Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health

Author(s): Michela Lucia Sammarco, Manuela Tamburro, Alessandra Pulliero, Alberto Izzotti, Giancarlo Ripabelli*.

Journal Name: MicroRNA

Volume 9 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Human Papillomavirus (HPV) is among the most common sexually transmitted infections in both females and males across the world that generally do not cause symptoms and are characterized by high rates of clearance. Persistent infections due at least to twelve well-recognized High-Risk (HR) or oncogenic genotypes, although less frequent, can occur, leading to diseases and malignancies, principally cervical cancer. Three vaccination strategies are currently available for preventing certain HR HPVs-associated diseases, infections due to HPV6 and HPV11 low-risk types, as well as for providing cross-protection against non-vaccine genotypes. Nevertheless, the limited vaccine coverage hampers reducing the burden of HPV-related diseases globally. For HR HPV types, especially HPV16 and HPV18, the E6 and E7 oncoproteins are needed for cancer development. As for other tumors, even in cervical cancer, non-coding microRNAs (miRNAs) are involved in posttranscriptional regulation, resulting in aberrant expression profiles. In this study, we provide a summary of the epidemiological background for HPV occurrence and available immunization programs. In addition, we present an overview of the most relevant evidence of miRNAs deregulation in cervical cancer, underlining that targeting these biomolecules could lead to wide translational perspectives, allowing better diagnosis, prognosis and therapeutics, and with valuable applications in the field of prevention. The literature on this topic is rapidly growing, but advanced investigations are required to achieve more consistent findings on the up-regulated and down-regulated miRNAs in cervical carcinogenesis. Because the expression of miRNAs is heterogeneously reported, it may be valuable to assess factors and risks related to individual susceptibility.

Keywords: E6 oncoprotein, E7 oncoprotein, immunization programs, miRNA, oncoviruses, tumor biomarkers.

[1]
Damania B. A virological perspective on cancer. PLoS Pathog 2016; 12(2): e1005326
[http://dx.doi.org/10.1371/journal.ppat.1005326] [PMID: 26866686]
[2]
Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 2014; 15(3): 266-82.
[http://dx.doi.org/10.1016/j.chom.2014.02.011] [PMID: 24629334]
[3]
Zapatka M, Borozan I, Brewer DS, et al. The landscape of viral associations in human cancers. bioRxiv The Preprint 2018; 12: 39.
[http://dx.doi.org/10.1101/465757]
[4]
Bravo IG, de Sanjosé S, Gottschling M. The clinical importance of understanding the evolution of papillomaviruses. Trends Microbiol 2010; 18(10): 432-8.
[http://dx.doi.org/10.1016/j.tim.2010.07.008] [PMID: 20739182]
[5]
McBride AA. Oncogenic human papillomaviruses. Philos Trans R Soc Lond B Biol Sci 2017; 372(1732): 20160273.
[http://dx.doi.org/10.1098/rstb.2016.0273] [PMID: 28893940]
[6]
McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology 2009; 384(2): 335-44.
[http://dx.doi.org/10.1016/j.virol.2008.10.006] [PMID: 19007963]
[7]
Tsakogiannis D, Gartzonika C, Levidiotou-Stefanou S, Markoulatos P. Molecular approaches for HPV genotyping and HPV-DNA physical status. Expert Rev Mol Med 2017; 19: e1
[http://dx.doi.org/10.1017/erm.2017.2] [PMID: 28162121]
[8]
Haley CT, Mui UN, Vangipuram R, et al. Human oncoviruses: mucocutaneous manifestations, pathogenesis, therapeutics, and prevention (Part I: papillomaviruses and Merkel cell polyomavirus). J Am Acad Dermatol 2018. S0190-9622: 32965-7.
[9]
Viarisio D, Gissmann L, Tommasino M. Human papillomaviruses and carcinogenesis: well-established and novel models. Curr Opin Virol 2017; 26: 56-62.
[http://dx.doi.org/10.1016/j.coviro.2017.07.014] [PMID: 28778034]
[10]
Sammarco ML, Ucciferri C, Tamburro M, Falasca K, Ripabelli G, Vecchiet J. High prevalence of human papillomavirus type 58 in HIV infected men who have sex with men: A preliminary report in Central Italy. J Med Virol 2016; 88(5): 911-4.
[http://dx.doi.org/10.1002/jmv.24406] [PMID: 26467111]
[11]
Ucciferri C, Tamburro M, Falasca K, Sammarco ML, Ripabelli G, Vecchiet J. Prevalence of anal, oral, penile and urethral Human Papillomavirus in HIV infected and HIV uninfected men who have sex with men. J Med Virol 2018; 90(2): 358-66.
[http://dx.doi.org/10.1002/jmv.24943] [PMID: 28906006]
[12]
St Laurent J, Luckett R, Feldman S. HPV vaccination and the effects on rates of HPV-related cancers. Curr Probl Cancer 2018; 42(5): 493-506.
[http://dx.doi.org/10.1016/j.currproblcancer.2018.06.004] [PMID: 30041818]
[13]
Sheikh S, Biundo E, Courcier S, et al. A report on the status of vaccination in Europe. Vaccine 2018; 36(33): 4979-92.
[http://dx.doi.org/10.1016/j.vaccine.2018.06.044] [PMID: 30037416]
[14]
Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 2018; 18(1): 696.
[http://dx.doi.org/10.1186/s12885-018-4590-4] [PMID: 29945565]
[15]
Araldi RP, Sant’Ana TA, Módolo DG, et al. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106: 1537-56.
[http://dx.doi.org/10.1016/j.biopha.2018.06.149] [PMID: 30119229]
[16]
Vojtechova Z, Tachezy R. The role of miRNAs in virus-mediated oncogenesis. Int J Mol Sci 2018; 19(4): E1217
[http://dx.doi.org/10.3390/ijms19041217] [PMID: 29673190]
[17]
Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 2006; 66(15): 7390-4.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0800] [PMID: 16885332]
[18]
Gaur A, Jewell DA, Liang Y, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 2007; 67(6): 2456-68.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2698] [PMID: 17363563]
[19]
de Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol 2018; 47: 2-13.
[http://dx.doi.org/10.1016/j.bpobgyn.2017.08.015] [PMID: 28964706]
[20]
Araldi RP, Assaf SMR, Carvalho RF, et al. Papillomaviruses: a systematic review. Genet Mol Biol 2017; 40(1): 1-21.
[http://dx.doi.org/10.1590/1678-4685-gmb-2016-0128] [PMID: 28212457]
[21]
Sammarco ML, Del Riccio I, Tamburro M, Grasso GM, Ripabelli G. Type-specific persistence and associated risk factors of human papillomavirus infections in women living in central Italy. Eur J Obstet Gynecol Reprod Biol 2013; 168(2): 222-6.
