Exploration of Medicinal Plants as Sources of Novel Anticandidal Drugs

Author(s): Ajay Kumar, Feroz Khan*, Dharmendra Saikia*

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 28 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Human infections associated with skin and mucosal surfaces, mainly in tropical and sub-tropical parts of the world. During the last decade, there have been an increasing numbers of cases of fungal infections in immunocompromised patients, coupled with an increase in the number of incidences of drug resistance and toxicity to anti fungal agents. Hence, there is a dire need for safe, potent and affordable new antifungal drugs for the efficient management of candidal infections with minimum or no side effects.

Introduction: Candidiasis represents a critical problem to human health and a serious concern worldwide. Due to the development of drug resistance, there is a need for new antifungal agents. Therefore, we reviewed the different medicinal plants as sources of novel anticandidal drugs.

Methods: The comprehensive and detailed literature on medicinal plants was carried out using different databases, such as Google Scholar, PubMed, and Science Direct and all the relevant information from the articles were analyzed and included.

Results: Relevant Publications up to the end of November 2018, reporting anticandidal activity of medicinal plants has been included in the present review. In the present study, we have reviewed in the light of SAR and mechanisms of action of those plants whose extracts or phytomolecules are active against candida strains.

Conclusion: This article reviewed natural anticandidal drugs of plant origin and also summarized the potent antifungal bioactivity against fungal strains. Besides, mechanism of action of these potent active plant molecules was also explored for a comparative study. We concluded that the studied active plant molecules exhibit potential antifungal activity against resistant fungal strains.

Keywords: Candida albicans, Mode of actions, Natural products, Thymol, Antifungal resistance, VVC.

[1]
Manolakaki, D.; Velmahos, G.; Kourkoumpetis, T.; Chang, Y.; Alam, H.B.; De Moya, M.M.; Mylonakis, E. Candida infection and colonization among trauma patients. Virulence, 2010, 1(5), 367-375.
[http://dx.doi.org/10.4161/viru.1.5.12796] [PMID: 21178472]
[2]
Abi-Said, D.; Anaissie, E.; Uzun, O.; Raad, I.; Pinzcowski, H.; Vartivarian, S. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin. Infect. Dis., 1997, 24(6), 1122-1128.
[http://dx.doi.org/10.1086/513663] [PMID: 9195068]
[3]
Van Wyk, C.; Steenkamp, V. Host factors affecting oral candidiasis. South Afr. J. Epidemiol. Infect., 2011, 26(1), 18-21.
[http://dx.doi.org/10.1080/10158782.2011.11441414]
[4]
Crum-Cianflone, N.F. Bacterial, fungal, parasitic, and viral myositis. Clin. Microbiol. Rev., 2008, 21(3), 473-494.
[http://dx.doi.org/10.1128/CMR.00001-08] [PMID: 18625683]
[5]
Garber, G. An overview of fungal infections. Drugs, 2001, 61(Suppl. 1), 1-12.
[http://dx.doi.org/10.2165/00003495-200161001-00001] [PMID: 11219546]
[6]
Peters, B.M.; Yano, J.; Noverr, M.C.; Fidel, P.L., Jr Candida vaginitis: when opportunism knocks, the host responds. PLoS Pathog., 2014, 10(4)e1003965
[http://dx.doi.org/10.1371/journal.ppat.1003965] [PMID: 24699903]
[7]
Kauffman, C.A.; Marr, K.A.; Thorner, A.R. Treatment of candidemia and invasive candidiasis in adultsUpToDate; Waltham, MA, 2012.
[8]
Mandell, G.L.; Bennett, J.E.; Dolin, R. Mandell. Douglas, and Bennett's principles and practice of infectious diseases; Elsevier: Amsterdam, 2010, 7, pp. 1289-1323.
[9]
Edmond, M.B.; Wallace, S.E.; McClish, D.K.; Pfaller, M.A.; Jones, R.N.; Wenzel, R.P. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis., 1999, 29(2), 239-244.
[http://dx.doi.org/10.1086/520192] [PMID: 10476719]
[10]
Ge, Y.; Difuntorum, S.; Touami, S.; Critchley, I.; Bürli, R.; Jiang, V.; Drazan, K.; Moser, H. In vitro antimicrobial activity of GSQ1530, A new heteroaromatic polycyclic compound. Antimicrob. Agents Chemother., 2002, 46(10), 3168-3174.
[http://dx.doi.org/10.1128/AAC.46.10.3168-3174.2002] [PMID: 12234840]
[11]
Kuete, V.; Efferth, T. Cameroonian medicinal plants: pharmacology and derived natural products. Front. Pharmacol., 2010, 1, 123.
[http://dx.doi.org/10.3389/fphar.2010.00123] [PMID: 21833168]
[12]
Padalia, R.C.; Verma, R.S.; Chauhan, A.; Goswami, P.; Singh, V.R.; Verma, S.K.; Darokar, M.P.; Singh, N.; Saikia, D.; Chanotiya, C.S. Essential oil composition and antimicrobial activity of methyl cinnamate-Linalool chemovariant of Ocimum basilicum L. from India. Rec. Nat. Prod., 2017, 11(2), 193.
[13]
Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(1), 41-50.
[http://dx.doi.org/10.1007/s10096-010-1050-8] [PMID: 20835742]
[14]
Hwang, J.H.; Jin, Q.; Woo, E-R.; Lee, D.G. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans. Biochimie, 2013, 95(10), 1917-1922.
