Risk of Kidney Dysfunction IN Nafld

Author(s): Alessandro Mantovani*, Chiara Zusi, Andrea Dalbeni, Giorgio Grani, Elena Buzzetti.

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 10 , 2020

Become EABM
Become Reviewer

Abstract:

Background: The timely identification of traditional and non-traditional precursors and risk factors for chronic kidney disease (CKD) (a common systemic disease defined as a decreased kidney function documented by reduced glomerular filtration rate, or markers of kidney damage, or both) is relevant in clinical practice, as CKD increases the risk of end-stage renal disease and other serious comorbidities. A possible relationship between non-alcoholic fatty liver disease (NAFLD) (which is to date the most common chronic disease worldwide) and CKD has recently gained significant attention of researchers.

Methods: A systematic literature search using appropriate keywords was made in order to identify relevant articles that have investigated the association between NAFLD and CKD.

Results: Several observational studies and meta-analyses have reported the existence of an independent association between NAFLD and risk of CKD in patients with and without diabetes. However, whilst the association between NAFLD and risk of prevalent CKD is strong across various patient populations, whether NAFLD is independently associated with the development and progression of CKD is still debatable. Moreover, emerging evidence now suggests a potential association between patatin-like phospholipase domain-containing protein-3 (PNPLA3) rs738409 genotype (the most important genetic variant associated to NAFLD) and decreasing kidney function, independent of NAFLD.

Conclusion: Convincing evidence now indicates that CKD is increased among patients with NAFLD. For this reason, patients with NAFLD should be regularly monitored for renal function and, on the other hand , NAFLD should be considered in all patients with CKD, especially if they are obese or have type 2 diabetes.

Keywords: Non-alcoholic fatty liver disease, NAFLD, chronic kidney disease, CKD, renal dysfunction, phospholipase.

[1]
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64(6): 1388-402.
[http://dx.doi.org/10.1016/j.jhep.2015.11.004] [PMID: 27062661]
[2]
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[3]
Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol 2019; 71(4): 793-801. (Epub ahead of print)
[http://dx.doi.org/101016/jjhep201906021]
[4]
Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol 2015; 62(1)(Suppl.): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[5]
Targher G, Lonardo A, Byrne CD. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol 2018; 14(2): 99-114.
[http://dx.doi.org/10.1038/nrendo.2017.173] [PMID: 29286050]
[6]
Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol 2018; 68(2): 335-52.
[http://dx.doi.org/10.1016/j.jhep.2017.09.021] [PMID: 29122390]
[7]
Anstee QM, Mantovani A, Tilg H, Targher G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2018; 15(7): 425-39.
[http://dx.doi.org/10.1038/s41575-018-0010-0] [PMID: 29713021]
[8]
Mantovani A, Dauriz M, Byrne CD, et al. Association between nonalcoholic fatty liver disease and colorectal tumours in asymptomatic adults undergoing screening colonoscopy: a systematic review and meta-analysis. Metabolism 2018; 87: 1-12.
[http://dx.doi.org/10.1016/j.metabol.2018.06.004] [PMID: 29935236]
[9]
Lonardo A, Mantovani A, Lugari S, Targher G. NAFLD in some common endocrine diseases: prevalence, pathophysiology, and principles of diagnosis and management. Int J Mol Sci 2019; 20(11): E2841
[http://dx.doi.org/10.3390/ijms20112841] [PMID: 31212642]
[10]
Mantovani A, Turino T, Altomari A, et al. Association between Helicobacter pylori infection and risk of nonalcoholic fatty liver disease: An updated meta-analysis. Metabolism 2019; 96: 56-65.
[http://dx.doi.org/10.1016/j.metabol.2019.04.012] [PMID: 31047909]
[11]
Mantovani A, Dauriz M, Gatti D, et al. Systematic review with meta-analysis: non-alcoholic fatty liver disease is associated with a history of osteoporotic fractures but not with low bone mineral density. Aliment Pharmacol Ther 2019; 49(4): 375-88.
[http://dx.doi.org/10.1111/apt.15087] [PMID: 30600540]
[12]
Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017; 389(10075): 1238-52.