[http://dx.doi.org/10.1016/j.ejogrb.2013.01.012] [PMID: 23395560]
[22]
Shanmugasundaram S, You J. Targeting persistent human papillomavirus infection. Viruses 2017; 9(8): E229
[http://dx.doi.org/10.3390/v9080229] [PMID: 28820433]
[23]
Serrano B, de Sanjosé S, Tous S, et al. Human papillomavirus genotype attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female anogenital lesions. Eur J Cancer 2015; 51(13): 1732-41.
[http://dx.doi.org/10.1016/j.ejca.2015.06.001] [PMID: 26121913]
[24]
Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 2014; 26: 13-21.
[http://dx.doi.org/10.1016/j.semcancer.2013.11.002] [PMID: 24316445]
[25]
Serrano B, Brotons M, Bosch FX, Bruni L. Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol 2018; 47: 14-26.
[http://dx.doi.org/10.1016/j.bpobgyn.2017.08.006] [PMID: 29037457]
[26]
Ripabelli G, Grasso GM, Del Riccio I, Tamburro M, Sammarco ML. Prevalence and genotype identification of human papillomavirus in women undergoing voluntary cervical cancer screening in Molise, central Italy. Cancer Epidemiol 2010; 34(2): 162-7.
[http://dx.doi.org/10.1016/j.canep.2009.12.010] [PMID: 20080070]
[27]
Kaliff M, Sorbe B, Mordhorst LB, Helenius G, Karlsson MG, Lillsunde-Larsson G. Findings of multiple HPV genotypes in cervical carcinoma are associated with poor cancer-specific survival in a Swedish cohort of cervical cancer primarily treated with radiotherapy. Oncotarget 2018; 9(27): 18786-96.
[http://dx.doi.org/10.18632/oncotarget.24666] [PMID: 29721161]
[28]
Lowy DR, Schiller JT. Reducing HPV-associated cancer globally. Cancer Prev Res (Phila) 2012; 5(1): 18-23.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0542] [PMID: 22219162]
[29]
Brianti P, De Flammineis E, Mercuri SR. Review of HPV-related diseases and cancers. New Microbiol 2017; 40(2): 80-5.
[PMID: 28368072]
[30]
de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 2017; 141(4): 664-70.
[http://dx.doi.org/10.1002/ijc.30716] [PMID: 28369882]
[31]
World Health Organization (WHO). Human papillomavirus vaccines WHO position paper. World Health Organization, Geneva, Italy. 2017; 92: 241-68. Available from: http://apps.who.int/iris/ bitstream/10665/255353/1/WER9219.pdf?ua=1
[32]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[33]
Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 2016; 4(9): e609-16.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[34]
Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 2010; 11(8): 781-9.
[http://dx.doi.org/10.1016/S1470-2045(10)70017-6] [PMID: 20451455]
[35]
Evans M, Newcombe R, Fiander A, et al. Human Papillomavirus-associated oropharyngeal cancer: an observational study of diagnosis, prevalence and prognosis in a UK population. BMC Cancer 2013; 13: 220.
[http://dx.doi.org/10.1186/1471-2407-13-220] [PMID: 23634887]
[36]
Amin M, Edge S, Greene F, et al. AJCC cancer staging manual. 8th Ed. New York: Springer June 2018; pp. 1-507.
[http://dx.doi.org/10.1007/978-3-319-40618-3]
[37]
Brierley J, Gospodarowicz M, Wittekind C. UICC TNM classification of malignant tumours. 8th ed. Chichester: Wiley 2017.
[38]
Huang SH, O’Sullivan B. Overview of the 8th Edition TNM classification for head and neck cancer. Curr Treat Options Oncol 2017; 18(7): 40.
[39]
O’Sullivan B. Head and neck tumours. Editors Brierley J, Gospodarowicz M, Ch W, et al. UICC TNM classification of malignant tumours. 8th Ed. Chichester: Wiley 2017; pp. 17-54.
[40]
O’Sullivan B, Lydiatt W, Haughey BH, et al. HPVmediated (p16+) oropharyngeal cancer. In: Amin M, Edge S, Greene F, et al, editors AJCC cancer staging manual. 8th Ed. New York: Springer; 2017; pp. 113-21.
[41]
Mollers M, Vossen JM, Scherpenisse M, van der Klis FRM, Meijer CJLM, de Melker HE. Review: current knowledge on the role of HPV antibodies after natural infection and vaccination: implications for monitoring an HPV vaccination programme. J Med Virol 2013; 85(8): 1379-85.
[http://dx.doi.org/10.1002/jmv.23616] [PMID: 23722396]
[42]
Markowitz LE, Dunne EF, Saraiya M, et al. Centers for Disease Control and Prevention (CDC). Human papillomavirus vaccination: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2014; 63(RR-05): 1-30.
[PMID: 25167164]
[43]
Food and Drug Administration. December 10, 2014 Approval letter-GARDASIL 9. Silver Spring, MD: US Department of Health and Human Services, Food and Drug Administration; 2014. Available at http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ ApprovedProducts/ucm426520.htmExternal
[44]
Bruni L, Diaz M, Barrionuevo-Rosas L, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob Health 2016; 4(7): e453-63.
[http://dx.doi.org/10.1016/S2214-109X(16)30099-7] [PMID: 27340003]
[45]
Italian Ministry of Health. General Administration of Health Prevention, office of prevention of communicable diseases and international prophylaxis. Comment on HPV vaccination coverage on 31/12/2017. Available at: http://www.salute.gov.it/imgs/C_17_ tavole_27_allegati_iitemAllegati_1_fileAllegati_itemFile_1_file.pdf
[46]
Felekkis K, Touvana E, Stefanou Ch, Deltas C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 2010; 14(4): 236-40.
[PMID: 21311629]
[47]
Laengsri V, Kerdpin U, Plabplueng C, Treeratanapiboon L, Nuchnoi P. Cervical cancer markers: epigenetics and microRNAs. Lab Med 2018; 49(2): 97-111.
[http://dx.doi.org/10.1093/labmed/lmx080] [PMID: 29378033]
[48]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[49]
Kanekura K, Nishi H, Isaka K, Kuroda M. MicroRNA and gynecologic cancers. J Obstet Gynaecol Res 2016; 42(6): 612-7.
[http://dx.doi.org/10.1111/jog.12995] [PMID: 27098274]
[50]
Kwok GT, Zhao JT, Weiss J, et al. Translational applications of microRNAs in cancer, and therapeutic implications. Noncoding RNA Res 2017; 2(3-4): 143-50.
