Truncated Thioredoxin Peptides Serves as an Efficient Fusion Tag for Production of Proinsulin

Author(s): Nandini B. Nataraj, Sunil Kumar Sukumaran, Ganesh Sambasivam, Raja Sudhakaran*

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Insulin is a peptide hormone used for regulating blood glucose levels. Human insulin market is projected to grow at a rate of 12.5% annually. To meet the needs of patients, a cost effective insulin manufacturing strategy has to be developed. This can be achieved by selecting a competent host, ideal fusion tag and streamlined downstream process.

Objective: In this article, we have demonstrated that selecting a right fusion partner for expression of toxic proteins like insulin, plays a major role in increasing the recombinant protein yield.

Methods: In this article, we have focused on identifying a peptide tag fusion partner for expressing proinsulin by truncating thioredoxin tag. Truncations were carried out from both Amino and Carboxy terminus of the protein and efficiency of truncated sequences was evaluated by expressing it with proinsulin gene. FCTRX (1-15) sequence fused to proinsulin was processed further to establish downstream protocol for purification.

Results: Thioredoxin tag was truncated appropriately by considering the fusion tag: protein ratio. A couple of sequences ranging 10 – 15 amino acids were identified based on its in silico properties. Of these FCTRX (1-15) showed increased expression and stability of fusion protein. 156 mg of purified insulin was generated from 1g of inclusion body after enzymatic conversion and chromatographic steps.

Conclusion: As a result of the current study, it was concluded that FCTRX (1-15) peptide has advantageous attributes to be considered as an ideal fusion tag for expression of proinsulin. This can be further explored by expressing it with other proteins.

Keywords: Insulin, blood glucose levels, toxic proteins, recombinant protein, fusion partner, proinsulin.