[http://dx.doi.org/10.1016/j.biochi.2013.06.019] [PMID: 23816874]
[15]
Abd el Nabi, O.M.; Reisinger, E.C.; Reinthaler, F.F.; Still, F.; Eibel, U.; Krejs, G.J. Antimicrobial activity of Acacia nilotica (L.) Willd. ex Del. var. nilotica (Mimosaceae). J. Ethnopharmacol., 1992, 37(1), 77-79.
[http://dx.doi.org/10.1016/0378-8741(92)90006-D] [PMID: 1453705]
[16]
Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sökmen, A.; Akpulat, H.A. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol., 2003, 87(2-3), 215-220.
[http://dx.doi.org/10.1016/S0378-8741(03)00149-1] [PMID: 12860311]
[17]
Ndhlala, A.R.; Ghebrehiwot, H.M.; Ncube, B.; Aremu, A.O.; Gruz, J.; Šubrtová, M.; Doležal, K.; du Plooy, C.P.; Abdelgadir, H.A.; Van Staden, J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of achyranthes aspera linn.: a medicinal plant used for the treatment of wounds and Ringworm in East Africa. Front. Pharmacol., 2015, 6, 274.
[http://dx.doi.org/10.3389/fphar.2015.00274] [PMID: 26635604]
[18]
Shamim, S.; Ahmed, S.W.; Azhar, I. Antifungal activity of Allium, Aloe, and Solanum species. Pharm. Biol., 2004, 42(7), 491-498.
[http://dx.doi.org/10.3109/13880200490891845]
[19]
Kaur, H.; Goyal, R.; Bhattacharya, A.; Gupta, R.; Lal, N.; Arora, B.; Barua, A.; Yadav, R.; Balha, M.; Rananmay, B. Antifungal activity of Phyto-extracts of Piper longum, Aloe vera, and Withania somnifera against human fungal opportunistic pathogen Candida albicans. DU J. Underg. Res. and Innov., 2015, 1, 107-115.
[20]
Shams-Ghahfarokhi, M.; Shokoohamiri, M-R.; Amirrajab, N.; Moghadasi, B.; Ghajari, A.; Zeini, F.; Sadeghi, G.; Razzaghi-Abyaneh, M. In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia, 2006, 77(4), 321-323.
[http://dx.doi.org/10.1016/j.fitote.2006.03.014] [PMID: 16690223]
[21]
Kim, Y-S.; Kim, K.S.; Han, I.; Kim, M-H.; Jung, M.H.; Park, H-K. Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs. PLoS One, 2012, 7(6)e38242
[http://dx.doi.org/10.1371/journal.pone.0038242] [PMID: 22679493]
[22]
Furletti, V.; Teixeira, I.; Obando-Pereda, G.; Mardegan, R.; Sartoratto, A.; Figueira, G.; Duarte, R.; Rehder, V.; Duarte, M.; Höfling, J. Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation. Evid. Based Complement. Alternat. Med., 2011. 985832
[23]
Aziz, A.N.; Ibrahim, H.; Rosmy Syamsir, D.; Mohtar, M.; Vejayan, J.; Awang, K. Antimicrobial compounds from Alpinia conchigera. J. Ethnopharmacol., 2013, 145(3), 798-802.
[http://dx.doi.org/10.1016/j.jep.2012.12.024] [PMID: 23266278]
[24]
Haraguchi, H.; Kuwata, Y.; Inada, K.; Shingu, K.; Miyahara, K.; Nagao, M.; Yagi, A. Antifungal activity from Alpinia galanga and the competition for incorporation of unsaturated fatty acids in cell growth. Planta Med., 1996, 62(4), 308-313.
[http://dx.doi.org/10.1055/s-2006-957890] [PMID: 8792660]
[25]
Bagiu, R.V.; Vlaicu, B.; Butnariu, M. Chemical composition and in vitro antifungal activity screening of the Allium ursinum L. (Liliaceae). Int. J. Mol. Sci., 2012, 13(2), 1426-1436.
[http://dx.doi.org/10.3390/ijms13021426] [PMID: 22408399]
[26]
Royo, V.A.; Mercadante-Simões, M.O.; Ribeiro, L.M.; Oliveira, D.A.; Aguiar, M.M.R.; Costa, E.R.; Ferreira, P.R.B. Anatomy, histochemistry, and antifungal activity of Anacardium humile (Anacardiaceae) leaf. Microsc. Microanal., 2015, 21(6), 1549-1561.
[http://dx.doi.org/10.1017/S1431927615015457] [PMID: 26586138]
[27]
Chen, Y.; Zeng, H.; Tian, J.; Ban, X.; Ma, B.; Wang, Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J. Med. Microbiol., 2013, 62(Pt 8), 1175-1183.
[http://dx.doi.org/10.1099/jmm.0.055467-0] [PMID: 23657528]
[28]
Govindarajan, R.; Vijayakumar, M.; Singh, M.; Rao, ChV.; Shirwaikar, A.; Rawat, A.K.; Pushpangadan, P. Antiulcer and antimicrobial activity of Anogeissus latifolia. J. Ethnopharmacol., 2006, 106(1), 57-61.
[http://dx.doi.org/10.1016/j.jep.2005.12.002] [PMID: 16413714]
[29]
Al Ashaal, H.A.; Farghaly, A.A.; Abd El Aziz, M.M.; Ali, M.A. Phytochemical investigation and medicinal evaluation of fixed oil of Balanites aegyptiaca fruits (Balantiaceae). J. Ethnopharmacol., 2010, 127(2), 495-501.