[http://dx.doi.org/10.1016/j.ncrna.2017.12.002] [PMID: 30159433]
[51]
Mangino G, Chiantore MV, Iuliano M, Fiorucci G, Romeo G. Inflammatory microenvironment and human papillomavirus-induced carcinogenesis. Cytokine Growth Factor Rev 2016; 30: 103-11.
[http://dx.doi.org/10.1016/j.cytogfr.2016.03.007] [PMID: 27021827]
[52]
Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008; 3(7): e2557
[http://dx.doi.org/10.1371/journal.pone.0002557] [PMID: 18596939]
[53]
Gocze K, Gombos K, Kovacs K, Juhasz K, Gocze P, Kiss I. MicroRNA expressions in HPV-induced cervical dysplasia and cancer. Anticancer Res 2015; 35(1): 523-30.
[PMID: 25550598]
[54]
Shishodia G, Verma G, Das BC, Bharti AC. miRNA as viral transcription tuners in HPV-mediated cervical carcinogenesis. Front Biosci (Schol Ed) 2018; 10: 21-47.
[http://dx.doi.org/10.2741/s499] [PMID: 28930517]
[55]
Izzotti A. MicroRNA from small oligunucletoides to giant players of biological processes and diseases. MicroRNA 2019; 8(1): 2-3.
[http://dx.doi.org/10.2174/221153660801181024142302] [PMID: 30511596]
[56]
Graham SV. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol 2010; 5(10): 1493-506.
[http://dx.doi.org/10.2217/fmb.10.107] [PMID: 21073310]
[57]
Schiffman M, Herrero R, Desalle R, et al. The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 2005; 337(1): 76-84.
[http://dx.doi.org/10.1016/j.virol.2005.04.002] [PMID: 15914222]
[58]
Mortensen F, Schneider D, Barbic T, et al. Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination. Proc Natl Acad Sci USA 2015; 112(32): 9872-7.
[http://dx.doi.org/10.1073/pnas.1505923112] [PMID: 26216987]
[59]
Vinokurova S, Wentzensen N, Kraus I, et al. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res 2008; 68(1): 307-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2754] [PMID: 18172324]
[60]
Xin F, Liu P, Ma CF. A circulating serum miRNA panel as early detection biomarkers of cervical intraepithelial neoplasia. Eur Rev Med Pharmacol Sci 2016; 20(23): 4846-51.
[PMID: 27981553]
[61]
Gao C, Zhou C, Zhuang J, et al. MicroRNA expression in cervical cancer: Novel diagnostic and prognostic biomarkers. J Cell Biochem 2018; 119(8): 7080-90.
[http://dx.doi.org/10.1002/jcb.27029] [PMID: 29737570]
[62]
Wang X, Wang HK, Li Y, et al. microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci USA 2014; 111(11): 4262-7.
[http://dx.doi.org/10.1073/pnas.1401430111] [PMID: 24591631]
[63]
Lee JW, Choi CH, Choi JJ, et al. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 2008; 14(9): 2535-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1231] [PMID: 18451214]
[64]
Pereira PM, Marques JP, Soares AR, Carreto L, Santos MA. MicroRNA expression variability in human cervical tissues. PLoS One 2010; 5(7): e11780
[http://dx.doi.org/10.1371/journal.pone.0011780] [PMID: 20668671]
[65]
Cheung TH, Man KN, Yu MY, et al. Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle 2012; 11(15): 2876-84.
[http://dx.doi.org/10.4161/cc.21278] [PMID: 22801550]
[66]
Liu SS, Chan KKL, Chu DKH, et al. Oncogenic microRNA signature for early diagnosis of cervical intraepithelial neoplasia and cancer. Mol Oncol 2018; 12(12): 2009-22.
[http://dx.doi.org/10.1002/1878-0261.12383] [PMID: 30221475]
[67]
Tomari Y, Zamore PD. MicroRNA biogenesis: drosha can’t cut it without a partner. Curr Biol 2005; 15(2): R61-4.
[http://dx.doi.org/10.1016/j.cub.2004.12.057] [PMID: 15668159]
[68]
Baffa R, Fassan M, Volinia S, et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 2009; 219(2): 214-21.
[http://dx.doi.org/10.1002/path.2586] [PMID: 19593777]
[69]
Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2008; 27(18): 2575-82.
[http://dx.doi.org/10.1038/sj.onc.1210919] [PMID: 17998940]
[70]
Lui WO, Pourmand N, Patterson BK, Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 2007; 67(13): 6031-43.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0561] [PMID: 17616659]
[71]
Zeng K, Mo X, Liu F, Hu X. Differential expression of microRNAs in cervical cancer and cervical precancerous lesions. Cancer Res Prev Treat 2014; 7: 024.
[72]
Kawai S, Fujii T, Kukimoto I, et al. Identification of miRNAs in cervical mucus as a novel diagnostic marker for cervical neoplasia. Sci Rep 2018; 8(1): 7070.
[http://dx.doi.org/10.1038/s41598-018-25310-1] [PMID: 29728572]
[73]
Nair VB, Manasa VG, Sinto MS, Jayasree K, James FV, Kannan S. Differential expression of microRNAs in uterine cervical cancer and its implications in carcinogenesis; an integrative approach. Int J Gynecol Cancer 2018; 28(3): 553-62.
[http://dx.doi.org/10.1097/IGC.0000000000001203] [PMID: 29466255]
[74]
Sharma G, Dua P, Agarwal SM. A comprehensive review of dysregulated miRNAs involved in cervical cancer. Curr Genomics 2014; 15(4): 310-23.
[http://dx.doi.org/10.2174/1389202915666140528003249] [PMID: 25132800]
[75]
Wilting SM, Snijders PJF, Verlaat W, et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013; 32(1): 106-16.
[http://dx.doi.org/10.1038/onc.2012.20] [PMID: 22330141]
[76]
Zeng K, Zheng W, Mo X, et al. Dysregulated microRNAs involved in the progression of cervical neoplasm. Arch Gynecol Obstet 2015; 292(4): 905-13.
[http://dx.doi.org/10.1007/s00404-015-3702-5] [PMID: 25851497]
[77]
Azizmohammadi S, Safari A, Azizmohammadi S, et al. Molecular identification of miR-145 and miR-9 expression level as prognostic biomarkers for early-stage cervical cancer detection. QJM 2017; 110(1): 11-5.
[http://dx.doi.org/10.1093/qjmed/hcw101] [PMID: 27345415]
[78]
Park S, Eom K, Kim J, et al. MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer. BMC Cancer 2017; 17(1): 658.
[http://dx.doi.org/10.1186/s12885-017-3642-5] [PMID: 28934937]
[79]
Harden ME, Prasad N, Griffiths A, Munger K. Modulation of microRNA-mRNA target pairs by human papillomavirus 16 oncoproteins. MBio 2017; 8(1): e02170-16.