[1]
Kamionka, M. Engineering of therapeutic proteins production in Escherichia coli. Curr. Pharm. Biotechnol., 2011, 12(2), 268-274.
[http://dx.doi.org/10.2174/138920111794295693] [PMID: 21050165]
[2]
Samant, S.; Gupta, G.; Karthikeyan, S.; Haq, S.F.; Nair, A.; Sambasivam, G.; Sukumaran, S. Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity. J. Ind. Microbiol. Biotechnol., 2014, 41(9), 1435-1442.
[http://dx.doi.org/10.1007/s10295-014-1482-8] [PMID: 25038884]
[3]
Singh, S.M.; Panda, A.K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng., 2005, 99(4), 303-310.
[http://dx.doi.org/10.1263/jbb.99.303] [PMID: 16233795]
[4]
Rizo, J.; Blanco, F.J.; Kobe, B.; Bruch, M.D.; Gierasch, L.M. Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry, 1993, 32(18), 4881-4894.
[http://dx.doi.org/10.1021/bi00069a025] [PMID: 8387821]
[5]
Esposito, D.; Chatterjee, D.K. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol., 2006, 17(4), 353-358.
[http://dx.doi.org/10.1016/j.copbio.2006.06.003] [PMID: 16781139]
[6]
Chang, S.G.; Kim, D.Y.; Choi, K.D.; Shin, J.M.; Shin, H.C. Human insulin production from a novel mini-proinsulin which has high receptor-binding activity. Biochem. J., 1998, 329(Pt 3), 631-635.
[http://dx.doi.org/10.1042/bj3290631] [PMID: 9445392]
[7]
Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60(5), 523-533.
[http://dx.doi.org/10.1007/s00253-002-1158-6] [PMID: 12536251]
[8]
Watanabe, T.; Ito, Y.; Yamada, T.; Hashimoto, M.; Sekine, S.; Tanaka, H. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol., 1994, 176(15), 4465-4472.
[http://dx.doi.org/10.1128/jb.176.15.4465-4472.1994] [PMID: 8045877]
[9]
Cantor, E.J.; Chong, S. Intein-mediated rapid purification of Cre recombinase. Protein Expr. Purif., 2001, 22(1), 135-140.
[http://dx.doi.org/10.1006/prep.2001.1428] [PMID: 11388811]
[10]
LaVallie, E.R.; Lu, Z.J.; Diblasio-Smith, E.A.; Collins-Racie, L.A.; McCoy, J.M. Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Applications of Chimeric Genes and Hybrid Proteins, 2000, 326, 322-340.
[11]
Stewart, E.J.; Aslund, F.; Beckwith, J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J., 1998, 17(19), 5543-5550.
[http://dx.doi.org/10.1093/emboj/17.19.5543] [PMID: 9755155]
[12]
Young, C.L.; Britton, Z.T.; Robinson, A.S. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol. J., 2012, 7(5), 620-634.
[http://dx.doi.org/10.1002/biot.201100155] [PMID: 22442034]
[13]
Bindels, J.G.; Misdom, L.W.; Hoenders, H.J. The reaction of citraconic anhydride with bovine α-crystallin lysine residues. Surface probing and dissociation-reassociation studies. Biochim. Biophys. Acta, 1985, 828(3), 255-260.
[http://dx.doi.org/10.1016/0167-4838(85)90305-X] [PMID: 3921054]
[14]
Olsen, J.V.; Ong, S.E.; Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics, 2004, 3(6), 608-614.
[http://dx.doi.org/10.1074/mcp.T400003-MCP200] [PMID: 15034119]
[15]
Kim, C.K.; Lee, S.B.; Son, Y.J. Large-scale refolding and enzyme reaction of human preproinsulin for production of human insulin. J. Microbiol. Biotechnol., 2015, 25(10), 1742-1750.
[http://dx.doi.org/10.4014/jmb.1504.04062] [PMID: 26139616]
[16]
Hwang, H.G.; Kim, K.J.; Lee, S.H.; Kim, C.K.; Min, C.K.; Yun, J.M.; Lee, S.U.; Son, Y.J. Recombinant glargine insulin production process using Escherichia coli. J. Microbiol. Biotechnol., 2016, 26(10), 1781-1789.
[http://dx.doi.org/10.4014/jmb.1602.02053] [PMID: 27363479]
[17]
Cowley, D.J.; Mackin, R.B. Expression, purification and characterization of recombinant human proinsulin. FEBS Lett., 1997, 402(2-3), 124-130.
[http://dx.doi.org/10.1016/S0014-5793(96)01511-6] [PMID: 9037180]
[18]
Santos, C.A.; Beloti, L.L.; Toledo, M.A.S.; Crucello, A.; Favaro, M.T.P.; Mendes, J.S.; Santiago, A.S.; Azzoni, A.R.; Souza, A.P. A novel protein refolding protocol for the solubilization and purification of recombinant peptidoglycan-associated lipoprotein from Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr. Purif., 2012, 82(2), 284-289.
[http://dx.doi.org/10.1016/j.pep.2012.01.010] [PMID: 22306742]
[19]
