study with the general practice research database and secondary care data. PLoS One, 2011, 6(12), e28157
[http://dx.doi.org/10.1371/journal.pone.0028157] [PMID: 22164237]
[17]
Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab., 2014, 20(4), 573-591.
[http://dx.doi.org/10.1016/j.cmet.2014.08.005] [PMID: 25242225]
[18]
Hiatt, W.R.; Kaul, S.; Smith, R.J. The cardiovascular safety of diabetes drugs--insights from the rosiglitazone experience. N. Engl. J. Med., 2013, 369(14), 1285-1287.
[http://dx.doi.org/10.1056/NEJMp1309610] [PMID: 23992603]
[19]
Koffarnus, R.L.; Wargo, K.A.; Phillippe, H.M. Rivoglitazone: A new thiazolidinedione for the treatment of type 2 diabetes mellitus. Ann. Pharmacother., 2013, 47(6), 877-885.
[http://dx.doi.org/10.1345/aph.1R754] [PMID: 23632280]
[20]
Mohammed Iqbal, A.K.; Khan, A.Y.; Kalashetti, M.B.; Belavagi, N.S.; Gong, Y.D.; Khazi, I.A. Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring. Eur. J. Med. Chem., 2012, 53, 308-315.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.015] [PMID: 22575535]
[21]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem., 2010, 45(5), 1753-1759.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.007] [PMID: 20122763]
[22]
Kun, S.; Nagy, G.Z.; Tóth, M.; Czecze, L.; Van Nhien, A.N.; Docsa, T.; Gergely, P.; Charavgi, M.D.; Skourti, P.V.; Chrysina, E.D.; Patonay, T.; Somsák, L. Synthesis of variously coupled conjugates of D-glucose, 1,3,4-oxadiazole, and 1,2,3-triazole for inhibition of glycogen phosphorylase. Carbohydr. Res., 2011, 346(12), 1427-1438.
[http://dx.doi.org/10.1016/j.carres.2011.03.004] [PMID: 21470596]
[23]
Bozdag, O.; Ertan, R. Studies on the synthesis of some substituted flavonylthiazolidinedione derivatives-I. Turk. J. Chem., 1999, 23, 163.
[24]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Shafi, S.; Dhulap, A.; Alam, P.; Pasha, M.A.; Bano, S.; Alam, M.M.; Haider, S.; Ali, Y.; Kharbanda, C.; Pillai, K.K. Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists. Eur. J. Med. Chem., 2014, 87, 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.010] [PMID: 25255433]
[25]
Oates, P.J.; Mylari, B.L. Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin. Investig. Drugs, 1999, 8(12), 2095-2119.
[http://dx.doi.org/10.1517/13543784.8.12.2095] [PMID: 11139842]
[26]
Metwally, K.; Pratsinis, H.; Kletsas, D. Novel 2,4- thiazolidinediones: Synthesis, in vitro cytotoxic activity, and mechanistic investigation. Eur. J. Med. Chem., 2017, 133, 340-350.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.052] [PMID: 28395220]
[27]
Spasov, A.A.; Lenskaya, K.V.; Vasilev, P.M. Hypoglycemic potential of benzimidazole derivatives. Pharm. Chem. J., 2015, 49, 495-500.
[http://dx.doi.org/10.1007/s11094-015-1313-x]
[28]
Singh, G.; Singh, A.; Verma, R.K.; Mall, R.; Azeem, U. Synthesis, biological evaluation and molecular docking studies of novel benzimidazole derivatives. Comput. Biol. Chem., 2018, 72, 45-52.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.12.010] [PMID: 29346072]
[29]
Hosseinzadeh, N.; Seraj, S.; Bakhshi-Dezffoli, M.E.; Hasani, M.; Khoshneviszadeh, M.; Fallah-Bonekohal, S.; Abdollahi, M.; Foroumadi, A.; Shafiee, A. Synthesis and antidiabetic evaluation of benzenesulfonamide derivatives. Iran. J. Pharm. Res., 2013, 12(2), 325-330.
[PMID: 24250607]
[30]
Naim, M. J.; Alam, O.; Alam, M. J.; Shaquiquzzaman, M.; Alam, M. M.; Naidu, V. G. M. Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole-based 2,4-TZD derivatives as PPAR- γ-modulators. Arch. Pharm. Chem. Life Sci., 2018, 1-15.
[31]
Huiying, Z.; Guangying, C.; Shiyang, Z. Design, synthesis and biological activity evaluation of a new class of 2,4-thiazolidinedione compounds as insulin enhancers. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 981-989.