[http://dx.doi.org/10.1128/mBio.02170-16] [PMID: 28049151]
[80]
Aishanjiang A, Rouzi N, Jiao Z, et al. MicroRNA-9 enhances invasion and migration of cervical carcinomas by directly targeting FOXO1. Eur Rev Med Pharmacol Sci 2018; 22(8): 2253-60.
[PMID: 29762826]
[81]
Zhang H, Zhang Z, Wang S, Zhang S, Bi J. The mechanisms involved in miR-9 regulated apoptosis in cervical cancer by targeting FOXO3. Biomed Pharmacother 2018; 102: 626-32.
[http://dx.doi.org/10.1016/j.biopha.2018.03.019] [PMID: 29602130]
[82]
Nilsen A, Jonsson M, Aarnes EK, Kristensen GB, Lyng H. Reference microRNAs for RT-qPCR assays in cervical cancer patients and their application to studies of HPV16 and hypoxia biomarkers. Transl Oncol 2019; 12(3): 576-84.
[http://dx.doi.org/10.1016/j.tranon.2018.12.010] [PMID: 30660934]
[83]
Long MJ, Wu FX, Li P, Liu M, Li X, Tang H. MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells. Cancer Lett 2012; 324(2): 186-96.
[http://dx.doi.org/10.1016/j.canlet.2012.05.022] [PMID: 22634495]
[84]
Lajer CB, Garnæs E, Friis-Hansen L, et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer 2012; 106(9): 1526-34.
[http://dx.doi.org/10.1038/bjc.2012.109] [PMID: 22472886]
[85]
Liu L, Yu X, Guo X, et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 2012; 5(3): 753-60.
[PMID: 22160209]
[86]
Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int J Mol Med 2013; 32(3): 557-67.
[http://dx.doi.org/10.3892/ijmm.2013.1424] [PMID: 23799609]
[87]
Cai L, Wang W, Li X, et al. MicroRNA-21-5p induces the metastatic phenotype of human cervical carcinoma cells in vitro by targeting the von Hippel-Lindau tumor suppressor. Oncol Lett 2018; 15(4): 5213-9.
[http://dx.doi.org/10.3892/ol.2018.7937] [PMID: 29552160]
[88]
Kang HW, Wang F, Wei Q, et al. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett 2012; 586(6): 897-904.
[http://dx.doi.org/10.1016/j.febslet.2012.02.020] [PMID: 22449978]
[89]
Rao Q, Shen Q, Zhou H, Peng Y, Li J, Lin Z. Aberrant microRNA expression in human cervical carcinomas. Med Oncol 2012; 29(2): 1242-8.
[http://dx.doi.org/10.1007/s12032-011-9830-2] [PMID: 21264530]
[90]
Zhao S, Yao DS, Chen JY, Ding N. Aberrant expression of miR-20a and miR-203 in cervical cancer. Asian Pac J Cancer Prev 2013; 14(4): 2289-93.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2289] [PMID: 23725129]
[91]
Zhao S, Yao D, Chen J, Ding N, Ren F. MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS One 2015; 10(3): e0120905
[http://dx.doi.org/10.1371/journal.pone.0120905] [PMID: 25803820]
[92]
Liu X. Up-regulation of miR-20a by HPV16 E6 exerts growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. Biomed Pharmacother 2018; 102: 996-1002.
[http://dx.doi.org/10.1016/j.biopha.2018.03.154] [PMID: 29710555]
[93]
Zhou Q, Dong J, Luo R, Zhou X, Wang J, Chen F. MicroRNA-20a regulates cell proliferation, apoptosis and autophagy by targeting thrombospondin 2 in cervical cancer. Eur J Pharmacol 2019; 844: 102-9.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.043] [PMID: 30513279]
[94]
Ma D, Zhang YY, Guo YL, Li ZJ, Geng L. Profiling of microRNA-mRNA reveals roles of microRNAs in cervical cancer. Chin Med J (Engl) 2012; 125(23): 4270-6.
[PMID: 23217399]
[95]
Cheng Y, Geng L, Zhao L, Zuo P, Wang J. Human papillomavirus E6-regulated microRNA-20b promotes invasion in cervical cancer by targeting tissue inhibitor of metalloproteinase 2. Mol Med Rep 2017; 16(4): 5464-70.
[http://dx.doi.org/10.3892/mmr.2017.7231] [PMID: 28849054]
[96]
Muralidhar B, Goldstein LD, Ng G, et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol 2007; 212(4): 368-77.
[http://dx.doi.org/10.1002/path.2179] [PMID: 17471471]
[97]
Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun 2009; 388(3): 539-42.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.044] [PMID: 19682430]
[98]
Zhang Y, Dai Y, Huang Y, et al. Microarray profile of micro-ribonucleic acid in tumor tissue from cervical squamous cell carcinoma without human papillomavirus. J Obstet Gynaecol Res 2009; 35(5): 842-9.
[http://dx.doi.org/10.1111/j.1447-0756.2009.01055.x] [PMID: 20149030]
[99]
Deftereos G, Corrie SR, Feng Q, et al. Expression of mir-21 and mir-143 in cervical specimens ranging from histologically normal through to invasive cervical cancer. PLoS One 2011; 6(12): e28423
[http://dx.doi.org/10.1371/journal.pone.0028423] [PMID: 22194833]
[100]
Yao T, Lin Z. MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20. Biochim Biophys Acta 2012; 1822(2): 248-60.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.018] [PMID: 22001440]
[101]
Han Y, Xu GX, Lu H, et al. Dysregulation of miRNA-21 and their potential as biomarkers for the diagnosis of cervical cancer. Int J Clin Exp Pathol 2015; 8(6): 7131-9.
[PMID: 26261606]
[102]
Li H, Sun J. Value of microRNA-21 in early diagnosis of cervical cancer. J Qiqihar Univ Med 2014; pp. 481-2.
[103]
Liu J, Sun H, Wang X, et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci 2014; 15(1): 758-73.
[http://dx.doi.org/10.3390/ijms15010758] [PMID: 24406730]
[104]
Bumrungthai S, Ekalaksananan T, Evans MF, et al. Up-regulation of miR-21 is associated with cervicitis and human papillomavirus infection in cervical tissues. PLoS One 2015; 10(5): e0127109
[http://dx.doi.org/10.1371/journal.pone.0127109] [PMID: 26010154]
[105]
Jia W, Wu Y, Zhang Q, Gao GE, Zhang C, Xiang Y. Expression profile of circulating microRNAs as a promising fingerprint for cervical cancer diagnosis and monitoring. Mol Clin Oncol 2015; 3(4): 851-8.