[http://dx.doi.org/10.1016/S0140-6736(16)32064-5] [PMID: 27887750]
[13]
Stevens PE, Levin A. Guideline evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical. Ann Intern Med 2014; 158: 825-31.
[http://dx.doi.org/10.7326/0003-4819-158-11-201306040-00007] [PMID: 23732715]
[14]
Zoccali C, Vanholder R, Massy ZA, et al. The systemic nature of CKD. Nat Rev Nephrol 2017; 13(6): 344-58.
[http://dx.doi.org/10.1038/nrneph.2017.52] [PMID: 28435157]
[15]
Targher G, Byrne CD. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat Rev Nephrol 2017; 13(5): 297-310.
[http://dx.doi.org/10.1038/nrneph.2017.16] [PMID: 28218263]
[16]
Kawamoto R, Kohara K, Tabara Y, et al. An association between body mass index and estimated glomerular filtration rate. Hypertens Res 2008; 31(8): 1559-64.
[http://dx.doi.org/10.1291/hypres.31.1559] [PMID: 18971530]
[17]
Targher G, Bertolini L, Rodella S, et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia 2008; 51(3): 444-50.
[http://dx.doi.org/10.1007/s00125-007-0897-4] [PMID: 18058083]
[18]
Yilmaz Y, Alahdab YO, Yonal O, et al. Microalbuminuria in nondiabetic patients with nonalcoholic fatty liver disease: association with liver fibrosis. Metabolism 2010; 59(9): 1327-30.
[http://dx.doi.org/10.1016/j.metabol.2009.12.012] [PMID: 20096896]
[19]
Yasui K, Sumida Y, Mori Y, et al. Nonalcoholic steatohepatitis and increased risk of chronic kidney disease. Metabolism 2011; 60(5): 735-9.
[http://dx.doi.org/10.1016/j.metabol.2010.07.022] [PMID: 20817213]
[20]
Park CW, Tsai NT, Wong LL. Implications of worse renal dysfunction and medical comorbidities in patients with NASH undergoing liver transplant evaluation: impact on MELD and more. Clin Transplant 2011; 25(6): E606-11.
[http://dx.doi.org/10.1111/j.1399-0012.2011.01497.x] [PMID: 21958082]
[21]
Targher G, Pichiri I, Zoppini G, Trombetta M, Bonora E. Increased prevalence of chronic kidney disease in patients with Type 1 diabetes and non-alcoholic fatty liver. Diabet Med 2012; 29(2): 220-6.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03427.x] [PMID: 21883436]
[22]
Machado MV, Gonçalves S, Carepa F, Coutinho J, Costa A, Cortez-Pinto H. Impaired renal function in morbid obese patients with nonalcoholic fatty liver disease. Liver Int 2012; 32(2): 241-8.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02623.x] [PMID: 22098270]
[23]
Sirota JC, McFann K, Targher G, Chonchol M, Jalal DI. Association between nonalcoholic liver disease and chronic kidney disease: an ultrasound analysis from NHANES 1988-1994. Am J Nephrol 2012; 36(5): 466-71.
[http://dx.doi.org/10.1159/000343885] [PMID: 23128368]
[24]
Ahn AL, Choi JK, Kim MN, et al. Non-alcoholic fatty liver disease and chronic kidney disease in koreans aged 50 years or older. Korean J Fam Med 2013; 34(3): 199-205.
[http://dx.doi.org/10.4082/kjfm.2013.34.3.199] [PMID: 23730487]
[25]
Mikolasevic I, Racki S, Bubic I, Jelic I, Stimac D, Orlic L. Chronic kidney disease and nonalcoholic Fatty liver disease proven by transient elastography. Kidney Blood Press Res 2013; 37(4-5): 305-10.
[http://dx.doi.org/10.1159/000350158] [PMID: 24029696]
[26]
Li Y, Zhu S, Li B, et al. Association between non-alcoholic fatty liver disease and chronic kidney disease in population with prediabetes or diabetes. Int Urol Nephrol 2014; 46(9): 1785-91.
[http://dx.doi.org/10.1007/s11255-014-0796-9] [PMID: 25099524]
[27]
Pan LL, Zhang HJ, Huang ZF, et al. Intrahepatic triglyceride content is independently associated with chronic kidney disease in obese adults: A cross-sectional study. Metabolism 2015; 64(9): 1077-85.