[http://dx.doi.org/10.1080/14756366.2019.1608197] [PMID: 31072232]
[32]
Ranjan Srivastava, A.; Bhatia, R.; Chawla, P. Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives. Bioorg. Chem., 2019, .89102993
[http://dx.doi.org/10.1016/j.bioorg.2019.102993] [PMID: 31129500]
[33]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[34]
Tseng, C.H. Rosiglitazone reduces breast cancer risk in Taiwanese female patients with type 2 diabetes mellitus. Oncotarget, 2017, 8(2), 3042-3048.
[http://dx.doi.org/10.18632/oncotarget.13824] [PMID: 27936468]
[35]
Bolden, A.; Bernard, L.; Jones, D.; Akinyeke, T.; Stewart, L.V. The PPAR gamma agonist troglitazone regulates erk 1/2 phosphorylation via a PPARγ-independent, MEK-dependent pathway in human prostate cancer cells. PPAR Res., 2012, .2012929052
[http://dx.doi.org/10.1155/2012/929052] [PMID: 22448169]
[36]
Costa, V.; Foti, D.; Paonessa, F.; Chiefari, E.; Palaia, L.; Brunetti, G.; Gulletta, E.; Fusco, A.; Brunetti, A. The insulin receptor: a new anticancer target for peroxisome proliferator-activated receptor-gamma (PPARgamma) and thiazolidinedione-PPARgamma agonists. Endocr. Relat. Cancer, 2008, 15(1), 325-335.
[http://dx.doi.org/10.1677/ERC-07-0226] [PMID: 18310298]
[37]
Lu, M.; Kwan, T.; Yu, C.; Chen, F.; Freedman, B.; Schafer, J.M.; Lee, E.J.; Jameson, J.L.; Jordan, V.C.; Cryns, V.L. Peroxisome proliferator-activated receptor gamma agonists promote TRAIL-induced apoptosis by reducing survivin levels via cyclin D3 repression and cell cycle arrest. J. Biol. Chem., 2005, 280(8), 6742-6751.
[http://dx.doi.org/10.1074/jbc.M411519200] [PMID: 15569667]
[38]
Han, S.; Roman, J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol. Cancer Ther., 2006, 5(2), 430-437.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0347] [PMID: 16505118]
[39]
Yang, B.; Lin, P.; Carrick, K.M.; McNulty, J.A.; Clifton, L.G.; Winegar, D.A.; Strum, J.C.; Stimpson, S.A.; Pahel, G.L. PPARgamma agonists diminish serum VEGF elevation in diet-induced insulin resistant SD rats and ZDF rats. Biochem. Biophys. Res. Commun., 2005, 334(1), 176-182.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.078] [PMID: 15993383]
[40]
Lebovic, D.I.; Kavoussi, S.K.; Lee, J.; Banu, S.K.; Arosh, J.A. PPARγ activation inhibits growth and survival of human endometriotic cells by suppressing estrogen biosynthesis and PGE2 signaling. Endocrinology, 2013, 154(12), 4803-4813.
[http://dx.doi.org/10.1210/en.2013-1168] [PMID: 24064359]
[41]
Kaminskyy, D.; Zimenkovsky, B.; Lesyk, R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur. J. Med. Chem., 2009, 44(9), 3627-3636.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.023] [PMID: 19299038]
[42]
Nitulescu, G.M.; Draghici, C.; Olaru, O.T. New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. Int. J. Mol. Sci., 2013, 14(11), 21805-21818.
[http://dx.doi.org/10.3390/ijms141121805] [PMID: 24192822]
[43]
Grosse, S.; Mathieu, V.; Pillard, C.; Massip, S.; Marchivie, M.; Jarry, C.; Bernard, P.; Kiss, R.; Guillaumet, G. New imidazo[1,2-b]pyrazoles as anticancer agents: synthesis, biological evaluation and structure activity relationship analysis. Eur. J. Med. Chem., 2014, 84, 718-730.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.057] [PMID: 25064349]
[44]
Kumar, K.S.; Reddy, B.M.; Babu, V.H. Synthesis of some novel 2, 4-thiazolidinedione incorporated pyrazole derivatives as anti cancer agents. Int. J. Pharm. Pharm. Sci., 2014, 6, 831-834.