[http://dx.doi.org/10.3892/mco.2015.560] [PMID: 26171195]
[106]
Shishodia G, Verma G, Srivastava Y, Mehrotra R, Das BC, Bharti AC. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer 2014; 14: 996.
[http://dx.doi.org/10.1186/1471-2407-14-996] [PMID: 25539644]
[107]
Xu J, Zhang W, Lv Q, Zhu D. Overexpression of miR-21 promotes the proliferation and migration of cervical cancer cells via the inhibition of PTEN. Oncol Rep 2015; 33(6): 3108-16.
[http://dx.doi.org/10.3892/or.2015.3931] [PMID: 25963606]
[108]
Du G, Cao D, Meng L. miR-21 inhibitor suppresses cell proliferation and colony formation through regulating the PTEN/AKT pathway and improves paclitaxel sensitivity in cervical cancer cells. Mol Med Rep 2017; 15(5): 2713-9.
[http://dx.doi.org/10.3892/mmr.2017.6340] [PMID: 28447761]
[109]
Feng Y, Zou W, Hu C, et al. Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch Biochem Biophys 2017; 623-624: 20-30.
[http://dx.doi.org/10.1016/j.abb.2017.05.001] [PMID: 28495512]
[110]
Lin W, Feng M, Chen G, Zhou Z, Li J, Ye Y. Characterization of the microRNA profile in early-stage cervical squamous cell carcinoma by next-generation sequencing. Oncol Rep 2017; 37(3): 1477-86.
[http://dx.doi.org/10.3892/or.2017.5372] [PMID: 28098890]
[111]
Wei WF, Han LF, Liu D, et al. Orthotopic xenograft mouse model of cervical cancer for studying the role of microrna-21 in promoting lymph node metastasis. Int J Gynecol Cancer 2017; 27(8): 1587-95.
[http://dx.doi.org/10.1097/IGC.0000000000001059] [PMID: 28945212]
[112]
Xu L, Xu Q, Li X, Zhang X. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-α. Mol Med Rep 2017; 16(4): 4659-63.
[http://dx.doi.org/10.3892/mmr.2017.7143] [PMID: 28765959]
[113]
Zhang Z, Wang J, Wang X, Song W, Shi Y, Zhang L. MicroRNA-21 promotes proliferation, migration, and invasion of cervical cancer through targeting TIMP3. Arch Gynecol Obstet 2018; 297(2): 433-42.
[http://dx.doi.org/10.1007/s00404-017-4598-z] [PMID: 29177591]
[114]
Zhu Y, Han Y, Tian T, et al. MiR-21-5p, miR-34a, and human telomerase RNA component as surrogate markers for cervical cancer progression. Pathol Res Pract 2018; 214(3): 374-9.
[http://dx.doi.org/10.1016/j.prp.2018.01.001] [PMID: 29487007]
[115]
Shi J, Zhang L. Clinical significance of miR-27a expression in the serum and tissue of patients with cervical squamous cell carcinomas. Chin J Clin Obstet Gynecol 2014; 49: 172-4.
[116]
Sun Y, Yang X, Liu M, Tang H. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells. Cancer Lett 2016; 375(2): 284-92.
[http://dx.doi.org/10.1016/j.canlet.2016.03.016] [PMID: 26987623]
[117]
Witten D, Tibshirani R, Gu SG, Fire A, Lui WO. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol 2010; 8: 58.
[http://dx.doi.org/10.1186/1741-7007-8-58] [PMID: 20459774]
[118]
Li Y, Wang F, Xu J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol 2011; 224(4): 484-95.
[http://dx.doi.org/10.1002/path.2873] [PMID: 21503900]
[119]
Zheng W, Liu Z, Zhang W, Hu X. miR-31 functions as an oncogene in cervical cancer. Arch Gynecol Obstet 2015; 292(5): 1083-9.
[http://dx.doi.org/10.1007/s00404-015-3713-2] [PMID: 25894339]
[120]
Wang N, Li Y, Zhou J. miR-31 functions as an oncomir which promotes epithelial-mesenchymal transition via regulating BAP1 in cervical cancer. BioMed Res Int 2017; 2017: 6361420
[http://dx.doi.org/10.1155/2017/6361420] [PMID: 29159179]
[121]
Zhou C, Shen L, Mao L, Wang B, Li Y, Yu H. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun 2015; 458(1): 63-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.066] [PMID: 25623537]
[122]
Kong Q, Tang Z, Xiang F, et al. Diagnostic value of serum hsa-mir-92a in patients with cervical cancer. Clin Lab 2017; 63(2): 335-40.
[http://dx.doi.org/10.7754/Clin.Lab.2016.160610] [PMID: 28182350]
[123]
Luo S, Li N, Yu S, Chen L, Liu C, Rong J. MicroRNA-92a promotes cell viability and invasion in cervical cancer via directly targeting Dickkopf-related protein 3. Exp Ther Med 2017; 14(2): 1227-34.
[http://dx.doi.org/10.3892/etm.2017.4586] [PMID: 28810582]
[124]
Su Z, Yang H, Zhao M, Wang Y, Deng G, Chen R. MicroRNA-92a promotes cell proliferation in cervical cancer via inhibiting p21 expression and promoting cell cycle progression. Oncol Res 2017; 25(1): 137-45.
[http://dx.doi.org/10.3727/096504016X14732772150262] [PMID: 28081742]
[125]
Li ZH, Li L, Kang LP, Wang Y. MicroRNA-92a promotes tumor growth and suppresses immune function through activation of MAPK/ERK signaling pathway by inhibiting PTEN in mice bearing U14 cervical cancer. Cancer Med 2018. Epub ahead of print
[http://dx.doi.org/10.1002/cam4.1329] [PMID: 29752775]
[126]
Wang F, Liu M, Li X, Tang H. MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett 2013; 587(5): 488-95.
[http://dx.doi.org/10.1016/j.febslet.2013.01.016] [PMID: 23337879]
[127]
Zhang X, Li F, Zhu L. Clinical significance and functions of microRNA-93/CDKN1A axis in human cervical cancer. Life Sci 2018; 209: 242-8.
[http://dx.doi.org/10.1016/j.lfs.2018.08.021] [PMID: 30098344]
[128]
Li X, Zhou Q, Tao L, Yu C. MicroRNA-106a promotes cell migration and invasion by targeting tissue inhibitor of matrix metalloproteinase 2 in cervical cancer. Oncol Rep 2017; 38(3): 1774-82.
[http://dx.doi.org/10.3892/or.2017.5832] [PMID: 28731196]
[129]
Edatt L, Maurya AK, Raji G, Kunhiraman H, Kumar SVB. MicroRNA106a regulates matrix metalloprotease 9 in a sirtuin-1 dependent mechanism. J Cell Physiol 2018; 233(1): 238-48.