[http://dx.doi.org/10.1016/j.metabol.2015.06.003] [PMID: 26144271]
[28]
Jia G, Di F, Wang Q, et al. Non-alcoholic fatty liver disease is a risk factor for the development of diabetic nephropathy in patients with type 2 diabetes mellitus. PLoS One 2015; 10(11)e0142808
[http://dx.doi.org/10.1371/journal.pone.0142808] [PMID: 26566287]
[29]
Xu HW, Hsu YC, Chang CH, Wei KL, Lin CL. High FIB-4 index as an independent risk factor of prevalent chronic kidney disease in patients with nonalcoholic fatty liver disease. Hepatol Int 2016; 10(2): 340-6.
[http://dx.doi.org/10.1007/s12072-015-9690-5] [PMID: 26676626]
[30]
Choudhary NS, Saraf N, Kumar N, et al. Nonalcoholic fatty liver is not associated with incident chronic kidney disease: a large histology-based comparison with healthy individuals. Eur J Gastroenterol Hepatol 2016; 28(4): 441-3.
[http://dx.doi.org/10.1097/MEG.0000000000000531] [PMID: 26636408]
[31]
Pacifico L, Bonci E, Andreoli GM, et al. The impact of nonalcoholic fatty liver disease on renal function in children with overweight/obesity. Int J Mol Sci 2016; 17(8): E1218
[http://dx.doi.org/10.3390/ijms17081218] [PMID: 27472326]
[32]
Zeng J, Sun C, Sun WL, et al. Association between non-invasively diagnosed hepatic steatosis and chronic kidney disease in Chinese adults on their health check-up. J Dig Dis 2017; 18(4): 229-36.
[http://dx.doi.org/10.1111/1751-2980.12465] [PMID: 28296249]
[33]
Yeung MW, Wong GL, Choi KC, et al. Advanced liver fibrosis but not steatosis is independently associated with albuminuria in Chinese patients with type 2 diabetes. J Hepatol 2017; 68: 147-56.
[http://dx.doi.org/10.1016/j.jhep.2017.09.020] [PMID: 28989092]
[34]
Wijarnpreecha K, Thongprayoon C, Scribani M, Ungprasert P, Cheungpasitporn W. Noninvasive fibrosis markers and chronic kidney disease among adults with nonalcoholic fatty liver in USA. Eur J Gastroenterol Hepatol 2018; 30(4): 404-10.
[http://dx.doi.org/10.1097/MEG.0000000000001045] [PMID: 29215435]
[35]
Lin M, Liu C, Liu Y, et al. Fetuin-B links nonalcoholic fatty liver disease to chronic kidney disease in obese chinese adults: a cross-sectional study. Ann Nutr Metab 2019; 74(4): 287-95.
[http://dx.doi.org/10.1159/000499843] [PMID: 30965331]
[36]
Chen PC, Kao WY, Cheng YL, et al. The correlation between fatty liver disease and chronic kidney disease. J Formos Med Assoc 2019; 119(1 Pt 1): 42-50. (Epub ahead of print)
[http://dx.doi.org/101016/jjfma201902010]
[37]
Nampoothiri RV, Duseja A, Rathi M, et al. Renal dysfunction in patients with nonalcoholic fatty liver disease is related to the presence of diabetes mellitus and severity of liver disease. J Clin Exp Hepatol 2019; 9(1): 22-8.
[http://dx.doi.org/10.1016/j.jceh.2017.12.005] [PMID: 30765935]
[38]
Musso G, Gambino R, Tabibian JH, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med 2014; 11(7)e1001680
[http://dx.doi.org/10.1371/journal.pmed.1001680] [PMID: 25050550]
[39]
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009; 76(113): S1-S130.
[PMID: 19644521]
[40]
Ryu S, Chang Y, Kim DI, Kim WS, Suh BS. gamma-Glutamyltransferase as a predictor of chronic kidney disease in nonhypertensive and nondiabetic Korean men. Clin Chem 2007; 53(1): 71-7.
[http://dx.doi.org/10.1373/clinchem.2006.078980] [PMID: 17110470]
[41]
Chang Y, Ryu S, Sung E, et al. Nonalcoholic fatty liver disease predicts chronic kidney disease in nonhypertensive and nondiabetic Korean men. Metabolism 2008; 57(4): 569-76.