[http://dx.doi.org/10.1016/j.jep.2009.10.007] [PMID: 19833185]
[30]
Sohn, H.Y.; Kwon, C.S.; Son, K.H. Fungicidal effect of prenylated flavonol, papyriflavonol A, isolated from Broussonetia papyrifera (L.) vent. against Candida albicans. J. Microbiol. Biotechnol., 2010, 20(10), 1397-1402.
[http://dx.doi.org/10.4014/jmb.1007.07026] [PMID: 21030824]
[31]
Teodoro, G.R.; Brighenti, F.L.; Delbem, A.C.B.; Delbem, Á.C.B.; Khouri, S.; Gontijo, A.V.L.; Pascoal, A.C.; Salvador, M.J.; Koga-Ito, C.Y. Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans. Future Microbiol., 2015, 10(6), 917-927.
[http://dx.doi.org/10.2217/fmb.15.20] [PMID: 26059616]
[32]
Nenaah, G. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J. Microbiol. Biotechnol., 2013, 29(7), 1255-1262.
[http://dx.doi.org/10.1007/s11274-013-1288-2] [PMID: 23417281]
[33]
Varadarajan, S.; Narasimhan, M.; Malaisamy, M.; Duraipandian, C. In-vitro anti-mycotic activity of hydro alcoholic extracts of some indian medicinal plants against fluconazole resistant Candida albicans. J. Clin. Diagn. Res., 2015, 9(8), ZC07-ZC10.
[PMID: 26436036]
[34]
Nazaruk, J.; Czechowska, S.K.; Markiewicz, R.; Borawska, M.H. Polyphenolic compounds and in vitro antimicrobial and antioxidant activity of aqueous extracts from leaves of some Cirsium species. Nat. Prod. Res., 2008, 22(18), 1583-1588.
[http://dx.doi.org/10.1080/14786410701825053] [PMID: 19085412]
[35]
Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida Activity of bursera morelensis ramirez essential oil and two compounds, α-pinene and γ-terpinene-an in vitro study. Molecules, 2017, 22(12), 2095.
[http://dx.doi.org/10.3390/molecules22122095] [PMID: 29206158]
[36]
Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Altern. Med., 2010, 10(1), 65.
[http://dx.doi.org/10.1186/1472-6882-10-65] [PMID: 21067604]
[37]
Prasad, C.S.; Shukla, R.; Kumar, A.; Dubey, N.K. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses, 2010, 53(2), 123-129.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01676.x] [PMID: 19298359]
[38]
Mbaveng, A.T.; Kuete, V.; Ngameni, B.; Beng, V.P.; Ngadjui, B.T.; Meyer, J.J.M.; Lall, N. Antimicrobial activities of the methanol extract and compounds from the twigs of Dorstenia mannii (Moraceae). BMC Complement. Altern. Med., 2012, 12(1), 83.
[http://dx.doi.org/10.1186/1472-6882-12-83] [PMID: 22747736]
[39]
Rangkadilok, N.; Tongchusak, S.; Boonhok, R.; Chaiyaroj, S.C.; Junyaprasert, V.B.; Buajeeb, W.; Akanimanee, J.; Raksasuk, T.; Suddhasthira, T.; Satayavivad, J. In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia, 2012, 83(3), 545-553.
[http://dx.doi.org/10.1016/j.fitote.2011.12.023] [PMID: 22245574]
[40]
Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Kumar, A.; Iqbal, H.; Verma, R.K.; Chanda, D.; Chauhan, A.; Saikia, D. Chemical composition and allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activity of fish-mint (Houttuynia cordataThunb.) from India. Chem. Biodivers., 2017, 14(10)e1700189
[http://dx.doi.org/10.1002/cbdv.201700189] [PMID: 28636756]
[41]
Abdelgadir, H.; Van Staden, J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L.(Euphorbiaceae): A review. S. Afr. J. Bot., 2013, 88, 204-218.
[http://dx.doi.org/10.1016/j.sajb.2013.07.021]
[42]
Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement. Altern. Med., 2011, 11(1), 18.
[http://dx.doi.org/10.1186/1472-6882-11-18] [PMID: 21356078]
[43]
Sieniawska, E.; Baj, T.; Los, R.; Skalicka-Wozniak, K.; Malm, A.; Glowniak, K. Phenolic acids content, antioxidant and antimicrobial activity of Ligusticum mutellina L. Nat. Prod. Res., 2013, 27(12), 1108-1110.
[http://dx.doi.org/10.1080/14786419.2012.698413] [PMID: 22724452]
[44]
Nostro, A.; Filocamo, A.; Giovannini, A.; Catania, S.; Costa, C.; Marino, A.; Bisignano, G. Antimicrobial activity and phenolic content of natural site and micropropagated Limonium avei (De Not.) Brullo & Erben plant extracts. Nat. Prod. Res., 2012, 26(22), 2132-2136.
[PMID: 22014177]
[45]
Simonsen, H.T.; Adsersen, A.; Berthelsen, L.; Christensen, S.B.; Guzmán, A.; Mølgaard, P. Ethnopharmacological evaluation of radal (leaves of Lomatia hirsuta) and isolation of 2-methoxyjuglone. BMC Complement. Altern. Med., 2006, 6(1), 29.
[http://dx.doi.org/10.1186/1472-6882-6-29] [PMID: 16945129]
[46]
Chaturvedi, T.; Kumar, A.; Kumar, A.; Verma, R.S.; Padalia, R.C.; Sundaresan, V.; Chauhan, A.; Saikia, D.; Singh, V.R.; Venkatesha, K. Chemical composition, genetic diversity, antibacterial, antifungal and antioxidant activities of camphor-basil (Ocimum kilimandscharicum Guerke). Ind. Crops Prod., 2018, 118, 246-258.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.050]
[47]
Asgarpanah, J.; Hashemi, S.J.; Hashemi, E.; Askari, K. In vitro antifungal activity of some traditional Persian medicinal plants on pathogenic fungi. Chin. J. Integr. Med., 2017, 23(6), 433-437.