Mackin, R.B. Alternative preparation of inclusion bodies excludes interfering non-protein contaminants and improves the yield of recombinant proinsulin. MethodsX, 2014, 1, 108-117.
[http://dx.doi.org/10.1016/j.mex.2014.07.005] [PMID: 26150942]
[20]
Polez, S.; Origi, D.; Zahariev, S.; Guarnaccia, C.; Tisminetzky, S.G.; Skoko, N.; Baralle, M. A simplified and efficient process for insulin production in Pichia pastoris. PLoS One, 2016, 11(12), e0167207
[http://dx.doi.org/10.1371/journal.pone.0167207] [PMID: 27907132]
[21]
Hwang, D.D.H.; Liu, L.F.; Kuan, I.C.; Lin, L.Y.; Tam, T.C.S.; Tam, M.F. Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli. Biochem. J., 1999, 338(Pt 2), 335-342.
[http://dx.doi.org/10.1042/bj3380335] [PMID: 10024508]
[22]
Carpenter, F.H.; Shiigi, S.M. Cyanogen bromide treatment of N-acetylmethionyl residues without cleavage. Biochemistry, 1974, 13(25), 5159-5164.
[http://dx.doi.org/10.1021/bi00722a017] [PMID: 4433512]
[23]
Palomares, L.A.; Estrada-Mondaca, S.; Ramírez, O.T. Production of recombinant proteins: challenges and solutions. Methods Mol. Biol., 2004, 267, 15-52.
[http://dx.doi.org/10.1385/1-59259-774-2:015] [PMID: 15269414]
[24]
Ailor, E.; Betenbaugh, M.J. Modifying secretion and post-translational processing in insect cells. Curr. Opin. Biotechnol., 1999, 10(2), 142-145.
[http://dx.doi.org/10.1016/S0958-1669(99)80024-X] [PMID: 10209136]
[25]
Demain, A.L.; Vaishnav, P. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv., 2009, 27(3), 297-306.
[http://dx.doi.org/10.1016/j.biotechadv.2009.01.008] [PMID: 19500547]
[26]
Huang, H.C.; Wang, S.C.; Leu, Y.J.; Lu, S.C.; Liao, Y.D. The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity. J. Biol. Chem., 1998, 273(11), 6395-6401.
[http://dx.doi.org/10.1074/jbc.273.11.6395] [PMID: 9497370]
[27]
Ferrer, M.; Chernikova, T.N.; Yakimov, M.M.; Golyshin, P.N.; Timmis, K.N. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol., 2003, 21(11), 1266-1267.
[http://dx.doi.org/10.1038/nbt1103-1266] [PMID: 14595348]
[28]
Kiefhaber, T.; Rudolph, R.; Kohler, H.H.; Buchner, J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (N. Y.), 1991, 9(9), 825-829.
[PMID: 1367356]
[29]
Klose, J.; Wendt, N.; Kubald, S.; Krause, E.; Fechner, K.; Beyermann, M.; Bienert, M.; Rudolph, R.; Rothemund, S. Hexa-histidin tag position influences disulfide structure but not binding behavior of in vitro folded N-terminal domain of rat corticotropin-releasing factor receptor type 2a. Protein Sci., 2004, 13(9), 2470-2475.
[http://dx.doi.org/10.1110/ps.04835904] [PMID: 15295109]
[30]
Abolliel, A.A.; Zedan, H. Synthesis, cloning and expression of a novel pre-miniproinsulin analogue gene in Escherichia coli. J. Adv. Res., 2015, 6(5), 663-671.
[http://dx.doi.org/10.1016/j.jare.2014.03.002] [PMID: 26425357]
[31]
Shin, C.S.; Hong, M.S.; Bae, C.S.; Lee, J. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2 Biotechnol. Prog., 1997, 13(3), 249-257.
[http://dx.doi.org/10.1021/bp970018m] [PMID: 9190075]
[32]
Schmidt, M.; Babu, K.R.; Khanna, N.; Marten, S.; Rinas, U. Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J. Biotechnol., 1999, 68(1), 71-83.
[http://dx.doi.org/10.1016/S0168-1656(98)00189-8] [PMID: 10036770]
[33]
Hwang, P.M.; Pan, J.S.; Sykes, B.D. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett., 2014, 588(2), 247-252.
[http://dx.doi.org/10.1016/j.febslet.2013.09.028] [PMID: 24076468]
[34]
Yon, R.J. Chromatography of lipophilic proteins on adsorbents containing mixed hydrophobic and ionic groups. Biochem. J., 1972, 126(3), 765-767.
[http://dx.doi.org/10.1042/bj1260765] [PMID: 5075280]
[35]
Markussen, J.; Jørgensen, K.H.; Sørensen, A.R.; Thim, L. Single chain des-(B30) insulin. Intramolecular crosslinking of insulin by trypsin catalyzed transpeptidation. Int. J. Pept. Protein Res., 1985, 26(1), 70-77.
[http://dx.doi.org/10.1111/j.1399-3011.1985.tb03179.x] [PMID: 3902689]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 5
Year: 2020
Published on: 27 April, 2020
Page: [419 - 431]
Pages: 13
DOI: 10.2174/0929866526666191028150843
Price: $65

Article Metrics

PDF: 14
HTML: 2