[http://dx.doi.org/10.1016/j.metabol.2007.11.022] [PMID: 18328362]
[42]
Targher G, Chonchol M, Bertolini L, et al. Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease. J Am Soc Nephrol 2008; 19(8): 1564-70.
[http://dx.doi.org/10.1681/ASN.2007101155] [PMID: 18385424]
[43]
Arase Y, Suzuki F, Kobayashi M, et al. The development of chronic kidney disease in Japanese patients with non-alcoholic fatty liver disease. Intern Med 2011; 50(10): 1081-7.
[http://dx.doi.org/10.2169/internalmedicine.50.5043] [PMID: 21576832]
[44]
Targher G, Mantovani A, Pichiri I, et al. Nonalcoholic fatty liver disease is independently associated with an increased incidence of chronic kidney disease in patients with type 1 diabetes. Diabetes Care 2014; 37(6): 1729-36.
[http://dx.doi.org/10.2337/dc13-2704] [PMID: 24696459]
[45]
Huh JH, Kim JY, Choi E, Kim JS, Chang Y, Sung KC. The fatty liver index as a predictor of incident chronic kidney disease in a 10-year prospective cohort study. PLoS One 2017; 12(7)e0180951
[http://dx.doi.org/10.1371/journal.pone.0180951] [PMID: 28738057]
[46]
Shen ZW, Xing J, Wang QL, et al. Association between serum γ-glutamyltransferase and chronic kidney disease in urban Han Chinese: a prospective cohort study. Int Urol Nephrol 2017; 49(2): 303-12.
[http://dx.doi.org/10.1007/s11255-016-1429-2] [PMID: 27704320]
[47]
Kunutsor SK, Laukkanen JA. Gamma-glutamyltransferase and risk of chronic kidney disease: A prospective cohort study. Clin Chim Acta 2017; 473: 39-44.
[http://dx.doi.org/10.1016/j.cca.2017.08.014] [PMID: 28811239]
[48]
Sinn DH, Kang D, Jang HR, et al. Development of chronic kidney disease in patients with non-alcoholic fatty liver disease: A cohort study. J Hepatol 2017; 67(6): 1274-80.
[http://dx.doi.org/10.1016/j.jhep.2017.08.024] [PMID: 28870674]
[49]
Jang HR, Kang D, Sinn DH, et al. Nonalcoholic fatty liver disease accelerates kidney function decline in patients with chronic kidney disease: a cohort study. Sci Rep 2018; 8(1): 4718.
[http://dx.doi.org/10.1038/s41598-018-23014-0] [PMID: 29549269]
[50]
Wilechansky RM, Pedley A, Massaro JM, Hoffmann U, Benjamin EJ, Long MT. Relations of liver fat with prevalent and incident chronic kidney disease in the Framingham Heart Study: A secondary analysis. Liver Int 2019; 39(8): 1535-44.
[http://dx.doi.org/10.1111/liv.14125] [PMID: 31033142]
[51]
Park H, Dawwas GK, Liu X, Nguyen MH. Nonalcoholic fatty liver disease increases risk of incident advanced chronic kidney disease: a propensity-matched cohort study. J Intern Med 2019. In press
[http://dx.doi.org/10.1111/joim.12964] [PMID: 31359543]
[52]
Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism 2018; 79: 64-76.
[http://dx.doi.org/10.1016/j.metabol.2017.11.003] [PMID: 29137912]
[53]
Vilar-Gomez E, Calzadilla-Bertot L, Friedman SL, et al. Improvement in liver histology due to lifestyle modification is independently associated with improved kidney function in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2017; 45(2): 332-44.
[http://dx.doi.org/10.1111/apt.13860] [PMID: 27862096]
[54]
Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40(12): 1461-5.
[http://dx.doi.org/10.1038/ng.257] [PMID: 18820647]
[55]
Donati B, Motta BM, Pingitore P, et al. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology 2016; 63(3): 787-98.
[http://dx.doi.org/10.1002/hep.28370] [PMID: 26605757]
[56]
Anstee QM, Seth D, Day CP. Genetic factors that affect risk of alcoholic and nonalcoholic fatty liver disease. Gastroenterology 2016; 150(8): 1728-44.e7.