[45]
Hsieh, H.P.; Liou, J.P.; Lin, Y.T.; Mahindroo, N.; Chang, J.Y.; Yang, Y.N.; Chern, S.S.; Tan, U.K.; Chang, C.W.; Chen, T.W.; Lin, C.H.; Chang, Y.Y.; Wang, C.C. Structure-activity and crystallographic analysis of benzophenone derivatives-the potential anticancer agents. Bioorg. Med. Chem. Lett., 2003, 13(1), 101-105.
[http://dx.doi.org/10.1016/S0960-894X(02)00850-8] [PMID: 12467626]
[46]
Kamal, A.; Reddy, ChR.; Vishnuvardhan, M.V.; Mahesh, R. Lakshma Nayak, V.; Prabhakar, S.; Reddy, C.S. Synthesis and biological evaluation of cinnamido linked benzophenone hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2014, 24(10), 2309-2314.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.076] [PMID: 24736114]
[47]
Islam, K.; Ali, S.M.; Jesmin, M.; Khanam, J.A. In vivo anticancer activities of benzophenone semicarbazone against ehrlich ascites carcinoma cells in swiss albino mice. Cancer Biol. Med., 2012, 9(4), 242-247.
[PMID: 23691484]
[48]
Prashanth, T.; Thirusangu, P.; Vijay Avin, B.R.; Lakshmi Ranganatha, V.; Prabhakar, B.T.; Khanum, S.A. Synthesis and evaluation of novel benzophenone-thiazole derivatives as potent VEGF-A inhibitors. Eur. J. Med. Chem., 2014, 87, 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.069] [PMID: 25261825]
[49]
Osmaniye, D.; Levent, S.; Karaduman, A.B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of new benzothiazole acylhydrazones as anticancer agents. Molecules, 2018, 23(5), E1054
[http://dx.doi.org/10.3390/molecules23051054] [PMID: 29724002]
[50]
Eshkil, F.; Eshghi, H. Amir. Sh. Saljooghi, Bakavoli, M.; Rahimizadeh M. Benzothiazole thiourea derivatives as anticancer agents: Design, synthesis, and biological screening. Russian J. Biol. Chem., 2017, 43, 576-582.
[http://dx.doi.org/10.1134/S1068162017050065]
[51]
Bhanushali, U.; Rajendran, S.; Sarma, K.; Kulkarni, P.; Chatti, K.; Chatterjee, S.; Ramaa, C.S. 5-Benzylidene-2,4-thiazolidenedione derivatives: Design, synthesis and evaluation as inhibitors of angiogenesis targeting VEGR-2. Bioorg. Chem., 2016, 67, 139-147.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.006] [PMID: 27388635]
[52]
Rodrigues, M.D.D.; Santiago, P.B.G.S.; Marques, K.M.R.; Pereira, V.R.A.; de Castro, M.C.A.B.; Cantalice, J.C.L.L.; da Silva, T.G.; Adam, M.L.; do Nascimento, S.C.; de Albuquerque, J.F.C.; Militao, G.C.G. Selective cytotoxic and genotoxic activities of 5-(2-bromo-5-methoxybenzylidene)-thiazolidine-2,4-dione against NCI-H292 human lung carcinoma cells. Pharmacol. Rep., 2018, 70(3), 446-454.
[http://dx.doi.org/10.1016/j.pharep.2017.11.008] [PMID: 29627691]
[53]
Hranjec, M.; Starčević, K.; Pavelić, S.K.; Lučin, P.; Pavelić, K.; Karminski Zamola, G. Synthesis, spectroscopic characterization and antiproliferative evaluation in vitro of novel Schiff bases related to benzimidazoles. Eur. J. Med. Chem., 2011, 46(6), 2274-2279.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.008] [PMID: 21439689]
[54]
Shaharyar, M.; Abdullah, M.M.; Bakht, M.A.; Majeed, J. Pyrazoline bearing benzimidazoles: Search for anticancer agent. Eur. J. Med. Chem., 2010, 45(1), 114-119.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.032] [PMID: 19883957]
[55]
Thimmegowda, N.R.; Nanjunda Swamy, S.; Kumar, C.S.A.; Kumar, Y.C.S.; Chandrappa, S.; Yip, G.W.; Rangappa, K.S. Synthesis, characterization and evaluation of benzimidazole derivative and its precursors as inhibitors of MDA-MB-231 human breast cancer cell proliferation. Bioorg. Med. Chem. Lett., 2008, 18(1), 432-435.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.078] [PMID: 17981032]
[56]
Sharma, P.; Reddy, T.S.; Kumar, N.P.; Senwar, K.R.; Bhargava, S.K.; Shankaraiah, N. Conventional and microwave-assisted synthesis of new 1H-benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur. J. Med. Chem., 2017, 138, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.035] [PMID: 28668476]
[57]
Subhankar, P. Mandal.; Mithuna.; Garg, A.; Sahetya, S.S.; Nagendra, S.R.; Sripad H.S.; Manjunath, M.M.; Sitaram.; Soni, M.; Baig, R.N.; Kumar, S.V.; Kumar, B.R.P. Novel rhodanines with anticancer activity: design, synthesis and CoMSIA study. RCS Adv., 2016, 6, 58641-58653.