[http://dx.doi.org/10.1002/jcp.25870] [PMID: 28233301]
[130]
Wang H-W, Terinate P, Gao Y, Kalra KL. Investigation of microRNA-146a and microRNA-218 expression in cervical cancer. FASEB J 2011; 25(1): lb1-1130.6.
[131]
Hu Q, Song J, Ding B, Cui Y, Liang J, Han S. miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol Rep 2018; 39(6): 3015-24.
[http://dx.doi.org/10.3892/or.2018.6391] [PMID: 29693168]
[132]
Li L, Lin X, Wen W. Development and clinical primary application of SYBR Green I FQ-PCR with stem-loop RT primer to detect miR-155 [J]. Lab Med 2010; 4: 011.
[133]
Lao G, Liu P, Wu Q, et al. Mir-155 promotes cervical cancer cell proliferation through suppression of its target gene LKB1. Tumour Biol 2014; 35(12): 11933-8.
[http://dx.doi.org/10.1007/s13277-014-2479-7] [PMID: 25155037]
[134]
Zhang Y, Wang ZC, Zhang ZS, Chen F. MicroRNA-155 regulates cervical cancer via inducing Th17/Treg imbalance. Eur Rev Med Pharmacol Sci 2018; 22(12): 3719-26.
[PMID: 29949145]
[135]
Zhang J, Zheng F, Yu G, Yin Y, Lu Q. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochem Biophys Res Commun 2013; 440(4): 582-8.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.142] [PMID: 24120501]
[136]
Hou T, Ou J, Zhao X, Huang X, Huang Y, Zhang Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br J Cancer 2014; 110(5): 1260-8.
[http://dx.doi.org/10.1038/bjc.2013.829] [PMID: 24423924]
[137]
Villegas-Ruiz V, Juárez-Méndez S, Pérez-González OA, et al. Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a. Int J Clin Exp Pathol 2014; 7(4): 1389-401.
[PMID: 24817935]
[138]
Yang W, Hong L, Xu X, Wang Q, Huang J, Jiang L. LncRNA GAS5 suppresses the tumorigenesis of cervical cancer by downregulating miR-196a and miR-205. Tumour Biol 2017; 39(7): 1010428317711315
[http://dx.doi.org/10.1177/1010428317711315] [PMID: 28671039]
[139]
Chen Z, Zhang M, Qiao Y, Yang J, Yin Q. MicroRNA-1297 contributes to the progression of human cervical carcinoma through PTEN. Artif Cells Nanomed Biotechnol 2018; 46(Suppl 2): 1120-6.
[http://dx.doi.org/10.1080/21691401.2018.1479711] [PMID: 29916735]
[140]
Li S, Wang X, Song B, Zhou Y. Expression of miR-199b in cervical cancer tissues and its clinical significance. China J Cancer Prev Treat 2012; 19(17): 1335-8.
[141]
Xu LJ, Duan Y, Wang P, Yin HQ. MiR-199b-5p promotes tumor growth and metastasis in cervical cancer by down-regulating KLK10. Biochem Biophys Res Commun 2018; 503(2): 556-63.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.165] [PMID: 29807015]
[142]
Zhu H, Zheng T, Yu J, Zhou L, Wang L. LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a. Biomed Pharmacother 2018; 105: 789-97.
[http://dx.doi.org/10.1016/j.biopha.2018.05.053] [PMID: 29909347]
[143]
Xie H, Zhao Y, Caramuta S, Larsson C, Lui WO. miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PLoS One 2012; 7(10): e46990
[http://dx.doi.org/10.1371/journal.pone.0046990] [PMID: 23056551]
[144]
Ma Q, Wan G, Wang S, Yang W, Zhang J, Yao X. Serum microRNA-205 as a novel biomarker for cervical cancer patients. Cancer Cell Int 2014; 14: 81.
[http://dx.doi.org/10.1186/s12935-014-0081-0] [PMID: 25788864]
[145]
Xie H, Norman I, Hjerpe A, et al. Evaluation of microRNA-205 expression as a potential triage marker for patients with low-grade squamous intraepithelial lesions. Oncol Lett 2017; 13(5): 3586-98.
[http://dx.doi.org/10.3892/ol.2017.5909] [PMID: 28529583]
[146]
Phuah NH, Azmi MN, Awang K, Nagoor NH. Down-regulation of microRNA-210 confers sensitivity towards 1‘S-1’-Acetoxychavicol Acetate (ACA) in cervical cancer cells by targeting SMAD4. Mol Cells 2017; 40(4): 291-8.
[http://dx.doi.org/10.14348/molcells.2017.2285] [PMID: 28401751]
[147]
Yamamoto N, Kinoshita T, Nohata N, et al. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol 2013; 43(6): 1855-63.
[http://dx.doi.org/10.3892/ijo.2013.2145] [PMID: 24141696]
[148]
Wu Y. Expression and significance of MiR-29a in cervical cancer tissues. Chin J Gen Practice 2013; 11: 1401-2.
[149]
Wang X, Wang HK, McCoy JP, et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 2009; 15(4): 637-47.
[http://dx.doi.org/10.1261/rna.1442309] [PMID: 19258450]
[150]
Tian Y, Zhang YZ, Chen W. MicroRNA-199a-3p and microRNA-34a regulate apoptosis in human osteosarcoma cells. Biosci Rep 2014; 34(4): e00132
[http://dx.doi.org/10.1042/BSR20140084] [PMID: 24957404]
[151]
Ribeiro J, Marinho-Dias J, Monteiro P, et al. miR-34a and miR-125b expression in HPV infection and cervical cancer development. BioMed Res Int 2015; 2015: 304584
[http://dx.doi.org/10.1155/2015/304584] [PMID: 26180794]
[152]
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. Downregulation of HMGB1 by miR-34a is sufficient to suppress proliferation, migration and invasion of human cervical and colorectal cancer cells. Tumour Biol 2016; 37(10): 13155-66.
[http://dx.doi.org/10.1007/s13277-016-5261-1] [PMID: 27456356]
[153]
Wang JH, Zhang L, Ma YW, et al. microRNA-34a-upregulated retinoic acid-inducible Gene-I promotes apoptosis and delays cell cycle transition in cervical cancer cells. DNA Cell Biol 2016; 35(6): 267-79.
[http://dx.doi.org/10.1089/dna.2015.3130] [PMID: 26910120]
[154]
Chen AH, Qin YE, Tang WF, Tao J, Song HM, Zuo M. MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int 2017; 17: 63.
[http://dx.doi.org/10.1186/s12935-017-0431-9] [PMID: 28615991]
[155]
Li BH, Zhou JS, Ye F, et al. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer 2011; 47(14): 2166-74.