[http://dx.doi.org/10.1053/j.gastro.2016.01.037] [PMID: 26873399]
[57]
Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 2015; 21(39): 11088-111.
[http://dx.doi.org/10.3748/wjg.v21.i39.11088] [PMID: 26494964]
[58]
Zusi C, Mantovani A, Olivieri F, et al. Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents. Dig Liver Dis 2019; 51(11): 1586-92.
[http://dx.doi.org/10.1016/j.dld.2019.05.029]
[59]
Oniki K, Saruwatari J, Izuka T, et al. Influence of the PNPLA3 rs738409 polymorphism on non-alcoholic fatty liver disease and renal function among normal weight subjects. PLoS One 2015; 10(7): e0132640
[http://dx.doi.org/10.1371/journal.pone.0132640] [PMID: 26200108]
[60]
Musso G, Cassader M, Gambino R. PNPLA3 rs738409 and TM6SF2 rs58542926 gene variants affect renal disease and function in nonalcoholic fatty liver disease. Hepatology 2015; 62(2): 658-9.
[http://dx.doi.org/10.1002/hep.27643] [PMID: 25482317]
[61]
Mantovani A, Zusi C, Sani E, et al. Association between PNPLA3rs738409 polymorphism decreased kidney function in postmenopausal type 2 diabetic women with or without non-alcoholic fatty liver disease. Diabetes Metab 2019; 45(5): 480-7.
[http://dx.doi.org/10.1016/j.diabet.2019.01.011]
[62]
Targher G, Mantovani A, Alisi A, et al. Relationship between PNPLA3 rs738409 polymorphism and decreased kidney function in children with NAFLD. Hepatology 2019; 70(1): 142-53.
[http://dx.doi.org/10.1002/hep.30625] [PMID: 30912854]
[63]
Marzuillo P, Di Sessa A, Guarino S, et al. Nonalcoholic fatty liver disease and eGFR levels could be linked by the PNPLA3 I148M polymorphism in children with obesity. Pediatr Obes 2019; 14(10)e12539
[http://dx.doi.org/10.1111/ijpo.12539] [PMID: 31184438]
[64]
Sun DQ, Zheng KI, Xu G, et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int 2019. In press
[http://dx.doi.org/10.1111/liv.14251] [PMID: 31519069]
[65]
Di Costanzo A, Pacifico L, D’Erasmo L, et al. Nonalcoholic Fatty Liver Disease (NAFLD), but not its susceptibility gene variants, influences the decrease of kidney function in overweight/obese children. Int J Mol Sci 2019; 20(18)E4444
[http://dx.doi.org/10.3390/ijms20184444] [PMID: 31505904]
[66]
Pirazzi C, Valenti L, Motta BM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014; 23(15): 4077-85.
[http://dx.doi.org/10.1093/hmg/ddu121] [PMID: 24670599]
[67]
Bruschi FV, Claudel T, Tardelli M, et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017; 65(6): 1875-90.
[http://dx.doi.org/10.1002/hep.29041] [PMID: 28073161]
[68]
Shaw I, Rider S, Mullins J, Hughes J, Péault B. Pericytes in the renal vasculature: roles in health and disease. Nat Rev Nephrol 2018; 14(8): 521-34.
[http://dx.doi.org/10.1038/s41581-018-0032-4] [PMID: 29942044]
[69]
Kramann R, Humphreys BD. Kidney pericytes: roles in regeneration and fibrosis. Semin Nephrol 2014; 34(4): 374-83.
[http://dx.doi.org/10.1016/j.semnephrol.2014.06.004]] [PMID: 25217266]
[70]
Romeo S, Dongiovanni P, Petta S, Pihalajamaki J, Valenti L. Reply: To PMID 25251399 Hepatology 2015; 62(6): : 660.
[71]
Marcuccilli M, Chonchol M. NAFLD and chronic kidney disease. Int J Mol Sci 2016; 17(4): 562.
[http://dx.doi.org/10.3390/ijms17040562] [PMID: 27089331]
[72]
Musso G, Cassader M, Cohney S, et al. Fatty liver and chronic kidney disease: novel mechanistic insights and therapeutic opportunities. Diabetes Care 2016; 39(10): 1830-45.