[58]
Ramesh, V.; Ananda Rao, B.; Sharma, P.; Swarna, B.; Thummuri, D.; Srinivas, K.; Naidu, V.G.; Jayathirtha Rao, V. Synthesis and biological evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo[h]quinoline scaffolds as anticancer agents. Eur. J. Med. Chem., 2014, 83, 569-580.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.013] [PMID: 24996143]
[59]
Ozen, C.; Ceylan Unlusoy, M.; Aliary, N.; Ozturk, M.; Bozdag Dundar, O. Aliary, Nazanin.; Ozturk, Mehmet.; Oya B-D. Thiazolidinedione or rhodanine: A study on synthesis and anticancer activity comparison of novel thiazole derivatives. J. Pharm. Pharm. Sci., 2017, 20(1), 415-427.
[http://dx.doi.org/10.18433/J38P9R] [PMID: 29197428]
[60]
Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789.
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
[61]
Elkamhawy, A.; Kim, N.Y.; Hassan, A.H.E.; Park, J.E.; Yang, J.E.; Oh, K-S.; Lee, B.H.; Lee, M.Y.; Shin, K.J.; Lee, K-T.; Hur, W.; Roh, E.J. Design, synthesis and biological evaluation of novel thiazolidinedione derivatives as irreversible allosteric IKK-β modulators. Eur. J. Med. Chem., 2018, 157, 691-704.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.020] [PMID: 30130718]
[62]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, .89103021
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[63]
World Health Organization (WHO). Environmental health criteria 5. Nitrates, nitrites and N-nitroso compounds.International programme on chemical safety; World Health Organization: Geneva, 1978.
[64]
Corigliano, D.M.; Syed, R.; Messineo, S.; Lupia, A. Pate,l R.; Reddy, C.V.R.; Dubey P. K.; Colica, C.; Amato, R.; De Sarro, G.; Alcaro, S.; Indrasena, A.; Brunetti, A. . Indole and 2,4-TZD conjugates as potential anticancer modulators. Peer J., 2018, .6e5386
[http://dx.doi.org/10.7717/peerj.5386] [PMID: 30123711]
[66]
Pereira, H.; Ávila, A. Albino Smânia, E.d.F.; Monache, F.D., Júnior, A.S. Structure–activity relationship of antibacterial chalcones. Bioorg. Med. Chem., 2008, 16, 9790-9794.
[http://dx.doi.org/10.1016/j.bmc.2008.09.064]
[67]
Božić, D.D.; Milenković, M.; Ivković, B.; Ćirković, I. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res., 2014, 140(1), 130-137.
[PMID: 25222788]
[68]
Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas Anil, D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 490-495.
[http://dx.doi.org/10.1080/14756366.2016.1265517] [PMID: 28118738]
[69]
Liu, X.F.; Zheng, C.J.; Sun, L.P.; Liu, X.K.; Piao, H.R. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur. J. Med. Chem., 2011, 46(8), 3469-3473.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.012] [PMID: 21624712]
[70]
Purohit, S.S.; Alman, A.; Shewale, J. Synthesis & antimicrobial activity of a new series of 3, 5-disubstituted thiazolidine-2, 4-diones. Int. J. Pharm. Pharm. Sci., 2012, 4, 273-276.
[71]
Tejchman, W.; Korona-Glowniak, I.; Malm, A.; Zylewski, M.; Suder, P. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res., 2017, 26(6), 1316-1324.
[http://dx.doi.org/10.1007/s00044-017-1852-7] [PMID: 28515623]
[72]
Krátký, M.; Vinšová, J.; Stolaříková, J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg. Med. Chem., 2017, 25(6), 1839-1845.
