Coumarin-Fatty Acid Conjugates as Potential ERα/AKT-1 Antagonists for ER Positive Breast Cancer

Author(s): Jubie Selvaraj*, Jameera B.A. John, Nanjan M. Joghee*, Justin Antony, Ashish Wadhwani, Jawahar Natarajan

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Current drugs used for the treatment of hormone-dependent breast cancer function as anti-estrogens in the breast, in addition to Estrogen Receptor (ER) agonists in the uterus, thus elevate a woman’s risk of developing uterine cancer. This is due to the lack of selective binding and partial agonistic effect of these drugs towards estrogen receptors. In recent years, therefore, researchers have turned their attention towards antiestrogens devoid of these agonist properties and thus have a mechanism of action different from the existing drugs.

Objective: In this context, we report here the design, development and in vitro evaluation of some novel pharmacophores containing coumarin and fatty acid scaffolds for their anti-breast cancer activity.

Methods: A library of coumarin-fatty acid conjugates was designed using structure-based drug design approach. The conjugates which have shown good in silico results were then synthesized, characterized and evaluated for their anti-breast cancer activity by MTT assay, Apoptotic assay, Cell proliferation assay, Estrogen binding assay and Gene expression study.

Results: Out of the fifteen compounds screened, two compounds, SAC-2 and LNAC-2, showed good activity with IC50 values 22µg/ml, 25μg/ml, respectively. These compounds suppressed the proliferation of ER overexpressed MCF-7 cells, increased ERα degradation and hence inactivate the ERα pathway. ER binding assay and gene expression RT-PCR study reveal that SAC-2 downregulated the expression of ERα receptor and AKT-1 gene.

Conclusion: Compound SAC-2 is a good antagonist to ER and hence has a potential for treating breast cancer and other cancers where AKT plays an important role.

Keywords: Estrogen receptor, breast cancer, coumarin, fatty acids, AKT-1 gene, anti-estrogens.

[1]
Singletary, S.E. Rating the risk factors for breast cancer. Ann. Surg., 2003, 237(4), 474-482.
[http://dx.doi.org/10.1097/01.SLA.0000059969.64262.87] [PMID: 12677142]
[2]
Musa, M.A.; Cooperwood, J.S.; Khan, M.O.; Khan, F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[3]
Berger, C.; Qian, Y.; Chen, X. The p53-estrogen receptor loop in cancer. Curr. Mol. Med., 2013, 13(8), 1229-1240.
[http://dx.doi.org/10.2174/15665240113139990065] [PMID: 23865427]
[4]
Chang, B.Y.; Kim, S.A.; Malla, B.; Kim, S.Y. The Effect of Selective Estrogen Receptor Modulators (SERMs) on the Tamoxifen Resistant Breast Cancer Cells. Toxicol. Res., 2011, 27(2), 85-93.
[http://dx.doi.org/10.5487/TR.2011.27.2.085] [PMID: 24278556]
[5]
Jordan, V.C. Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell, 2004, 5(3), 207-213.
[http://dx.doi.org/10.1016/S1535-6108(04)00059-5] [PMID: 15050912]
[6]
Legault-Poisson, S.; Jolivet, J.; Poisson, R.; Beretta-Piccoli, M.; Band, P.R. Tamoxifen-induced tumor stimulation and withdrawal response. Cancer Treat. Rep., 1979, 63(11-12), 1839-1841.
[PMID: 230894]
[7]
Hall, J.M.; Couse, J.F.; Korach, K.S. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem., 2001, 276(40), 36869-36872.
[http://dx.doi.org/10.1074/jbc.R100029200] [PMID: 11459850]
[8]
Hall, J.M.; McDonnell, D.P. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol. Interv., 2005, 5(6), 343-357.
[http://dx.doi.org/10.1124/mi.5.6.7] [PMID: 16394250]
[9]
Russo, J.; Russo, I.H. Toward a physiological approach to breast cancer prevention. Cancer Epidemiol. Biomarkers Prev., 1994, 3(4), 353-364.
[PMID: 8061586]
[10]
Lapidus, R.G.; Nass, S.J.; Davidson, N.E. The loss of estrogen and progesterone receptor gene expression in human breast cancer. J. Mammary Gland Biol. Neoplasia, 1998, 3(1), 85-94.
[http://dx.doi.org/10.1023/A:1018778403001] [PMID: 10819507]
[11]
Cheng, J.Q.; Lindsley, C.W.; Cheng, G.Z.; Yang, H.; Nicosia, S.V. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 2005, 24(50), 7482-7492.
[http://dx.doi.org/10.1038/sj.onc.1209088] [PMID: 16288295]
[12]
Toker, A. Achieving specificity in Akt signaling in cancer. Adv. Biol. Regul., 2012, 52(1), 78-87.
[http://dx.doi.org/10.1016/j.advenzreg.2011.09.020] [PMID: 21986444]
[13]
Jamier, V.; Marut, W.; Valente, S.; Chereau, C.; Chouzenoux, S.; Nicco, C.; Lemarechal, H.; Weill, B.; Kirsch, G.; Jacob, C.; Batteux, F. Chalcone-Coumarin derivatives as potential anti-cancer drugs: an in vitro and in vivo investigation. Anticancer. Agents Med. Chem., 2014, 14(7), 963-974.
[http://dx.doi.org/10.2174/1871520613666131224124445] [PMID: 24372527]
[14]
Musa, M.A.; Badisa, V.L.D.; Latinwo, L.M.; Patterson, T.A.; Owens, M.A. Coumarin-based benzopyranone derivatives induced apoptosis in human lung (A549) cancer cells. Anticancer Res., 2012, 32(10), 4271-4276.
[PMID: 23060547]
[15]
Higgins, C.A.; Delbederi, Z.; McGarel, K.; Mills, T.; McGrath, O.; Feutren-Burton, S.; Watters, W.; Armstrong, P.; Johnston, P.G.; Waugh, D.; van den Berg, H. Synthesis and in vitro and in vivo evaluation of a series of dihydroisocoumarin derivatives conjugated with fatty acids, alcohols, and amines as potential anticancer agents. Bioconjug. Chem., 2009, 20(9), 1737-1751.
[http://dx.doi.org/10.1021/bc900122g] [PMID: 19708666]
[16]
Sadozai, H. Steroid sulfatase inhibitors: promising new therapy for breast cancer. J. Pak. Med. Assoc., 2013, 63(4), 509-515.
[PMID: 23905452]
[17]
Fabian, C.J.; Kimler, B.F.; Hursting, S.D. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res., 2015, 17(1), 62.
[http://dx.doi.org/10.1186/s13058-015-0571-6] [PMID: 25936773]
[18]
Bougnoux, P.; Hajjaji, N.; Ferrasson, M.N.; Giraudeau, B.; Couet, C.; Le Floch, O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial. Br. J. Cancer, 2009, 101(12), 1978-1985.
[http://dx.doi.org/10.1038/sj.bjc.6605441] [PMID: 19920822]
[19]
Jubie, S.; Dhanabal, S.P.; Chaitanya, M.V. Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatography and its apoptosis inducing effect. BMC Complement. Altern. Med., 2015, 15, 263.
[http://dx.doi.org/10.1186/s12906-015-0771-8] [PMID: 26238515]
[20]
Jameera Begam, A.; Jubie, S.; Nanjan, M.J. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg. Chem., 2017, 71, 257-274.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.011] [PMID: 28274582]
[21]
Jameera Begam, A.; Basheer Ahamed, K.; Jubie, S.; Srikanth, J. Md.Afzal Azam S.P.Dhanabal. A new class of pure estrogen receptor angonists;Synthesis and in-vitro screening. Lett. Drug Des. Discov., 2019, 16(1), 66-81.
[http://dx.doi.org/10.2174/1570180815666180327124634]
[22]
Jubie, S.; Yadhav, P.K.; Chandrasekar, M.J.N.; Gomathi Priya, J.; Chaitanya, M.V.N.L.; Dhanabal, S.P. Novel fatty acid analogues as fatty acid synthase-thio esterase domain inhibitors; Synthesis and their cytotoxicity screening. Lett. Drug Des. Discov., 2015, 12(6), 495-499.
[http://dx.doi.org/10.2174/1570180812666141216210751]
[23]
Jubie, S.; Bincy, B A new class of human fatty acid synthase inhibitors: Synthesis and their anticancer evaluation. Indian J Chem B, 2018, 57(B), 671-678.
[24]
Jubie, S.; Dhanabal, S.P.; Afzal Azam, Md.; Sathish Kumar, M.N.; Nilesh, A.; Kalirajan, R. Design, synthesis and antidepressant activities of some novel fatty acid analogues. Med. Chem. Res., 2015, 24(4), 1605-1616.
[http://dx.doi.org/10.1007/s00044-014-1235-2]
[25]
Jubie, S.; Ramesh, P.N.; Dhanabal, P.; Kalirajan, R.; Muruganantham, N.; Antony, A.S. Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues. Eur. J. Med. Chem., 2012, 54, 931-935.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.025] [PMID: 22770606]
[26]
Jubie, S.; Gayathri, R.; Srividya, A.R.; Kalirajan, R.; Prabitha, P.; Sankar, S.; Elango, K. Synthesis and characterization of some novel quinoxaline-2, 3-dione derivatives: a preliminary investigation on their activity against human epithelial carcinoma cell line Lett. Drug Des. Discov., 2011, 8, 317-320.
[27]
Zhang, J.H.; Yu, J.; Li, W.X.; Cheng, C.P. Evaluation of Mn2+ stimulated and Zn2+ inhibited apoptosis in rat corpus luteal cells by flow cytometry and fluorochromes staining. Chin. J. Physiol., 1998, 41(2), 121-126.
[PMID: 9801843]
[28]
Odum, J.; Tittensor, S.; Ashby, J. Limitations of the mcf-7 cell proliferation assay for detecting xenobiotic oestrogens. Toxicol. In Vitro, 1998, 12(3), 273-278.
[http://dx.doi.org/10.1016/S0887-2333(97)00115-X] [PMID: 20654409]
[29]
Farabegoli, F.; Barbi, C.; Lambertini, E.; Piva, R. (-)-Epigallocatechin-3-gallate downregulates estrogen receptor alpha function in MCF-7 breast carcinoma cells. Cancer Detect. Prev., 2007, 31(6), 499-504.
[http://dx.doi.org/10.1016/j.cdp.2007.10.018] [PMID: 18061364]
[30]
I, Etti, R. Abdullah, N.M. Hashim, A. Kadir, A.B. Abdul, C. Etti, I. Malami, P.Waziri, C.W. How Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer. Molecules, 2016, 21(7)


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2020
Page: [437 - 449]
Pages: 13
DOI: 10.2174/1871520619666191028104339
Price: $65

Article Metrics

PDF: 21
HTML: 5
EPUB: 1
PRC: 1