[http://dx.doi.org/10.1016/j.ejca.2011.04.037] [PMID: 21636267]
[156]
Cheng J, Zhao H, Yin YX. Expression of miR-101 in cervical cancer tissue and its clinical significance. Maternal Child Health Care China 2012; 7: 053.
[157]
Cui F, Li X, Zhu X, et al. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem 2012; 30(5): 1310-8.
[http://dx.doi.org/10.1159/000343320] [PMID: 23160634]
[158]
Yu Q, Liu SL, Wang H, Shi G, Yang P, Chen XL. miR-126 Suppresses the proliferation of cervical cancer cells and alters cell sensitivity to the chemotherapeutic drug bleomycin. Asian Pac J Cancer Prev 2014; 14(11): 6569-72.
[http://dx.doi.org/10.7314/APJCP.2013.14.11.6569] [PMID: 24377569]
[159]
Huang TH, Chu TY. Repression of miR-126 and upregulation of adrenomedullin in the stromal endothelium by cancer-stromal cross talks confers angiogenesis of cervical cancer. Oncogene 2014; 33(28): 3636-47.
[http://dx.doi.org/10.1038/onc.2013.335] [PMID: 24037526]
[160]
Wang C, Zhou B, Liu M, Liu Y, Gao R. miR-126-5p restoration promotes cell apoptosis in cervical cancer by targeting Bcl2l2. Oncol Res 2017; 25(4): 463-70.
[http://dx.doi.org/10.3727/096504016X14685034103879] [PMID: 28438233]
[161]
Che Y, Lu A, Liao Y. Expression of miR-143 in cervical tissue and its significance. J Med Postgra 2014; 27: 510-2.
[162]
Lin C, Huang F, Zhang YJ, Tuokan T, Kuerban G. Roles of MiR-101 and its target gene Cox-2 in early diagnosis of cervical cancer in Uygur women. Asian Pac J Cancer Prev 2014; 15(1): 45-8.
[http://dx.doi.org/10.7314/APJCP.2014.15.1.45] [PMID: 24528073]
[163]
Zhang L, Niyazi HE, Zhao HR, et al. Effects of miRNA-143 and the non-coding RNA MALAT1 on the pathogenesis and metastasis of HeLa cells. Genet Mol Res 2017; 16(1): 16.
[http://dx.doi.org/10.4238/gmr16019269] [PMID: 28252165]
[164]
Zhou M, Chen X, Wu J, He X, Ren R. MicroRNA-143 regulates cell migration and invasion by targeting GOLM1 in cervical cancer. Oncol Lett 2018; 16(5): 6393-400.
[http://dx.doi.org/10.3892/ol.2018.9441] [PMID: 30405775]
[165]
Shi M, Du L, Liu D, et al. Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol 2012; 228(2): 148-57.
[http://dx.doi.org/10.1002/path.3997] [PMID: 22287315]
[166]
Xing AY, Wang B, Shi DB, et al. Deregulated expression of miR-145 in manifold human cancer cells. Exp Mol Pathol 2013; 95(1): 91-7.
[http://dx.doi.org/10.1016/j.yexmp.2013.05.003] [PMID: 23714355]
[167]
Sathyanarayanan A, Chandrasekaran KS, Karunagaran D. microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Cell Oncol (Dordr) 2017; 40(2): 119-31.
[http://dx.doi.org/10.1007/s13402-016-0307-3] [PMID: 27933466]
[168]
Wei H, Wen-Ming C, Jun-Bo J. Plasma miR-145 as a novel biomarker for the diagnosis and radiosensitivity prediction of human cervical cancer. J Int Med Res 2017; 45(3): 1054-60.
[http://dx.doi.org/10.1177/0300060517709614] [PMID: 28534701]
[169]
Zhou X, Yue Y, Wang R, Gong B, Duan Z. MicroRNA-145 inhibits tumorigenesis and invasion of cervical cancer stem cells. Int J Oncol 2017; 50(3): 853-62.
[http://dx.doi.org/10.3892/ijo.2017.3857] [PMID: 28112371]
[170]
Qian B, Zhao L, Wang X, et al. miR-149 regulates the proliferation and apoptosis of cervical cancer cells by targeting GIT1. Biomed Pharmacother 2018; 105: 1106-16.
[http://dx.doi.org/10.1016/j.biopha.2018.06.075] [PMID: 30021347]
[171]
Du X, Lin LI, Zhang L, Jiang J. microRNA-195 inhibits the proliferation, migration and invasion of cervical cancer cells via the inhibition of CCND2 and MYB expression. Oncol Lett 2015; 10(4): 2639-43.
[http://dx.doi.org/10.3892/ol.2015.3541] [PMID: 26622903]
[172]
Wang N, Wei H, Yin D, et al. MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a. Tumour Biol 2016; 37(4): 4711-20.
[http://dx.doi.org/10.1007/s13277-015-4292-3] [PMID: 26511972]
[173]
Song R, Cong L, Ni G, et al. MicroRNA-195 inhibits the behavior of cervical cancer tumors by directly targeting HDGF. Oncol Lett 2017; 14(1): 767-75.
[http://dx.doi.org/10.3892/ol.2017.6210] [PMID: 28693232]
[174]
Li M, Ren CX, Zhang JM, et al. The Effects of miR-195-5p/MMP14 on proliferation and invasion of cervical carcinoma cells through TNF signaling pathway based on bioinformatics analysis of microarray profiling. Cell Physiol Biochem 2018; 50(4): 1398-413.
[http://dx.doi.org/10.1159/000494602] [PMID: 30355924]
[175]
Zhong J, Yuan H, Xu X, Kong S. MicroRNA‑195 inhibits cell proliferation, migration and invasion by targeting defective in cullin neddylation 1 domain containing 1 in cervical cancer. Int J Mol Med 2018; 42(2): 779-88.
[PMID: 29750306]
[176]
Zhu X, Er K, Mao C, et al. miR-203 suppresses tumor growth and angiogenesis by targeting VEGFA in cervical cancer. Cell Physiol Biochem 2013; 32(1): 64-73.
[http://dx.doi.org/10.1159/000350125] [PMID: 23867971]
[177]
Yang Z, Chen S, Luan X, et al. MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of HeLa cells. IUBMB Life 2009; 61(11): 1075-82.
[http://dx.doi.org/10.1002/iub.252] [PMID: 19859982]
[178]
Qiang R, Wang F, Shi LY, et al. Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. Int J Biochem Cell Biol 2011; 43(4): 632-41.
[http://dx.doi.org/10.1016/j.biocel.2011.01.002] [PMID: 21216304]
[179]
Peng RQ, Wan HY, Li HF, Liu M, Li X, Tang H. MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem 2012; 287(17): 14301-9.