[http://dx.doi.org/10.1007/s11655-015-2181-7] [PMID: 26129901]
[48]
Wang, C.; Cheng, H.; Guan, Y.; Wang, Y.; Yun, Y. In vitro activity of gallic acid against Candida albicans biofilms. Zhongguo Zhongyao Zazhi, 2009, 34(9), 1137-1140.
[PMID: 19685753]
[49]
Tian, J.; Shen, Y.; Yang, X.; Liang, S.; Shan, L.; Li, H.; Liu, R.; Zhang, W. Antifungal cyclic peptides from Psammosilene tunicoides. J. Nat. Prod., 2010, 73(12), 1987-1992.
[http://dx.doi.org/10.1021/np100363a] [PMID: 21070025]
[50]
Gnahoué, G.; Béné, K.; Coulibaly, K. Botanical study, screening phytochemistry and in vitro anticandidosic activity of pycnanthus angolensis (welw.) warb. (myristicaceae). ESJ., 2015, 11(36)
[http://dx.doi.org/10.19044/esj.2015.v11n36p%p]
[51]
Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric., 2014, 94(3), 560-567.
[http://dx.doi.org/10.1002/jsfa.6294] [PMID: 23818393]
[52]
Santoyo, S.; Cavero, S.; Jaime, L.; Ibañez, E.; Señoráns, F.J.; Reglero, G. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluid extraction. J. Food Prot., 2005, 68(4), 790-795.
[http://dx.doi.org/10.4315/0362-028X-68.4.790] [PMID: 15830672]
[53]
Damke, E.; Tsuzuki, J.K.; Cortez, D.A.; Ferreira, I.C.; Bertoni, T.A.; Batista, M.R.; Donati, L.; Svidzinski, T.I.; Consolaro, M.E. In vivo activity of Sapindus saponaria against azole-susceptible and -resistant human vaginal Candida species. BMC Complement. Altern. Med., 2011, 11(1), 35.
[http://dx.doi.org/10.1186/1472-6882-11-35] [PMID: 21542936]
[54]
Sharifi-Rad, J.; Sharifi-Rad, M.; Hoseini-Alfatemi, S.M.; Iriti, M.; Sharifi-Rad, M.; Sharifi-Rad, M. Composition, cytotoxic and antimicrobial activities of Satureja intermedia CA Mey essential oil. Int. J. Mol. Sci., 2015, 16(8), 17812-17825.
[http://dx.doi.org/10.3390/ijms160817812] [PMID: 26247936]
[55]
Ofori-Kwakye, K.; Kwapong, A.A.; Adu, F. Antimicrobial activity of extracts and topical products of the stem bark of Spathodea campanulata for wound healing. Afr. J. Tradit. Complement. Altern. Med., 2009, 6(2), 168-174.
[PMID: 20209009]
[56]
Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Mhamdi, B.; Chaieb, K.; Bakrouf, A.; Magné, C.; Abdelly, C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol., 2009, 47(8), 2083-2091.
[http://dx.doi.org/10.1016/j.fct.2009.05.040] [PMID: 19500639]
[57]
Mathieu, K.A.K.; Marcel, A.G.; Djè, D-B.; Sitapha, O.; Adama, C.; Joseph, D.A. Anti-fungal activities of medicinal plants extracts of Ivorian pharmacopoeia. J. Intercult. Ethnopharmacol., 2014, 3(4), 159-166.
[http://dx.doi.org/10.5455/jice.20140627125512] [PMID: 26401367]
[58]
Kremer, D.; Kosir, I.J.; Kosalec, I.; Koncic, M.Z.; Potocnik, T.; Cerenak, A.; Bezic, N.; Srecec, S.; Dunkic, V. Investigation of chemical compounds, antioxidant and antimicrobial properties of teucrium arduini L. (lamiaceae). Curr. Drug Targets, 2013, 14(9), 1006-1014.
[http://dx.doi.org/10.2174/1389450111314090009] [PMID: 23597042]
[59]
Verma, R.S.; Padalia, R.C.; Saikia, D.; Chauhan, A.; Krishna, V.; Sundaresan, V. Chemical composition and antimicrobial activity of the essential oils isolated from the herbage and aqueous distillates of two Thymus species. J. Essent. Oil Bear Pl., 2016, 19(4), 936-943.
[http://dx.doi.org/10.1080/0972060X.2014.935071]
[60]
Vitali, L.A.; Beghelli, D.; Nya, P.C.B.; Bistoni, O.; Cappellacci, L.; Damiano, S.; Lupidi, G.; Maggi, F.; Orsomando, G.; Papa, F. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem., 2016, 9(6), 775-786.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.002]
[61]
Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Verma, S.K.; Iqbal, H.; Chanda, D.; Verma, R.K.; Darokar, M.P.; Chauhan, A.; Kandwal, M.K. Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger. J. Sci. Food Agric., 2018, 98(1), 321-327.
[http://dx.doi.org/10.1002/jsfa.8474] [PMID: 28585369]
[62]
Roller, S. Natural antimicrobials for the minimal processing of foods, 1st ed; Elsevier: Amsterdam, 2003.
[63]
Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol., 2002, 74(1-2), 101-109.