[http://dx.doi.org/10.1016/j.bmc.2017.01.045] [PMID: 28196707]
[73]
Zvarec, O.; Polyak, S.W.; Tieu, W.; Kuan, K.; Dai, H.; Pedersen, D.S.; Morona, R.; Zhang, L.; Booker, G.W.; Abell, A.D. 5-benzylidenerhodanine and 5-benzylidene-2-4-thiazolidinedione based antibacterials. Bioorg. Med. Chem. Lett., 2012, 22(8), 2720-2722.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.100] [PMID: 22444680]
[74]
Singh, L.K. Priyanka; Singh, V.; Katiyar, D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med. Chem., 2015, 11(2), 128-134.
[http://dx.doi.org/10.2174/1573406410666140902110452] [PMID: 25181986]
[75]
de Souza, S.M.; Delle Monache, F.; Smânia, A., Jr Antibacterial activity of coumarins. Z. Natforsch. C J. Biosci., 2005, 60(9-10), 693-700.
[http://dx.doi.org/10.1515/znc-2005-9-1006] [PMID: 16320610]
[76]
Osman, A.A.H.; Chan, K.L.; Goh, J.H.; Fun, H.K. (E)-1-[1-(6-Bromo-2-oxo-2H-chromen-3-yl)ethylidene]thiosemcarbazide. Acta Crystallogr., 2010, 66, 1491-1492.
[77]
Šarkanj, B.; Molnar, M.; Čačić, M.; Gille, L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem., 2013, 139(1-4), 488-495.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.027] [PMID: 23561135]
[78]
Kim, Y.M.; Wu, Y.; Duong, T.U.; Jung, S.G.; Kim, S.W.; Cho, H.; Jin, E. Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. (NY), 2012, 14(3), 312-322.
[http://dx.doi.org/10.1007/s10126-011-9412-5] [PMID: 22080145]
[79]
Wu, Y.; Lee, Y.; Jung, S.G.; Kim, M.; Eom, C.Y.; Kim, S.W.; Cho, H.; Jin, E. A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control. World J. Microbiol. Biotechnol., 2014, 30(5), 1603-1614.
[http://dx.doi.org/10.1007/s11274-013-1584-x] [PMID: 24374490]
[80]
Pea, F.; Lewis, R.E. Overview of antifungal dosing in invasive candidiasis. J. Antimicrob. Chemother., 2018, 73(Suppl. 1), i33-i43.
[http://dx.doi.org/10.1093/jac/dkx447] [PMID: 29304210]
[81]
Garcia-Cuesta, C.; Sarrion-Pérez, M.G.; Bagán, J.V. Current treatment of oral candidiasis: A literature review. J. Clin. Exp. Dent., 2014, 6(5), e576-e582.
[http://dx.doi.org/10.4317/jced.51798] [PMID: 25674329]
[82]
Wu, S.; Zhang, Y.; He, X.; Che, X.; Wang, S.; Liu, Y.; Jiang, Y.; Liu, N.; Dong, G.; Yao, J.; Miao, Z.; Wang, Y.; Zhang, W.; Sheng, C. From antidiabetic to antifungal: discovery of highly potent triazole-thiazolidinedione hybrids as novel antifungal agents. ChemMedChem, 2014, 9(12), 2639-2646.
[http://dx.doi.org/10.1002/cmdc.201402320] [PMID: 25196996]
[83]
Silva, da.; I.M., Filho, da S.; Santiago, J.; do Egito, P.B. de Souza, M.S.; Gouveia, C.A.; Albuquerque, F.L.; de, J.F.. Synthesis and antimicrobial activities of 5-arylidene-thiazolidine-2,4-dione derivatives. BioMed Res. Int., 2014.316082
[84]
Bahare, R.S.; Ganguly, S.; Choowongkomon, K.; Seetaha, S. Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted 5-benzylidine-2,4-thiazolidinediones. Daru, 2015, 23, 6.
[http://dx.doi.org/10.1186/s40199-014-0086-1] [PMID: 25617150]
[85]
Afifi, T.H.; Okasha, R.M.; Hany, E.A. Ahmed, Janez Ilaš.; Tarek S.; Abd-El-Aziz, A.S. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores A novel series of potent antimicrobial and anticancer agents. EXCLI J., 2017, 16, 868-902.
[PMID: 28828001]
[86]
Youssef, M.S.K.; Abeed, A.A.O.; El-Emary, T.I. Synthesis and evaluation of chromene-based compounds containing pyrazole moiety as antimicrobial agents. Heterocycl. Commun., 2017, 23, 55-64.
[http://dx.doi.org/10.1515/hc-2016-0136]
[87]
Mladenović, M.; Vuković, N.; Sukdolak, S.; Solujić, S. Design of novel 4-hydroxy-chromene-2-one derivatives as antimicrobial agents. Molecules, 2010, 15(6), 4294-4308.
