QSPR Models for the Prediction of Some Thermodynamic Properties of Cycloalkanes Using GA-MLR Method

(E-pub Ahead of Print)

Author(s): Daryoush Joudaki, Fatemeh Shafiei*

Journal Name: Current Computer-Aided Drug Design

Become EABM
Become Reviewer

Abstract:

Aim and Objective: Cycloalkanes have been largely used in medicine field, components of food, pharmaceutical drugs, and they are mainly to be used to produce fuel.

In present study the relationship between molecular descriptors and thermodynamic properties such as the standard enthalpies of formation (∆H_f^°), the standard enthalpies of fusion (∆H_fus^°), and the standard Gibbs free energy of formation (∆G_f^°)of the cycloalkanes is represented.

Materials and Methods: The genetic algorithm (GA) and multiple linear regressions (MLR) were successfully used to predict the thermodynamic properties of cycloalkanes. A large number of molecular descriptors were obtained with Dragon program. The Genetic algorithm and backward method were used to reduce and select the suitable descriptors.

Results: QSPR models were used to delineate the important descriptors responsible for the properties of the studied cycloalkanes. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the variance inflation factor (VIF), Pearson correlation coefficient (PCC) and the Durbin–Watson (DW) statistics.

The predictive powers of the MLR models were discussed using Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The statistical parameters of the training, and test sets for GA–MLR models were calculated.

Conclusion: The results of present study indicate that the predictive ability of the models were satisfactory and molecular descriptors such as: the Functional group counts, Topological indices, GETAWAY descriptors, Constitutional indices, and molecular properties provides a promising route for developing highly correlated QSPR models for prediction the studied properties.

Keywords: cycloalkanes; structure -property relationship; enthalpies of formation; enthalpies of fusion; Gibbs free energy of formation; genetic algorithm -multiple linear regressions (GA-MLR)

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/1573409915666191028110756
Price: $95

Article Metrics

PDF: 2