[http://dx.doi.org/10.1016/S0168-1605(01)00734-6] [PMID: 11929164]
[64]
Nannapaneni, R.; Chalova, V.I.; Crandall, P.G.; Ricke, S.C.; Johnson, M.G.; O’Bryan, C.A. Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int. J. Food Microbiol., 2009, 129(1), 43-49.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.11.008] [PMID: 19070381]
[65]
Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol., 2012, 3, 12.
[http://dx.doi.org/10.3389/fmicb.2012.00012] [PMID: 22291693]
[66]
Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem., 2016, 210, 402-414.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.111] [PMID: 27211664]
[67]
Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev., 1995, 59(2), 201-222.
[PMID: 7603409]
[68]
Helander, I.M.; Alakomi, H-L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.; von Wright, A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem., 1998, 46(9), 3590-3595.
[http://dx.doi.org/10.1021/jf980154m]
[69]
Lambert, R.J.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 2001, 91(3), 453-462.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01428.x] [PMID: 11556910]
[70]
Jamali, T.; Kavoosi, G.; Safavi, M.; Ardestani, S.K. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci. Rep., 2018, 8(1), 15787.
[http://dx.doi.org/10.1038/s41598-018-34055-w] [PMID: 30361692]
[71]
Turina, A.V.; Nolan, M.V.; Zygadlo, J.A.; Perillo, M.A. Natural terpenes: self-assembly and membrane partitioning. Biophys. Chem., 2006, 122(2), 101-113.
[http://dx.doi.org/10.1016/j.bpc.2006.02.007] [PMID: 16563603]
[72]
Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol., 1994, 76(6), 626-631.
[http://dx.doi.org/10.1111/j.1365-2672.1994.tb01661.x] [PMID: 8027009]
[73]
Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem., 2006, 54(7), 2745-2749.
[http://dx.doi.org/10.1021/jf052722l] [PMID: 16569070]
[74]
Ghannoum, M.A.; Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[75]
Rao, A.; Zhang, Y.; Muend, S.; Rao, R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob. Agents Chemother., 2010, 54(12), 5062-5069.
[http://dx.doi.org/10.1128/AAC.01050-10] [PMID: 20921304]
[76]
Hüsnü, K.; Başer, C.; Demirci, F. Chemistry of essential oils. In: Flavours and Fragrances; Springer: Berlin, 2007; pp. 43-86.
[http://dx.doi.org/10.1007/978-3-540-49339-6_4]
[77]
Kirimer, N.; Başer, K.; Tümen, G. Carvacrol-rich plants in Turkey. Chem. Nat. Compd., 1995, 31(1), 37-41.
[http://dx.doi.org/10.1007/BF01167568]
[78]
Ortega-Nieblas, M.M.; Robles-Burgueño, M.R.; Acedo-Félix, E.; González-León, A.; Morales-Trejo, A.; Vázquez-Moreno, L. Chemical composition and antimicrobial activity of oregano (Lippia palmeri S. WATS) essential oil. Rev. Fitotec. Mex., 2011, 34(1), 11-17.
[79]
Lima, I.O.; Pereira, F.O.; Oliveira, W.A.d.; Lima, E.O.; Menezes, E.A.; Cunha, F.A.; Diniz, M.F.F.M. Antifungal activity and mode of action of carvacrol against Candida albicans strains. J. Essent. Oil Res., 2013, 25(2), 138-142.
[http://dx.doi.org/10.1080/10412905.2012.754728]
[80]
Ahmad, A.; Khan, A.; Khan, L.A.; Manzoor, N. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J. Med. Microbiol., 2010, 59(Pt 10), 1178-1184.
[http://dx.doi.org/10.1099/jmm.0.020693-0] [PMID: 20634332]
[81]
Cavallito, C.J.; Bailey, J.H. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc., 1944, 66(11), 1950-1951.
[http://dx.doi.org/10.1021/ja01239a048]
[82]
Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Izadi, M.; Ajami, M.; Nabavi, S.M. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci. Technol., 2016, 52, 49-56.
[http://dx.doi.org/10.1016/j.tifs.2016.03.010]
[83]
Rabinkov, A.; Miron, T.; Konstantinovski, L.; Wilchek, M.; Mirelman, D.; Weiner, L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim. Biophys. Acta, 1998, 1379(2), 233-244.
[http://dx.doi.org/10.1016/S0304-4165(97)00104-9] [PMID: 9528659]
[84]
Focke, M.; Feld, A.; Lichtenthaler, K. Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetase. FEBS Lett., 1990, 261(1), 106-108.
[http://dx.doi.org/10.1016/0014-5793(90)80647-2] [PMID: 1968399]
[85]
Feldberg, R.S.; Chang, S.C.; Kotik, A.N.; Nadler, M.; Neuwirth, Z.; Sundstrom, D.C.; Thompson, N.H. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob. Agents Chemother., 1988, 32(12), 1763-1768.
[http://dx.doi.org/10.1128/AAC.32.12.1763] [PMID: 2469386]
[86]
Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol., 2017, 43(6), 668-689.
[http://dx.doi.org/10.1080/1040841X.2017.1295225] [PMID: 28346030]
[87]
Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Catrenich, C.E.; Charbonneau, D.L.; Bartolo, R.G. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J. Appl. Microbiol., 2003, 94(2), 240-247.
[http://dx.doi.org/10.1046/j.1365-2672.2003.01825.x] [PMID: 12534815]
[88]
Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 2009, 16(11), 997-1005.
