Understanding the Mechanism of Cell Death in Gemcitabine Resistant Pancreatic Ductal Adenocarcinoma: A Systems Biology Approach

Author(s): Imlimaong Aier, Pritish K. Varadwaj*

Journal Name: Current Genomics

Volume 20 , Issue 7 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Gemcitabine is the standard chemotherapeutic drug administered in advanced Pancreatic Ductal Adenocarcinoma (PDAC). However, due to drug resistance in PDAC patients, this treatment has become less effective. Over the years, clinical trials for the quest of finding novel compounds that can be used in combination with gemcitabine have met very little success.

Objective: To predict the driving factors behind pancreatic ductal adenocarcinoma, and to understand the effect of these components in the progression of the disease and their contribution to cell growth and proliferation.

Methods: With the help of systems biology approaches and using gene expression data, which is generally found in abundance, dysregulated elements in key signalling pathways were predicted. Prominent dysregulated elements were integrated into a model to simulate and study the effect of gemcitabine- induced hypoxia.

Results: In this study, several transcription factors in the form of key drivers of cancer-related genes were predicted with the help of CARNIVAL, and the effect of gemcitabine-induced hypoxia on the apoptosis pathway was shown to have an effect on the downstream elements of two primary pathway models; EGF/VEGF and TNF signalling pathway.

Conclusion: It was observed that EGF/VEGF signalling pathway played a major role in inducing drug resistance through cell growth, proliferation, and avoiding cell death. Targeting the major upstream components of this pathway could potentially lead to successful treatment.

Keywords: PDAC, gemcitabine, hypoxia, cell signalling, apoptosis, cell death, systems biology.