[http://dx.doi.org/10.2337/dc15-1182] [PMID: 27660122]
[73]
Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 2017; 66(6): 1138-53.
[http://dx.doi.org/10.1136/gutjnl-2017-313884] [PMID: 28314735]
[74]
Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol 2017; 13(9): 509-20.
[http://dx.doi.org/10.1038/nrendo.2017.56] [PMID: 28621339]
[75]
Meex RC, Hoy AJ, Morris A, et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab 2015; 22(6): 1078-89.
[http://dx.doi.org/10.1016/j.cmet.2015.09.023] [PMID: 26603189]
[76]
Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 2009; 32(8): 1542-6.
[http://dx.doi.org/10.2337/dc09-0684] [PMID: 19487637]
[77]
Hindricks J, Ebert T, Bachmann A, et al. Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction. Clin Endocrinol (Oxf) 2014; 80(6): 918-24.
[http://dx.doi.org/10.1111/cen.12380] [PMID: 24612017]
[78]
Lin Z, Zhou Z, Liu Y, et al. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS One 2011; 6(4): e18398
[http://dx.doi.org/10.1371/journal.pone.0018398] [PMID: 21525989]
[79]
Lee CH, Hui EY, Woo YC, et al. Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria. J Clin Endocrinol Metab 2015; 100(4): 1368-75.
[http://dx.doi.org/10.1210/jc.2014-3465] [PMID: 25625802]
[80]
Suassuna PGA, de Paula RB, Sanders-Pinheiro H, Moe OW, Hu MC. Fibroblast growth factor 21 in chronic kidney disease. J Nephrol 2019; 32(3): 365-77.
[http://dx.doi.org/10.1007/s40620-018-0550-y] [PMID: 30430412]
[81]
Sanyal A, Charles ED, Neuschwander-Tetri BA, et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 2019; 392(10165): 2705-17.
[http://dx.doi.org/10.1016/S0140-6736(18)31785-9] [PMID: 30554783]
[82]
Musso G, Cassader M, Cohney S, Pinach S, Saba F, Gambino R. Emerging liver-kidney interactions in nonalcoholic fatty liver disease. Trends Mol Med 2015; 21(10): 645-62.
[http://dx.doi.org/10.1016/j.molmed.2015.08.005] [PMID: 26432021]
[83]
Hirata T, Tomita K, Kawai T, et al. Effect of telmisartan or losartan for treatment of nonalcoholic fatty liver disease: fatty liver protection trial by telmisartan or losartan study (FANTASY). Int J Endocrinol 2013; 2013587140
[http://dx.doi.org/10.1155/2013/587140] [PMID: 23997767]
[84]
Bain R, Rohde R, Hunsicker LG, McGill J, Kobrin S, Lewis EJ. A controlled clinical trial of angiotensin-converting enzyme inhibition in type I diabetic nephropathy: study design and patient characteristics. J Am Soc Nephrol 1992; 3(4)(Suppl.): S97-S103.
[PMID: 1457767]
[85]
Orlic L, Mikolasevic I, Lukenda V, Anic K, Jelic I, Racki S. Nonalcoholic fatty liver disease and the renin-angiotensin system blockers in the patients with chronic kidney disease. Wien Klin Wochenschr 2015; 127(9-10): 355-62.
[http://dx.doi.org/10.1007/s00508-014-0661-y] [PMID: 25412597]
[86]
Goh GB, Pagadala MR, Dasarathy J, et al. Renin-angiotensin system and fibrosis in non-alcoholic fatty liver disease. Liver Int 2015; 35(3): 979-85.
[http://dx.doi.org/10.1111/liv.12611] [PMID: 24905085]
[87]
Pelusi S, Petta S, Rosso C, et al. Renin-angiotensin system inhibitors, type 2 diabetes and fibrosis progression: an observational study in patients with nonalcoholic fatty liver disease. PLoS One 2016; 11(9): e0163069
[http://dx.doi.org/10.1371/journal.pone.0163069] [PMID: 27649410]
[88]
Cheng AY, Kong AP, Wong VW, et al. Chronic hepatitis B viral infection independently predicts renal outcome in type 2 diabetic patients. Diabetologia 2006; 49(8): 1777-84.