[http://dx.doi.org/10.1074/jbc.M111.337642] [PMID: 22399294]
[180]
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. miR-214 activates TP53 but suppresses the expression of RELA, CTNNB1, and STAT3 in human cervical and colorectal cancer cells. Cell Biochem Funct 2017; 35(7): 464-71.
[http://dx.doi.org/10.1002/cbf.3304] [PMID: 29023799]
[181]
Peng R, Men J, Ma R, et al. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells. Biochem Biophys Res Commun 2017; 484(3): 623-30.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.152] [PMID: 28137590]
[182]
Wang JM, Ju BH, Pan CJ, et al. MiR-214 inhibits cell migration, invasion and promotes the drug sensitivity in human cervical cancer by targeting FOXM1. Am J Transl Res 2017; 9(8): 3541-57.
[PMID: 28861147]
[183]
Yang Y, Liu Y, Li G, Li L, Geng P, Song H. microRNA-214 suppresses the growth of cervical cancer cells by targeting EZH2. Oncol Lett 2018; 16(5): 5679-86.
[http://dx.doi.org/10.3892/ol.2018.9363] [PMID: 30344723]
[184]
Gai H. Preliminary research on the correlation between miR-218 down-regulation and cervical cancer. Clin Res 2012; 50: 28-9.
[185]
Yuan W, Xiaoyun H, Haifeng Q, et al. MicroRNA-218 enhances the radiosensitivity of human cervical cancer via promoting radiation induced apoptosis. Int J Med Sci 2014; 11(7): 691-6.
[http://dx.doi.org/10.7150/ijms.8880] [PMID: 24843318]
[186]
Kogo R, How C, Chaudary N, et al. The microRNA-218~Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. Oncotarget 2015; 6(2): 1090-100.
[http://dx.doi.org/10.18632/oncotarget.2836] [PMID: 25473903]
[187]
Tang BB, Liu SY, Zhan YU, et al. microRNA-218 expression and its association with the clinicopathological characteristics of patients with cervical cancer. Exp Ther Med 2015; 10(1): 269-74.
[http://dx.doi.org/10.3892/etm.2015.2455] [PMID: 26170947]
[188]
Jiménez-Wences H, Martínez-Carrillo DN, Peralta-Zaragoza O, et al. Methylation and expression of miRNAs in precancerous lesions and cervical cancer with HPV16 infection. Oncol Rep 2016; 35(4): 2297-305.
[http://dx.doi.org/10.3892/or.2016.4583] [PMID: 26797462]
[189]
Xu Y, He Q, Lu Y, Tao F, Zhao L, Ou R. MicroRNA-218-5p inhibits cell growth and metastasis in cervical cancer via LYN/NF-κB signaling pathway. Cancer Cell Int 2018; 18: 198.
[http://dx.doi.org/10.1186/s12935-018-0673-1] [PMID: 30524205]
[190]
Zhang J, Li S, Li Y, Liu H, Zhang Y, Zhang Q. miRNA-218 regulates the proliferation and apoptosis of cervical cancer cells via targeting Gli3. Exp Ther Med 2018; 16(3): 2433-41.
[http://dx.doi.org/10.3892/etm.2018.6491] [PMID: 30210595]
[191]
Zhu L, Tu H, Liang Y, Tang D. MiR-218 produces anti-tumor effects on cervical cancer cells in vitro. World J Surg Oncol 2018; 16(1): 204.
[http://dx.doi.org/10.1186/s12957-018-1506-3] [PMID: 30314496]
[192]
Wang F, Li Y, Zhou J, et al. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol 2011; 179(5): 2580-8.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.037] [PMID: 21945323]
[193]
Bierkens M, Krijgsman O, Wilting SM, et al. Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. Genes Chromosomes Cancer 2013; 52(1): 56-68.
[http://dx.doi.org/10.1002/gcc.22006] [PMID: 22987659]
[194]
Shen Y, Li Y, Ye F, et al. Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues. Exp Mol Med 2011; 43(6): 358-66.
[http://dx.doi.org/10.3858/emm.2011.43.6.039] [PMID: 21519184]
[195]
Xu J, Li Y, Wang F, et al. Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene 2013; 32(8): 976-87.
[http://dx.doi.org/10.1038/onc.2012.121] [PMID: 22469983]
[196]
Gao YL, Zhao ZS, Zhang MY, Han LJ, Dong YJ, Xu B. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Res 2017; 25(8): 1391-8.
[http://dx.doi.org/10.3727/096504017X14881559833562] [PMID: 28276314]
[197]
Dong J, Wang Q, Li L, Xiao-Jin Z. Upregulation of long non-coding RNA small nucleolar RNA host gene 12 contributes to cell growth and invasion in cervical cancer by acting as a sponge for MiR-424-5p. Cell Physiol Biochem 2018; 45(5): 2086-94.
[http://dx.doi.org/10.1159/000488045] [PMID: 29533945]
[198]
Hong S, Cheng S, Songock W, Bodily J, Laimins LA. Suppression of microRNA 424 levels by human papillomaviruses is necessary for differentiation-dependent genome amplification. J Virol 2017; 91(24): e01712-7.
[http://dx.doi.org/10.1128/JVI.01712-17] [PMID: 28978708]
[199]
Luo M, Shen D, Zhou X, Chen X, Wang W. MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surgery 2013; 153(6): 836-47.
[http://dx.doi.org/10.1016/j.surg.2012.12.004] [PMID: 23453369]
[200]
Tao L, Zhang CY, Guo L, et al. MicroRNA-497 accelerates apoptosis while inhibiting proliferation, migration, and invasion through negative regulation of the MAPK/ERK signaling pathway via RAF-1. J Cell Physiol 2018; 233(10): 6578-88.
[http://dx.doi.org/10.1002/jcp.26272] [PMID: 29150931]
[201]
Hildesheim A, Gonzalez P, Kreimer AR, et al. Costa Rica HPV Vaccine Trial (CVT) Group. Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. Am J Obstet Gynecol 2016; 215(2): 212.e1-212.e15.
[http://dx.doi.org/10.1016/j.ajog.2016.02.021] [PMID: 26892991]
[202]
Drury RE, O’Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease. Front Immunol 2017; 8: 1182.
[http://dx.doi.org/10.3389/fimmu.2017.01182] [PMID: 28993774]
[203]
Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res 2018; 5: 46-58.
[http://dx.doi.org/10.1016/j.pvr.2017.12.006] [PMID: 29277575]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2020
Page: [174 - 186]
Pages: 13
DOI: 10.2174/2211536608666191026115045

Article Metrics

PDF: 23
HTML: 2
PRC: 1