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
Aier, I.; Semwal, R.; Sharma, A.; Varadwaj, P.K. A systematic assessment of statistics, risk factors, and underlying features involved in pancreatic cancer. Cancer Epidemiol., 2019, 58, 104-110.
[http://dx.doi.org/10.1016/j.canep.2018.12.001] [PMID: 30537645]
Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic ductal adenocarcinoma: current and evolving therapies. Int. J. Mol. Sci., 2017, 18(7) E1338
[http://dx.doi.org/10.3390/ijms18071338] [PMID: 28640192]
Amrutkar, M.; Gladhaug, I.P. Pancreatic cancer chemoresistance to gemcitabine. Cancers (Basel), 2017, 9(11) E157
[http://dx.doi.org/10.3390/cancers9110157] [PMID: 29144412]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
Heinemann, V. Gemcitabine: progress in the treatment of pancreatic cancer. Oncology, 2001, 60(1), 8-18.
[http://dx.doi.org/10.1159/000055290] [PMID: 11150902]
Heinemann, V. Gemcitabine-based combination treatment of pancreatic cancer. Semin. Oncol., 2002, 29(1)(Suppl. 3), 25-35.
[http://dx.doi.org/10.1053/sonc.2002.30749] [PMID: 11894005]
Gnanamony, M.; Gondi, C.S. Chemoresistance in pancreatic cancer: Emerging concepts. Oncol. Lett., 2017, 13(4), 2507-2513.
[http://dx.doi.org/10.3892/ol.2017.5777] [PMID: 28454427]
Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; Bennouna, J.; Bachet, J.B.; Khemissa-Akouz, F.; Péré-Vergé, D.; Delbaldo, C.; Assenat, E.; Chauffert, B.; Michel, P.; Montoto-Grillot, C.; Ducreux, M. Groupe tumeurs digestives of unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med., 2011, 364(19), 1817-1825.
[http://dx.doi.org/10.1056/NEJMoa1011923] [PMID: 21561347]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
Plunkett, W.; Huang, P.; Xu, Y.Z.; Heinemann, V.; Grunewald, R.; Gandhi, V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin. Oncol., 1995, 22(4)(Suppl. 11), 3-10.
[PMID: 7481842]
Kitano, H. Systems biology: a brief overview. Science, 2002, 295(5560), 1662-1664.
[http://dx.doi.org/10.1126/science.1069492] [PMID: 11872829]
Marchetti, C.; Zyner, K.G.; Ohnmacht, S.A.; Robson, M.; Haider, S.M.; Morton, J.P.; Marsico, G.; Vo, T.; Laughlin-Toth, S.; Ahmed, A.A.; Di Vita, G.; Pazitna, I.; Gunaratnam, M.; Besser, R.J.; Andrade, A.C.G.; Diocou, S.; Pike, J.A.; Tannahill, D.; Pedley, R.B.; Evans, T.R.J.; Wilson, W.D.; Balasubramanian, S.; Neidle, S. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J. Med. Chem., 2018, 61(6), 2500-2517.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01781] [PMID: 29356532]
Anders, S.; Pyl, P.T.; Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31(2), 166-169.
[http://dx.doi.org/10.1093/bioinformatics/btu638] [PMID: 25260700]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
Liu, A.; Trairatphisan, P.; Gjerga, E.; Didangelos, A.; Barratt, J.; Saez-Rodriguez, J. From expression footprints to causal pathways: contextualizing large signaling networks with CARNIVAL. bioRxiv, 2019. 541888
Melas, I.N.; Sakellaropoulos, T.; Iorio, F.; Alexopoulos, L.G.; Loh, W.Y.; Lauffenburger, D. A.; Saez-Rodriguez, J.; Bai, J.P. Identification of drug-specific pathways based on gene expression data: application to drug induced lung injury. Integrative biology: quantitative biosciences from nano to macro, 2015, 7(8), 904-20.
Türei, D.; Korcsmáros, T.; Saez-Rodriguez, J. OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat. Methods, 2016, 13(12), 966-967.
[http://dx.doi.org/10.1038/nmeth.4077] [PMID: 27898060]
Garcia-Alonso, L.; Iorio, F.; Matchan, A.; Fonseca, N.; Jaaks, P.; Peat, G.; Pignatelli, M.; Falcone, F.; Benes, C.H.; Dunham, I.; Bignell, G.; McDade, S.S.; Garnett, M.J.; Saez-Rodriguez, J. Transcription factor activities enhance markers of drug sensitivity in cancer. Cancer Res., 2018, 78(3), 769-780.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1679] [PMID: 29229604]
Schubert, M.; Klinger, B.; Klünemann, M.; Sieber, A.; Uhlitz, F.; Sauer, S.; Garnett, M.J.; Blüthgen, N.; Saez-Rodriguez, J. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun., 2018, 9(1), 20.
[http://dx.doi.org/10.1038/s41467-017-02391-6] [PMID: 29295995]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
Mai, Z.; Liu, H. Boolean network-based analysis of the apoptosis network: irreversible apoptosis and stable surviving. J. Theor. Biol., 2009, 259(4), 760-769.
[http://dx.doi.org/10.1016/j.jtbi.2009.04.024] [PMID: 19422837]
Yokoi, K.; Fidler, I.J. Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clinical cancer research: an official journal of the American Association for Cancer Research., 2004, 10(7), 2299-306.
Zhang, Z.; Han, H.; Rong, Y.; Zhu, K.; Zhu, Z.; Tang, Z.; Xiong, C.; Tao, J. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 291.
[http://dx.doi.org/10.1186/s13046-018-0972-3] [PMID: 30486896]
Kasuya, K.; Tsuchida, A.; Nagakawa, Y.; Suzuki, M.; Abe, Y.; Itoi, T.; Serizawa, H.; Nagao, T.; Shimazu, M.; Aoki, T. Hypoxia-inducible factor-1α expression and gemcitabine chemotherapy for pancreatic cancer. Oncol. Rep., 2011, 26(6), 1399-1406.
[http://dx.doi.org/10.3892/or.2011.1457] [PMID: 21922147]
Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med., 2003, 9(6), 677-684.
[http://dx.doi.org/10.1038/nm0603-677] [PMID: 12778166]
Hao, J. HIF-1 is a critical target of pancreatic cancer. OncoImmunology, 2015, 4(9) e1026535
[http://dx.doi.org/10.1080/2162402X.2015.1026535] [PMID: 26405594]
Schivo, S.; Scholma, J.; van der Vet, P.E.; Karperien, M.; Post, J.N.; van de Pol, J.; Langerak, R. Modelling with ANIMO: between fuzzy logic and differential equations. BMC Syst. Biol., 2016, 10(1), 56.
[http://dx.doi.org/10.1186/s12918-016-0286-z] [PMID: 27460034]
Büchler, P.; Reber, H.A.; Büchler, M.; Shrinkante, S.; Büchler, M.W.; Friess, H.; Semenza, G.L.; Hines, O.J. Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas, 2003, 26(1), 56-64.
[http://dx.doi.org/10.1097/00006676-200301000-00010] [PMID: 12499918]
Subramaniam, D.; Periyasamy, G.; Ponnurangam, S.; Chakrabarti, D.; Sugumar, A.; Padigaru, M.; Weir, S.J.; Balakrishnan, A.; Sharma, S.; Anant, S. CDK-4 inhibitor P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis. Mol. Cancer Ther., 2012, 11(7), 1598-1608.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0102] [PMID: 22532602]
Cao, L.P.; Song, J.L.; Yi, X.P.; Li, Y.X. Double inhibition of NF-κB and XIAP via RNAi enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncol. Rep., 2013, 29(4), 1659-1665.
[http://dx.doi.org/10.3892/or.2013.2246] [PMID: 23354694]
Réjiba, S.; Bigand, C.; Parmentier, C.; Hajri, A. Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK:UMK GDEPT and TS/RR siRNA strategies. Neoplasia, 2009, 11(7), 637-650.
[http://dx.doi.org/10.1593/neo.81686] [PMID: 19568409]
Guillermet-Guibert, J.; Davenne, L.; Pchejetski, D.; Saint-Laurent, N.; Brizuela, L.; Guilbeau-Frugier, C.; Delisle, M.B.; Cuvillier, O.; Susini, C.; Bousquet, C. Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Mol. Cancer Ther., 2009, 8(4), 809-820.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-1096] [PMID: 19372554]
Cheng, Z.X.; Wang, D.W.; Liu, T.; Liu, W.X.; Xia, W.B.; Xu, J.; Zhang, Y.H.; Qu, Y.K.; Guo, L.Q.; Ding, L.; Hou, J.; Zhong, Z.H. Effects of the HIF-1α and NF-κB loop on epithelial-mesenchymal transition and chemoresistance induced by hypoxia in pancreatic cancer cells. Oncol. Rep., 2014, 31(4), 1891-1898.
[http://dx.doi.org/10.3892/or.2014.3022] [PMID: 24535079]
Shih, V.F.; Tsui, R.; Caldwell, A.; Hoffmann, A. A single NFκB system for both canonical and non-canonical signaling. Cell Res., 2011, 21(1), 86-102.
[http://dx.doi.org/10.1038/cr.2010.161] [PMID: 21102550]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 01 January, 2020
Page: [483 - 490]
Pages: 8
DOI: 10.2174/1389202920666191025102726
Price: $65

Article Metrics

PDF: 15