[http://dx.doi.org/10.1007/s00125-006-0294-4] [PMID: 16736132]
[89]
Fabrizi F, Verdesca S, Messa P, Martin P. Hepatitis C virus infection increases the risk of developing chronic kidney disease: a systematic review and meta-analysis. Dig Dis Sci 2015; 60(12): 3801-13.
[http://dx.doi.org/10.1007/s10620-015-3801-y] [PMID: 26195311]
[90]
Fabrizi F, Donato FM, Messa P. Association between hepatitis C virus and chronic kidney disease: a systematic review and meta-Analysis. Ann Hepatol 2018; 17(3): 364-91.
[http://dx.doi.org/10.5604/01.3001.0011.7382] [PMID: 29735788]
[91]
Feng YL, Chen H, Chen DQ, et al. Activated NF-κB/Nrf2 and Wnt/β-catenin pathways are associated with lipid metabolism in CKD patients with microalbuminuria and macroalbuminuria. Biochim Biophys Acta Mol Basis Dis 2019; 1865(9): 2317-32.
[http://dx.doi.org/10.1016/j.bbadis.2019.05.010] [PMID: 31102786]
[92]
Wang C, Cui Y, Li C, et al. Nrf2 deletion causes “benign” simple steatosis to develop into nonalcoholic steatohepatitis in mice fed a high-fat diet. Lipids Health Dis 2013; 12: 165.
[http://dx.doi.org/10.1186/1476-511X-12-165] [PMID: 24188280]
[93]
Sugimoto H, Okada K, Shoda J, et al. Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol 2010; 298(2): G283-94.
[http://dx.doi.org/10.1152/ajpgi.00296.2009] [PMID: 19926817]
[94]
de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 2013; 369(26): 2492-503.
[http://dx.doi.org/10.1056/NEJMoa1306033] [PMID: 24206459]
[95]
Chin MP, Bakris GL, Block GA, et al. Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. Am J Nephrol 2018; 47(1): 40-7.
[http://dx.doi.org/10.1159/000486398] [PMID: 29402767]
[96]
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2018; 14(7): 442-56.
[http://dx.doi.org/10.1038/s41581-018-0018-2] [PMID: 29760448]
[97]
Kanbay M, Onal EM, Afsar B, et al. The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 2018; 50(8): 1453-66.
[http://dx.doi.org/10.1007/s11255-018-1873-2] [PMID: 29728993]
[98]
Duarte SMB, Stefano JT, Oliveira CP. Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Ann Hepatol 2019; 18(3): 416-21.
[http://dx.doi.org/10.1016/j.aohep.2019.04.006] [PMID: 31036494]
[99]
Loomba R, Seguritan V, Li W, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25(5): 1054-1062.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.04.001] [PMID: 28467925]
[100]
Caussy C, Tripathi A, Humphrey G, et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun 2019; 10(1): 1406.
[http://dx.doi.org/10.1038/s41467-019-09455-9] [PMID: 30926798]
[101]
Da Silva HE, Teterina A, Comelli EM, et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep 2018; 8(1): 1466.
[http://dx.doi.org/10.1038/s41598-018-19753-9] [PMID: 29362454]
[102]
Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49(6): 1877-87.
[http://dx.doi.org/10.1002/hep.22848] [PMID: 19291785]
[103]
Verdam FJ, Rensen SS, Driessen A, Greve JW, Buurman WA. Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J Clin Gastroenterol 2011; 45(2): 149-52.
[http://dx.doi.org/10.1097/MCG.0b013e3181e12c24] [PMID: 20661154]
[104]
Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol 2019; 9: 206.
[http://dx.doi.org/10.3389/fcimb.2019.00206] [PMID: 31245306]
[105]
Chung S, Barnes JL, Astroth KS. Gastrointestinal microbiota in patients with chronic kidney disease: a systematic review. Adv Nutr 2019; 10(5): 888-901.
[http://dx.doi.org/10.1093/advances/nmz028] [PMID: 31165878]
[106]
Shah NB, Allegretti AS, Nigwekar SU, et al. Blood microbiome profile in CKD: a pilot study. Clin J Am Soc Nephrol 2019; 14(5): 692-701.
[http://dx.doi.org/10.2215/CJN.12161018] [PMID: 30962186]
[107]
Chinnadurai R, Ritchie J, Green D, Kalra PA. Non-alcoholic fatty liver disease and clinical outcomes in chronic kidney disease. Nephrol Dial Transplant 2019; 34(3): 449-57.
[http://dx.doi.org/10.1093/ndt/gfx381] [PMID: 29390103]
[108]
Önnerhag K, Dreja K, Nilsson PM, Lindgren S. Increased mortality in non-alcoholic fatty liver disease with chronic kidney disease is explained by metabolic comorbidities. Clin Res Hepatol Gastroenterol 2019; 43(5): 542-50.
[http://dx.doi.org/10.1016/j.clinre.2019.02.004]
[109]
Chinnadurai R, Chrysochou C, Kalra PA. Increased risk for cardiovascular events in patients with diabetic kidney disease and non-alcoholic fatty liver disease. Nephron 2019; 141(1): 24-30.
[http://dx.doi.org/10.1159/000493472] [PMID: 30384370]
[110]
Byrne CD, Patel J, Scorletti E, Targher G. Tests for diagnosing and monitoring non-alcoholic fatty liver disease in adults. BMJ 2018; 362: k2734.
[http://dx.doi.org/10.1136/bmj.k2734] [PMID: 30002017]
[111]
Mosca A, Comparcola D, Romito I, et al. Plasma N-terminal propeptide of type III procollagen accurately predicts liver fibrosis severity in children with non-alcoholic fatty liver disease. Liver Int 2019. In press;
[http://dx.doi.org/10.1111/liv.14225] [PMID: 31436362]
[112]
Boyle M, Tiniakos D, Schattenberg JM, et al. Performance of the PRO-C3 collagen neo-epitope biomarker in non-alcoholic fatty liver disease. JHEP Reports 1(3): 188-98.
[http://dx.doi.org/10.1016/j.jhepr.2019.06.004]
[113]
Sarafidis PA, Stafylas PC, Georgianos PI, Saratzis AN, Lasaridis AN. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis 2010; 55(5): 835-47.
[http://dx.doi.org/10.1053/j.ajkd.2009.11.013] [PMID: 20110146]
[114]
Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387(10019): 679-90.
[http://dx.doi.org/10.1016/S0140-6736(15)00803-X] [PMID: 26608256]
[115]
Shao N, Kuang HY, Hao M, Gao XY, Lin WJ, Zou W. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes. Diabetes Metab Res Rev 2014; 30(6): 521-9.
[http://dx.doi.org/10.1002/dmrr.2561] [PMID: 24823873]
[116]
Dong Y, Lv Q, Li S, et al. Efficacy and safety of glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2017; 41(3): 284-95.
[http://dx.doi.org/10.1016/j.clinre.2016.11.009] [PMID: 28065744]
[117]
Shimizu M, Suzuki K, Kato K, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab 2019; 21(2): 285-92.
[http://dx.doi.org/10.1111/dom.13520] [PMID: 30178600]
[118]
Katsiki N, Perakakis N, Mantzoros C. Effects of sodium-glucose co-transporter-2 (SGLT2) inhibitors on non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: ex quo and quo vadimus? Metabolism 2019; 98: iii-x.
[119]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380(24): 2295-306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[120]
Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 2019; 394(10193): 131-8.
[http://dx.doi.org/10.1016/S0140-6736(19)31150-X] [PMID: 31189509]
[121]
Verma S, Jüni P, Mazer CD. Pump, pipes, and filter: do SGLT2 inhibitors cover it all? Lancet 2019; 393(10166): 3-5.
[http://dx.doi.org/10.1016/S0140-6736(18)32824-1] [PMID: 30424891]
[122]
Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol 2018; 53(3): 362-76.
[http://dx.doi.org/10.1007/s00535-017-1415-1] [PMID: 29247356]
[123]
Nanayakkara PW, van Guldener C, ter Wee PM, et al. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease: results from the Anti-Oxidant Therapy in Chronic Renal Insufficiency (ATIC) Study. Arch Intern Med 2007; 167(12): 1262-70.
[http://dx.doi.org/10.1001/archinte.167.12.1262] [PMID: 17592099]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 10
Year: 2020
Page: [1045 - 1061]
Pages: 17
DOI: 10.2174/1381612825666191026113119
Price: $65

Article Metrics

PDF: 19
HTML: 2