[http://dx.doi.org/10.1016/j.phymed.2009.04.006] [PMID: 19540744]
[89]
Bennis, S.; Chami, F.; Chami, N.; Bouchikhi, T.; Remmal, A. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol., 2004, 38(6), 454-458.
[http://dx.doi.org/10.1111/j.1472-765X.2004.01511.x] [PMID: 15130138]
[90]
Thoroski, J.; Blank, G.; Biliaderis, C.J. BLANK, G.; BILIADERIS, C. Eugenol induced inhibition of extracellular enzyme production by Bacillus subtilis. J. Food Prot., 1989, 52(6), 399-403.
[http://dx.doi.org/10.4315/0362-028X-52.6.399] [PMID: 31003298]
[91]
Wendakoon, C.N.; Sakaguchi, M. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J. Food Prot., 1995, 58(3), 280-283.
[http://dx.doi.org/10.4315/0362-028X-58.3.280] [PMID: 31137282]
[92]
Gill, A.O.; Holley, R.A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol., 2006, 111(2), 170-174.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.04.046] [PMID: 16828188]
[93]
Kwon, J.A.; Yu, C.B.; Park, H.D. Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett. Appl. Microbiol., 2003, 37(1), 61-65.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01350.x] [PMID: 12803558]
[94]
Domadia, P.; Swarup, S.; Bhunia, A.; Sivaraman, J.; Dasgupta, D. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem. Pharmacol., 2007, 74(6), 831-840.
[http://dx.doi.org/10.1016/j.bcp.2007.06.029] [PMID: 17662960]
[95]
Amalaradjou, M.A.R.; Venkitanarayanan, K. Proteomic analysis of the mode of antibacterial action of trans-cinnamaldehyde against Cronobacter sakazakii 415. Foodborne Pathog. Dis., 2011, 8(10), 1095-1102.
[http://dx.doi.org/10.1089/fpd.2011.0841] [PMID: 21682589]
[96]
Bang, K-H.; Lee, D-W.; Park, H-M.; Rhee, Y-H. Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci. Biotechnol. Biochem., 2000, 64(5), 1061-1063.
[http://dx.doi.org/10.1271/bbb.64.1061] [PMID: 10879482]
[97]
Klunda, T.; Machová, E.; Čížová, A.; Horák, R.; Poláková, M.; Bystrický, S. Alkyl glycosides as potential anti-Candida albicans growth agents. Chem. Pap., 2016, 70(9), 1166-1170.
[http://dx.doi.org/10.1515/chempap-2016-0051]
[98]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[99]
Evensen, N.A.; Braun, P.C. The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol., 2009, 55(9), 1033-1039.
[http://dx.doi.org/10.1139/W09-058] [PMID: 19898545]
[100]
Shahzad, M.; Sherry, L.; Rajendran, R.; Edwards, C.A.; Combet, E.; Ramage, G. Utilising polyphenols for the clinical management of Candida albicans biofilms. Int. J. Antimicrob. Agents, 2014, 44(3), 269-273.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.05.017] [PMID: 25104135]
[101]
Pereira, D.; Valentão, P.; Pereira, J.; Andrade, P. Phenolics: From chemistry to biology. Molecules, 2009, 14(6), 2202-2211.
[102]
Whiting, D.A. Natural phenolic compounds 1900-2000: a bird’s eye view of a century’s chemistry. Nat. Prod. Rep., 2001, 18(6), 583-606.
[http://dx.doi.org/10.1039/b003686m] [PMID: 11820759]
[103]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[104]
Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist., 2013, 19(4), 256-265.
[http://dx.doi.org/10.1089/mdr.2012.0244] [PMID: 23480526]
[105]
Li, Z.J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.G.; Aibai, S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res., 2017, 31(7), 1039-1045.
[http://dx.doi.org/10.1002/ptr.5823] [PMID: 28524381]
[106]
Ma, C-M.; Abe, T.; Komiyama, T.; Wang, W.; Hattori, M.; Daneshtalab, M. Synthesis, anti-fungal and 1,3-β-D-glucan synthase inhibitory activities of caffeic and quinic acid derivatives. Bioorg. Med. Chem., 2010, 18(19), 7009-7014.
[http://dx.doi.org/10.1016/j.bmc.2010.08.022] [PMID: 20813534]
[107]
Yun, J.; Lee, H.; Ko, H.J.; Woo, E-R.; Lee, D.G. Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim. Biophys. Acta, 2015, 1848(2), 695-701.
[http://dx.doi.org/10.1016/j.bbamem.2014.11.019] [PMID: 25445674]
[108]
Lee, W.; Lee, D.G. An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans. IUBMB Life, 2014, 66(11), 780-785.
[http://dx.doi.org/10.1002/iub.1326] [PMID: 25380239]
[109]
Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol., 2009, 58(Pt 11), 1454-1462.
[http://dx.doi.org/10.1099/jmm.0.010538-0] [PMID: 19589904]
[110]
da Silva, C.R.; de Andrade Neto, J.B.; de Sousa Campos, R.; Figueiredo, N.S.; Sampaio, L.S.; Magalhães, H.I.F.; Cavalcanti, B.C.; Gaspar, D.M.; de Andrade, G.M.; Lima, I.S.P.; de Barros Viana, G.S.; de Moraes, M.O.; Lobo, M.D.; Grangeiro, T.B.; Nobre Júnior, H.V. Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob. Agents Chemother., 2014, 58(3), 1468-1478.
[http://dx.doi.org/10.1128/AAC.00651-13] [PMID: 24366745]
[111]
Ahmad, A.; van Vuuren, S.; Viljoen, A. Unravelling the complex antimicrobial interactions of essential oils--the case of Thymus vulgaris (thyme). Molecules, 2014, 19(3), 2896-2910.
[http://dx.doi.org/10.3390/molecules19032896] [PMID: 24662066]
[112]
Shu, C.; Sun, L.; Zhang, W. Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans. Immunol. Res., 2016, 64(4), 1013-1024.
[http://dx.doi.org/10.1007/s12026-016-8785-y] [PMID: 26783030]
[113]
de Vasconcelos, L.C.; Sampaio, F.C. Albuquerque, Ade.J.; Vasconcelos, L.C.S. Cell viability of Candida albicans against the antifungal activity of thymol. Braz. Dent. J., 2014, 25(4), 277-281.
[http://dx.doi.org/10.1590/0103-6440201300052] [PMID: 25250489]
[114]
Braga, P.C.; Culici, M.; Alfieri, M.; Dal Sasso, M. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. Agents, 2008, 31(5), 472-477.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.12.013] [PMID: 18329858]
[115]
Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J-M.; Imbert, C. In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents, 2008, 31(6), 572-576.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.028] [PMID: 18440786]
[116]
Pemmaraju, S.C.; Pruthi, P.A.; Prasad, R.; Pruthi, V. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J. Exp. Biol., 2013, 51(11), 1032-1037.
[117]
Doke, S.K.; Raut, J.S.; Dhawale, S.; Karuppayil, S.M. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J. Gen. Appl. Microbiol., 2014, 60(5), 163-168.
[http://dx.doi.org/10.2323/jgam.60.163] [PMID: 25420420]
[118]
Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science, 1994, 264(5157), 382-388.
[http://dx.doi.org/10.1126/science.8153625] [PMID: 8153625]
[119]
Schmidt, E.; Jirovetz, L.; Wlcek, K.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Geissler, M. Antifungal activity of eugenol and various eugenol-containing essential oils against 38 clinical isolates of Candida albicans. J. Essent. Oil Bear. Pl., 2007, 10(5), 421-429.
[http://dx.doi.org/ 10.1080/0972060X.2007.10643575]
[120]
Marcos-Arias, C.; Eraso, E.; Madariaga, L.; Quindós, G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement. Altern. Med., 2011, 11(1), 119.
[http://dx.doi.org/10.1186/1472-6882-11-119] [PMID: 22118215]
[121]
Labib, G.S.; Aldawsari, H. Innovation of natural essential oil-loaded Orabase for local treatment of oral candidiasis. Drug Des. Devel. Ther., 2015, 9, 3349-3359.
[http://dx.doi.org/10.2147/DDDT.S85356] [PMID: 26170621]
[122]
Boonchird, C.; Flegel, T.W. In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans. Can. J. Microbiol., 1982, 28(11), 1235-1241.
[http://dx.doi.org/10.1139/m82-184] [PMID: 6758923]
[123]
Thosar, N.; Basak, S.; Bahadure, R.N.; Rajurkar, M. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. Eur. J. Dent., 2013, 7(Suppl. 1), S071-S077.
[http://dx.doi.org/10.4103/1305-7456.119078] [PMID: 24966732]
[124]
Gallucci, M.N.; Carezzano, M.E.; Oliva, M.M.; Demo, M.S.; Pizzolitto, R.P.; Zunino, M.P.; Zygadlo, J.A.; Dambolena, J.S. In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: a quantitative structure-activity relationship analysis. J. Appl. Microbiol., 2014, 116(4), 795-804.
[http://dx.doi.org/10.1111/jam.12432] [PMID: 24387763]
[125]
Pootong, A.; Norrapong, B.; Cowawintaweewat, S. Antifungal activity of cinnamaldehyde against Candida albicans. Southeast Asian J. Trop. Med. Public Health, 2017, 48(1), 150-158.
[PMID: 29644831]
[126]
Shreaz, S.; Sheikh, R.A.; Rimple, B.; Hashmi, A.A.; Nikhat, M.; Khan, L.A. Anticandidal activity of cinnamaldehyde, its ligand and Ni(II) complex: effect of increase in ring and side chain. Microb. Pathog., 2010, 49(3), 75-82.
[http://dx.doi.org/10.1016/j.micpath.2010.03.013] [PMID: 20399846]
[127]
Yamada, Y.; Azuma, K. Evaluation of the in vitro antifungal activity of allicin. Antimicrob. Agents Chemother., 1977, 11(4), 743-749.
[http://dx.doi.org/10.1128/AAC.11.4.743] [PMID: 856026]
[128]
Khodavandi, A.; Alizadeh, F.; Aala, F.; Sekawi, Z.; Chong, P.P. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species. Mycopathologia, 2010, 169(4), 287-295.
[http://dx.doi.org/10.1007/s11046-009-9251-3] [PMID: 19924565]
[129]
Perry, C.C.; Weatherly, M.; Beale, T.; Randriamahefa, A. Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escherichia coli and Staphylococcus aureus. J. Sci. Food Agric., 2009, 89(6), 958-964.
[http://dx.doi.org/10.1002/jsfa.3538]
[130]
Law, D.; Moore, C.B.; Wardle, H.M.; Ganguli, L.A.; Keaney, M.G.; Denning, D.W. High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J. Antimicrob. Chemother., 1994, 34(5), 659-668.
[http://dx.doi.org/10.1093/jac/34.5.659] [PMID: 7706161]
[131]
Nguyen, M.H.; Yu, C.Y. Voriconazole against fluconazole-susceptible and resistant candida isolates: in-vitro efficacy compared with that of itraconazole and ketoconazole. J. Antimicrob. Chemother., 1998, 42(2), 253-256.
[http://dx.doi.org/10.1093/jac/42.2.253] [PMID: 9738846]
[132]
Pfaller, M.; Diekema, D. Azole antifungal drug cross-resistance: mechanisms, epidemiology, and clinical significance. J. Invasive Fungal Infect., 2007, 1(3), 74-92.
[133]
Sanglard, D.; Kuchler, K.; Ischer, F.; Pagani, J.L.; Monod, M.; Bille, J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother., 1995, 39(11), 2378-2386.
[http://dx.doi.org/10.1128/AAC.39.11.2378] [PMID: 8585712]
[134]
Sanglard, D. Current understanding of the modes of action of and resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections. Candida and candidiasis., 2002.
[135]
Löffler, J.; Kelly, S.L.; Hebart, H.; Schumacher, U.; Lass-Flörl, C.; Einsele, H. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol. Lett., 1997, 151(2), 263-268.
[http://dx.doi.org/10.1016/S0378-1097(97)00172-9] [PMID: 9228762]
[136]
Sanglard, D.; Ischer, F.; Koymans, L.; Bille, J. Amino acid substitutions in the cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob. Agents Chemother., 1998, 42(2), 241-253.
[PMID: 9527767]
[137]
Lopez-Ribot, J.L.; McAtee, R.K.; Lee, L.N.; Kirkpatrick, W.R.; White, T.C.; Sanglard, D.; Patterson, T.F. Distinct patterns of gene expression associated with development of fluconazole resistance in serial candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother., 1998, 42(11), 2932-2937.
[http://dx.doi.org/10.1128/AAC.42.11.2932] [PMID: 9797228]
[138]
Kelly, S.L.; Lamb, D.C.; Kelly, D.E.; Manning, N.J.; Loeffler, J.; Hebart, H.; Schumacher, U.; Einsele, H. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett., 1997, 400(1), 80-82.
[http://dx.doi.org/10.1016/S0014-5793(96)01360-9] [PMID: 9000517]
[139]
Tortorano, A.M.; Prigitano, A.; Biraghi, E.; Viviani, M.A. The European Confederation of Medical Mycology (ECMM) survey of candidaemia in Italy: in vitro susceptibility of 375 Candida albicans isolates and biofilm production. J. Antimicrob. Chemother., 2005, 56(4), 777-779.
[http://dx.doi.org/10.1093/jac/dki310] [PMID: 16144871]
[140]
Pfaller, M.A.; Messer, S.A.; Boyken, L.; Tendolkar, S.; Hollis, R.J.; Diekema, D.J. Geographic variation in the susceptibilities of invasive isolates of Candida glabrata to seven systemically active antifungal agents: a global assessment from the ARTEMIS Antifungal Surveillance Program conducted in 2001 and 2002. J. Clin. Microbiol., 2004, 42(7), 3142-3146.
[http://dx.doi.org/10.1128/JCM.42.7.3142-3146.2004] [PMID: 15243073]
[141]
Pfaller, M.A.; Messer, S.A.; Hollis, R.J. Strain delineation and antifungal susceptibilities of epidemiologically related and unrelated isolates of Candida lusitaniae. Diagn. Microbiol. Infect. Dis., 1994, 20(3), 127-133.
[http://dx.doi.org/10.1016/0732-8893(94)90106-6] [PMID: 7874879]
[142]
Walsh, T.J.; Melcher, G.P.; Rinaldi, M.G.; Lecciones, J.; McGough, D.A.; Kelly, P.; Lee, J.; Callender, D.; Rubin, M.; Pizzo, P.A. Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J. Clin. Microbiol., 1990, 28(7), 1616-1622.
[PMID: 2380383]
[143]
Sabatelli, F.; Patel, R.; Mann, P.A.; Mendrick, C.A.; Norris, C.C.; Hare, R.; Loebenberg, D.; Black, T.A.; McNicholas, P.M. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob. Agents Chemother., 2006, 50(6), 2009-2015.
[http://dx.doi.org/10.1128/AAC.00163-06] [PMID: 16723559]
[144]
Dick, J.D.; Merz, W.G.; Saral, R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob. Agents Chemother., 1980, 18(1), 158-163.
[http://dx.doi.org/10.1128/AAC.18.1.158] [PMID: 7416742]
[145]
Sokol-Anderson, M.L.; Brajtburg, J.; Medoff, G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J. Infect. Dis., 1986, 154(1), 76-83.
[http://dx.doi.org/10.1093/infdis/154.1.76] [PMID: 3519792]
[146]
Balashov, S.V.; Park, S.; Perlin, D.S. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob. Agents Chemother., 2006, 50(6), 2058-2063.
[http://dx.doi.org/10.1128/AAC.01653-05] [PMID: 16723566]
[147]
Hakki, M.; Staab, J.F.; Marr, K.A. Emergence of a Candida krusei isolate with reduced susceptibility to caspofungin during therapy. Antimicrob. Agents Chemother., 2006, 50(7), 2522-2524.
[http://dx.doi.org/10.1128/AAC.00148-06] [PMID: 16801435]
[148]
Moudgal, V.; Little, T.; Boikov, D.; Vazquez, J.A. Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob. Agents Chemother., 2005, 49(2), 767-769.
[http://dx.doi.org/10.1128/AAC.49.2.767-769.2005] [PMID: 15673762]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 28
Year: 2019
Page: [2579 - 2592]
Pages: 14
DOI: 10.2174/1568026619666191025155856
Price: $65

Article Metrics

PDF: 25
HTML: 4