[http://dx.doi.org/10.3390/molecules15064294] [PMID: 20657442]
[88]
Nastasă, C.M.; Duma, M.; Pîrnău, A.; Vlase, L.; Tiperciuc, B.; Oniga, O. Development of new 5-(chromene-3-yl)methylene-2,4-thiazolidinediones as antimicrobial agents. Clujul Med., 2016, 89(1), 122-127.
[http://dx.doi.org/10.15386/cjmed-509] [PMID: 27004035]
[89]
Marc, G.; Araniciu, C.; Oniga, S.D.; Vlase, L.; Pîrnău, A.; Duma, M.; Măruțescu, L.; Chifiriuc, M.C.; Oniga, O. New N-(oxazolylmethyl)-thiazolidinedione Active against Candida albicans Biofilm: Potential Als Proteins Inhibitors. Molecules, 2018, 23(10), 2522.
[http://dx.doi.org/10.3390/molecules23102522] [PMID: 30279343]
[90]
Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Sulaiman Rahman, H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol., 2018, 9, 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162] [PMID: 30405405]
[91]
Bhat, V.B.; Madyastha, K.M. Antioxidant and radical scavenging properties of 8-oxo derivatives of xanthine drugs pentoxifylline and lisofylline. Biochem. Biophys. Res. Commun., 2001, 288(5), 1212-1217.
[http://dx.doi.org/10.1006/bbrc.2001.5922] [PMID: 11700041]
[92]
Kaptanoglu, E.; Solaroglu, I.; Akbiyik, F.; Demirpence, E.; Ergungor, M.E. The antioxidant effect of aminophylline in rat brain and spinal cord homogenates. Turk Neurosurg., 2003, 13, 9-13.
[93]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[94]
Lupascu, F.G.; Dragostin, O.M.; Foia, L.; Lupascu, D.; Profire, L. The synthesis and the biological evaluation of new thiazolidin-4-one derivatives containing a xanthine moiety. Molecules, 2013, 18(8), 9684-9703.
[http://dx.doi.org/10.3390/molecules18089684] [PMID: 23945643]
[95]
Begum, A. B.; Begum, M.; Ranganatha, V. L. Synthesis, antioxidant, and xanthine oxidase inhibitory activities of 5-[4-[2-(5-ethyl- 2-pyridinyl)ethoxy]phenyl]methyl]-2,4-TZD derivatives. Arch. Pharm. Chem. Life Sci., 2014, 247-255.
[96]
Huyut, Z.; Beydemir, Ş.; Gülçin, İ. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem. Res. Int., 2017., 20177616791
[http://dx.doi.org/10.1155/2017/7616791] [PMID: 29158919]
[97]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[98]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDS): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem., 2018, 18(14), 1199-1219.
[http://dx.doi.org/10.2174/1389557518666180330112416] [PMID: 29600762]
[99]
Berczyński, P.; Kładna, A.; Kruk, I.; Piechowska, T.; Aboul-Enein, H.Y. Studies on the antioxidant activity of some thiazolidinedione, imidazolidinedione and rhodanine derivatives having a flavone core. J. Fluoresc., 2013, 23, 1319-1327.
[http://dx.doi.org/10.1007/s10895-013-1266-y] [PMID: 23860947]
[100]
Berczyński, P.; Kładna, A.; Piechowska, T.; Kruk, I.; Bozdağ-Dündar, O.; Aboul-Enein, H.Y.; Ceylan-Unlusoy, M.; Ertan, R. Studies on the antioxidant activity of some thiazolidinedione, imidazolidinedione and rhodanine derivatives having a flavone core. Luminescence, 2014, 29(8), 1107-1112.
[http://dx.doi.org/10.1002/bio.2667] [PMID: 24733694]
[101]
Nagaraju, K.; Venkata, H.S.S. Bhaskaruni.; Ravada K.; Maddila, S.; Singh, P.; Jonnalagadda Sreekantha B. Synthesis and antioxidant evaluation of a new class of thienopyrimidine-rhodanine hybrids. Lett. Drug Des. Discov., 2018, 15(2)
[102]
Khare, N.; Kapoor, A. Antioxidant evaluation of 2,4-TZD and rhodanine derivatives. Der Pharmacia Lettre, 2016, 8, 38-46.
[103]
Mistry, B.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects. Saudi J. Biol. Sci., 2017, 24(1), 36-44.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.005] [PMID: 28053569]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy