A Review of Gene Therapy Delivery Systems for Intervertebral Disc Degeneration

Author(s): Songfeng Chen, Ming Luo, Hongwei Kou, Guowei Shang, Yanhui Ji, Hongjian Liu*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Intervertebral Disc (IVD) degeneration is a major public health concern, and gene therapy seems a promising approach to delay or even reverse IVD degeneration. However, the delivery system used to transfer exogenous genes into intervertebral disc cells remains a challenge.

Methods: The MEDLINE, Web of Science, and Scopus databases were searched for English-language articles related to gene therapy for IVD degeneration articles from 1999 to May 2019. The keywords included “gene therapy” AND “intervertebral disc”. The history of the development of different delivery systems was analysed, and the latest developments in viral and non-viral vectors for IVD degeneration treatment were reviewed.

Results: Gene therapy delivery systems for IVD degeneration are divided into two broad categories: viral and non-viral vectors. The most commonly used viral vectors are adenovirus, adeno-associated virus (AAV), and lentivirus. Enthusiasm for the use of adenovirus vectors has gradually declined and has been replaced by a preference for lentivirus and AAV vectors. New technologies, such as RNAi and CRISPR, have further enhanced the advantage of viral vectors. Liposomes are the classic non-viral vector, and their successors, polyplex micelles and exosomes, have more potential for use in gene therapy for IVD degeneration.

Conclusion: Lentivirus and AAV are the conventional viral vectors used in gene therapy for IVD degeneration, and the new technologies RNAi and CRISPR have further enhanced their advantages. Nonviral vectors, such as polyplex micelles and exosomes, are promising gene therapy vectors for IVD degeneration.

Keywords: Delivery system, gene therapy, viral vector, non-viral vector, intervertebral disc degeneration, nucleus pulposus.

[1]
Murray, C.J.; Atkinson, C.; Bhalla, K.; Birbeck, G.; Burstein, R.; Chou, D.; Dellavalle, R.; Danaei, G.; Ezzati, M.; Fahimi, A.; Flaxman, D. Foreman; Gabriel, S.; Gakidou, E.; Kassebaum, N.; Khatibzadeh, S.; Lim, S.; Lipshultz, S.E.; London, S.; Lopez; MacIntyre, M.F.; Mokdad, A.H.; Moran, A.; Moran, A.E.; Mozaffarian, D.; Murphy, T.; Naghavi, M.; Pope, C.; Roberts, T.; Salomon, J.; Schwebel, D.C.; Shahraz, S.; Sleet, D.A.; Murray; Abraham, J.; Ali, M.K.; Atkinson, C.; Bartels, D.H.; Bhalla, K.; Birbeck, G.; Burstein, R.; Chen, H.; Criqui, M.H.; Dahodwala; Jarlais; Ding, E.L.; Dorsey, E.R.; Ebel, B.E.; Ezzati, M.; Fahami; Flaxman, S.; Flaxman, A.D.; Gonzalez-Medina, D.; Grant, B.; Hagan, H.; Hoffman, H.; Kassebaum, N.; Khatibzadeh, S.; Leasher, J.L.; Lin, J.; Lipshultz, S.E.; Lozano, R.; Lu, Y.; Mallinger, L.; McDermott, M.M.; Micha, R.; Miller, T.R.; Mokdad, A.A.; Mokdad, A.H.; Mozaffarian, D.; Naghavi, M.; Narayan, K.M.; Omer, S.B.; Pelizzari, P.M.; Phillips, D.; Ranganathan, D.; Rivara, F.P.; Roberts, T.; Sampson, U.; Sanman, E.; Sapkota, A.; Schwebel, D.C.; Sharaz, S.; Shivakoti, R.; Singh, G.M.; Singh, D.; Tavakkoli, M.; Towbin, J.A.; Wilkinson, J.D.; Zabetian, A.; Murray; Abraham, J.; Ali, M.K.; Alvardo, M.; Atkinson, C.; Baddour, L.M.; Benjamin, E.J.; Bhalla, K.; Birbeck, G.; Bolliger, I.; Burstein, R.; Carnahan, E.; Chou, D.; Chugh, S.S.; Cohen, A.; Colson, K.E.; Cooper, L.T.; Couser, W.; Criqui, M.H.; Dabhadkar, K.C.; Dellavalle, R.P.; Jarlais; Dicker, D.; Dorsey, E.R.; Duber, H.; Ebel, B.E.; Engell, R.E.; Ezzati, M.; Felson, D.T.; Finucane, M.M.; Flaxman, S.; Flaxman, A.D.; Fleming, T.; Foreman; Forouzanfar, M.H.; Freedman, G.; Freeman, M.K.; Gakidou, E.; Gillum, R.F.; Gonzalez-Medina, D.; Gosselin, R.; Gutierrez, H.R.; Hagan, H.; Havmoeller, R.; Hoffman, H.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayarman, S.; Johns, N.; Kassebaum, N.; Khatibzadeh, S.; Lan, Q.; Leasher, J.L.; Lim, S.; Lipshultz, S.E.; London, S.; Lopez; Lozano, R.; Lu, Y.; Mallinger, L.; Meltzer, M.; Mensah, G.A.; Michaud, C.; Miller, T.R.; Mock, C.; Moffitt, T.E.; Mokdad, A.A.; Mokdad, A.H.; Moran, A.; Naghavi, M.; Narayan, K.M.; Nelson, R.G.; Olives, C.; Omer, S.B.; Ortblad, K.; Ostro, B.; Pelizzari, P.M.; Phillips, D.; Raju, M.; Razavi, H.; Ritz, B.; Roberts, T.; Sacco, R.L.; Salomon, J.; Sampson, U.; Schwebel, D.C.; Shahraz, S.; Shibuya, K.; Silberberg, D.; Singh, J.A.; Steenland, K.; Taylor, J.A.; Thurston, G.D.; Vavilala, M.S.; Vos, T.; Wagner, G.R.; Weinstock, M.A.; Weisskopf, M.G.; Wulf, S.; Murray, The state of US health, 1990-2010: Burden of diseases, injuries, and risk factors. JAMA, 2013, 310(6), 591-608.
[http://dx.doi.org/10.1001/jama.2013.13805] [PMID: 23842577]
[2]
Vlaeyen, J.W.S.; Maher, C.G.; Wiech, K.; Van Zundert, J.; Meloto, C.B.; Diatchenko, L.; Battié, M.C.; Goossens, M.; Koes, B.; Linton, S.J. Low back pain. Nat. Rev. Dis. Primers, 2018, 4(1), 52.
[http://dx.doi.org/10.1038/s41572-018-0052-1] [PMID: 30546064]
[3]
Moradi-Lakeh, M.; Forouzanfar, M.H.; Vollset, S.E.; El Bcheraoui, C.; Daoud, F.; Afshin, A.; Charara, R.; Khalil, I.; Higashi, H.; Abd El Razek, M.M.; Kiadaliri, A.A.; Alam, K.; Akseer, N.; Al-Hamad, N.; Ali, R.; AlMazroa, M.A.; Alomari, M.A.; Al-Rabeeah, A.A.; Alsharif, U.; Altirkawi, K.A.; Atique, S.; Badawi, A.; Barrero, L.H.; Basulaiman, M.; Bazargan-Hejazi, S.; Bedi, N.; Bensenor, I.M.; Buchbinder, R.; Danawi, H.; Dharmaratne, S.D.; Zannad, F.; Farvid, M.S.; Fereshtehnejad, S.M.; Farzadfar, F.; Fischer, F.; Gupta, R.; Hamadeh, R.R.; Hamidi, S.; Horino, M.; Hoy, D.G.; Hsairi, M.; Husseini, A.; Javanbakht, M.; Jonas, J.B.; Kasaeian, A.; Khan, E.A.; Khubchandani, J.; Knudsen, A.K.; Kopec, J.A.; Lunevicius, R.; Abd El Razek, H.M.; Majeed, A.; Malekzadeh, R.; Mate, K.; Mehari, A.; Meltzer, M.; Memish, Z.A.; Mirarefin, M.; Mohammed, S.; Naheed, A.; Obermeyer, C.M.; Oh, I.H.; Park, E.K.; Peprah, E.K.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rahimi-Movaghar, V.; Shiri, R.; Rahman, S.U.; Rai, R.K.; Rana, S.M.; Sepanlou, S.G.; Shaikh, M.A.; Shiue, I.; Sibai, A.M.; Silva, D.A.S.; Singh, J.A.; Skogen, J.C.; Terkawi, A.S.; Ukwaja, K.N.; Westerman, R.; Yonemoto, N.; Yoon, S.J.; Younis, M.Z.; Zaidi, Z.; Zaki, M.E.S.; Lim, S.S.; Wang, H.; Vos, T.; Naghavi, M.; Lopez, A.D.; Murray, C.J.L.; Mokdad, A.H. Burden of musculoskeletal disorders in the Eastern Mediterranean Region, 1990-2013: Findings from the global burden of disease study 2013. Ann. Rheum. Dis., 2017, 76(8), 1365-1373.
[http://dx.doi.org/10.1136/annrheumdis-2016-210146] [PMID: 28209629]
[4]
Clouet, J.; Fusellier, M.; Camus, A.; Le Visage, C.; Guicheux, J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv. Drug Deliv. Rev., 2019, 146, 306-324.
[http://dx.doi.org/10.1016/j.addr.2018.04.017] [PMID: 29705378]
[5]
Haschtmann, D.; Ferguson, S.J.; Stoyanov, J.V. BMP-2 and TGF-β3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. Eur. Spine J., 2012, 21(9), 1724-1733.
[http://dx.doi.org/10.1007/s00586-012-2371-3] [PMID: 22639297]
[6]
Kwon, W.K.; Moon, H.J.; Kwon, T.H.; Park, Y.K.; Kim, J.H. The role of hypoxia in angiogenesis and extracellular matrix regulation of intervertebral disc cells during inflammatory reactions. Neurosurgery, 2017, 81(5), 867-875.
[http://dx.doi.org/10.1093/neuros/nyx149] [PMID: 28475716]
[7]
Oh, C.D.; Yasuda, H.; Zhao, W.; Henry, S.P.; Zhang, Z.; Xue, M.; de Crombrugghe, B.; Chen, D. SOX9 directly regulates CTGF/CCN2 transcription in growth plate chondrocytes and in nucleus pulposus cells of intervertebral disc. Sci. Rep., 2016, 6, 29916.
[http://dx.doi.org/10.1038/srep29916] [PMID: 27436052]
[8]
Hiyama, A.; Sakai, D.; Tanaka, M.; Arai, F.; Nakajima, D.; Abe, K.; Mochida, J. The relationship between the Wnt/β-catenin and TGF-β/BMP signals in the intervertebral disc cell. J. Cell. Physiol., 2011, 226(5), 1139-1148.
[http://dx.doi.org/10.1002/jcp.22438] [PMID: 20945354]
[9]
Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol., 2016, 12(1), 49-62.
[http://dx.doi.org/10.1038/nrrheum.2015.169] [PMID: 26656660]
[10]
Sobajima, S.; Kim, J.S.; Gilbertson, L.G.; Kang, J.D. Gene therapy for degenerative disc disease. Gene Ther., 2004, 11(4), 390-401.
[http://dx.doi.org/10.1038/sj.gt.3302200] [PMID: 14724681]
[11]
Wang, S.Z.; Rui, Y.F.; Lu, J.; Wang, C. Cell and molecular biology of intervertebral disc degeneration: Current understanding and implications for potential therapeutic strategies. Cell Prolif., 2014, 47(5), 381-390.
[http://dx.doi.org/10.1111/cpr.12121] [PMID: 25112472]
[12]
Vasiliadis, E.S.; Pneumaticos, S.G.; Evangelopoulos, D.S.; Papavassiliou, A.G. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol. Med., 2014, 20, 400-409.
[http://dx.doi.org/10.2119/molmed.2014.00145] [PMID: 25171110]
[13]
Neufeld, E.F.; Sweeley, C.C.; Rogers, S.; Friedmann, T.; Roblin, R. Gene therapy for human genetic disease? Science, 1972, 178(4061), 648-649.
[http://dx.doi.org/10.1126/science.178.4061.648] [PMID: 4343766]
[14]
Dowdell, J.; Erwin, M.; Choma, T.; Vaccaro, A.; Iatridis, J.; Cho, S.K. Intervertebral disk degeneration and repair. Neurosurgery, 2017, 80(3S), S46-S54.
[http://dx.doi.org/10.1093/neuros/nyw078] [PMID: 28350945]
[15]
Evans, C.H.; Huard, J. Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol., 2015, 11(4), 234-242.
[http://dx.doi.org/10.1038/nrrheum.2015.28] [PMID: 25776949]
[16]
Wehling, P.; Schulitz, K.P.; Robbins, P.D.; Evans, C.H.; Reinecke, J.A. Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine, 1997, 22(10), 1092-1097.
[http://dx.doi.org/10.1097/00007632-199705150-00008] [PMID: 9160467]
[17]
Nishida, K.; Kang, J.D.; Suh, J.K.; Robbins, P.D.; Evans, C.H.; Gilbertson, L.G. Adenovirus-mediated gene transfers to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine, 1998, 23(22), 2437-2442.
[http://dx.doi.org/10.1097/00007632-199811150-00016] [PMID: 9836359]
[18]
Somia, N.; Verma, I.M. Gene therapy: Trials and tribulations. Nat. Rev. Genet., 2000, 1(2), 91-99.
[http://dx.doi.org/10.1038/35038533] [PMID: 11253666]
[19]
Collins, F.S.; Gottlieb, S. The next phase of human gene-therapy oversight. N. Engl. J. Med., 2018, 379(15), 1393-1395.
[http://dx.doi.org/10.1056/NEJMp1810628] [PMID: 30110242]
[20]
Blanquer, S.B.; Grijpma, D.W.; Poot, A.A. Delivery systems for the treatment of degenerated intervertebral discs. Adv. Drug Deliv. Rev., 2015, 84, 172-187.
[http://dx.doi.org/10.1016/j.addr.2014.10.024] [PMID: 25451138]
[21]
Woods, B.I.; Vo, N.; Sowa, G.; Kang, J.D. Gene therapy for intervertebral disk degeneration. Orthop. Clin. North Am., 2011, 42(4), 563-574. ix. [ix.].
[http://dx.doi.org/10.1016/j.ocl.2011.07.002] [PMID: 21944592]
[22]
Sampara, P.; Banala, R.R.; Vemuri, S.K.; Av, G.R.; Gpv, S. Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: A review. Gene Ther., 2018, 25(2), 67-82.
[http://dx.doi.org/10.1038/s41434-018-0004-0] [PMID: 29567950]
[23]
Farhang, N.; Ginley-Hidinger, M.; Berrett, K.C.; Gertz, J.; Lawrence, B.; Bowles, R.D. Lentiviral CRISPR epigenome editing of inflammatory receptors as a gene therapy strategy for disc degeneration. Hum. Gene Ther., 2019, 30(9), 1161-1175. Epub ahead of print
[http://dx.doi.org/10.1089/hum.2019.005] [PMID: 31140325]
[24]
Feng, G.; Zha, Z.; Huang, Y.; Li, J.; Wang, Y.; Ke, W.; Chen, H.; Liu, L.; Song, Y.; Ge, Z. Sustained and bioresponsive two-stage delivery of therapeutic mirna via polyplex micelle-loaded injectable hydrogels for inhibition of intervertebral disc fibrosis. Adv. Healthc. Mater., 2018, 7(21)e1800623
[http://dx.doi.org/10.1002/adhm.201800623] [PMID: 30296017]
[25]
Cheng, X.; Zhang, G.; Zhang, L.; Hu, Y.; Zhang, K.; Sun, X.; Zhao, C.; Li, H.; Li, Y.M.; Zhao, J. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J. Cell. Mol. Med., 2018, 22(1), 261-276.
[http://dx.doi.org/10.1111/jcmm.13316] [PMID: 28805297]
[26]
Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K.L.; Martin, P.L.; Nemecek, E.R.; Yanik, G.A.; Peters, C.; Baruchel, A.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C.H.; Levine, B.L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K.T.; Zhang, Y.; Sen, K.; Lebwohl, D.; Pulsipher, M.A.; Grupp, S.A. Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 439-448.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[27]
Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; Cross, D.; Marshall, K.A.; Walshire, J.; Kehoe, T.L.; Reichert, H.; Davis, M.; Raffini, L.; George, L.A.; Hudson, F.P.; Dingfield, L.; Zhu, X.; Haller, J.A.; Sohn, E.H.; Mahajan, V.B.; Pfeifer, W.; Weckmann, M.; Johnson, C.; Gewaily, D.; Drack, A.; Stone, E.; Wachtel, K.; Simonelli, F.; Leroy, B.P.; Wright, J.F.; High, K.A.; Maguire, A.M. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet, 2017, 390(10097), 849-860.
[http://dx.doi.org/10.1016/S0140-6736(17)31868-8] [PMID: 28712537]
[28]
Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; Kissel, J.T.; Nagendran, S.; L’Italien, J.; Sproule, D.M.; Wells, C.; Cardenas, J.A.; Heitzer, M.D.; Kaspar, A.; Corcoran, S.; Braun, L.; Likhite, S.; Miranda, C.; Meyer, K.; Foust, K.D.; Burghes, A.H.M.; Kaspar, B.K. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med., 2017, 377(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[29]
Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; Rosser, A.; Kordasiewicz, H.B.; Czech, C.; Swayze, E.E.; Norris, D.A.; Baumann, T.; Gerlach, I.; Schobel, S.A.; Paz, E.; Smith, A.V.; Bennett, C.F.; Lane, R.M. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med., 2019, 380(24), 2307-2316.
[http://dx.doi.org/10.1056/NEJMoa1900907] [PMID: 31059641]
[30]
Mamcarz, E.; Zhou, S.; Lockey, T.; Abdelsamed, H.; Cross, S.J.; Kang, G.; Ma, Z.; Condori, J.; Dowdy, J.; Triplett, B.; Li, C.; Maron, G.; Aldave Becerra, J.C.; Church, J.A.; Dokmeci, E.; Love, J.T.; da Matta Ain, A.C.; van der Watt, H.; Tang, X.; Janssen, W.; Ryu, B.Y.; De Ravin, S.S.; Weiss, M.J.; Youngblood, B.; Long-Boyle, J.R.; Gottschalk, S.; Meagher, M.M.; Malech, H.L.; Puck, J.M.; Cowan, M.J.; Sorrentino, B.P. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N. Engl. J. Med., 2019, 380(16), 1525-1534.
[http://dx.doi.org/10.1056/NEJMoa1815408] [PMID: 30995372]
[31]
Maeder, M.L.; Stefanidakis, M.; Wilson, C.J.; Baral, R.; Barrera, L.A.; Bounoutas, G.S.; Bumcrot, D.; Chao, H.; Ciulla, D.M.; DaSilva, J.A.; Dass, A.; Dhanapal, V.; Fennell, T.J.; Friedland, A.E.; Giannoukos, G.; Gloskowski, S.W.; Glucksmann, A.; Gotta, G.M.; Jayaram, H.; Haskett, S.J.; Hopkins, B.; Horng, J.E.; Joshi, S.; Marco, E.; Mepani, R.; Reyon, D.; Ta, T.; Tabbaa, D.G.; Samuelsson, S.J.; Shen, S.; Skor, M.N.; Stetkiewicz, P.; Wang, T.; Yudkoff, C.; Myer, V.E.; Albright, C.F.; Jiang, H. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med., 2019, 25(2), 229-233.
[http://dx.doi.org/10.1038/s41591-018-0327-9] [PMID: 30664785]
[32]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[33]
Thompson, A.A.; Walters, M.C.; Kwiatkowski, J.; Rasko, J.E.J.; Ribeil, J.A.; Hongeng, S.; Magrin, E.; Schiller, G.J.; Payen, E.; Semeraro, M.; Moshous, D.; Lefrere, F.; Puy, H.; Bourget, P.; Magnani, A.; Caccavelli, L.; Diana, J.S.; Suarez, F.; Monpoux, F.; Brousse, V.; Poirot, C.; Brouzes, C.; Meritet, J.F.; Pondarré, C.; Beuzard, Y.; Chrétien, S.; Lefebvre, T.; Teachey, D.T.; Anurathapan, U.; Ho, P.J.; von Kalle, C.; Kletzel, M.; Vichinsky, E.; Soni, S.; Veres, G.; Negre, O.; Ross, R.W.; Davidson, D.; Petrusich, A.; Sandler, L.; Asmal, M.; Hermine, O.; De Montalembert, M.; Hacein-Bey-Abina, S.; Blanche, S.; Leboulch, P.; Cavazzana, M. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med., 2018, 378(16), 1479-1493.
[http://dx.doi.org/10.1056/NEJMoa1705342] [PMID: 29669226]
[34]
Moon, S.H.; Gilbertson, L.G.; Nishida, K.; Knaub, M.; Muzzonigro, T.; Robbins, P.D.; Evans, C.H.; Kang, J.D. Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer: Implications for the clinical management of intervertebral disc disorders. Spine, 2000, 25(20), 2573-2579.
[http://dx.doi.org/10.1097/00007632-200010150-00006] [PMID: 11034640]
[35]
Kroeber, M.W.; Unglaub, F.; Wang, H.; Schmid, C.; Thomsen, M.; Nerlich, A.; Richter, W. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine, 2002, 27(23), 2684-2690.
[http://dx.doi.org/10.1097/00007632-200212010-00007] [PMID: 12461394]
[36]
Nishida, K.; Kang, J.D.; Gilbertson, L.G.; Moon, S.H.; Suh, J.K.; Vogt, M.T.; Robbins, P.D.; Evans, C.H. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: An in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine, 1999, 24(23), 2419-2425.
[http://dx.doi.org/10.1097/00007632-199912010-00002] [PMID: 10626303]
[37]
Wang, H.; Kroeber, M.; Hanke, M.; Ries, R.; Schmid, C.; Poller, W.; Richter, W. Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells. J. Mol. Med. (Berl.), 2004, 82(2), 126-134.
[http://dx.doi.org/10.1007/s00109-003-0507-y] [PMID: 14669002]
[38]
Wallach, C.J.; Sobajima, S.; Watanabe, Y.; Kim, J.S.; Georgescu, H.I.; Robbins, P.; Gilbertson, L.G.; Kang, J.D. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine, 2003, 28(20), 2331-2337.
[http://dx.doi.org/10.1097/01.BRS.0000085303.67942.94] [PMID: 14560079]
[39]
Paul, R.; Haydon, R.C.; Cheng, H.; Ishikawa, A.; Nenadovich, N.; Jiang, W.; Zhou, L.; Breyer, B.; Feng, T.; Gupta, P.; He, T.C.; Phillips, F.M. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine, 2003, 28(8), 755-763.
[http://dx.doi.org/10.1097/01.BRS.0000058946.64222.92] [PMID: 12698117]
[40]
Yoon, S.T.; Park, J.S.; Kim, K.S.; Li, J.; Attallah-Wasif, E.S.; Hutton, W.C.; Boden, S.D. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine, 2004, 29(23), 2603-2611.
[http://dx.doi.org/10.1097/01.brs.0000146103.94600.85] [PMID: 15564908]
[41]
Le Maitre, C.L.; Freemont, A.J.; Hoyland, J.A. A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration. Int. J. Exp. Pathol., 2006, 87(1), 17-28.
[http://dx.doi.org/10.1111/j.0959-9673.2006.00449.x] [PMID: 16436110]
[42]
Zhang, Y.; An, H.S.; Thonar, E.J.; Chubinskaya, S.; He, T.C.; Phillips, F.M. Comparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells. Spine, 2006, 31(19), 2173-2179.
[http://dx.doi.org/10.1097/01.brs.0000232792.66632.d8] [PMID: 16946650]
[43]
Zhang, Y.; Anderson, D.G.; Phillips, F.M.; Thonar, E.J.; He, T.C.; Pietryla, D.; An, H.S. Comparative effects of bone morphogenetic proteins and Sox9 overexpression on matrix accumulation by bovine anulus fibrosus cells: Implications for anular repair. Spine, 2007, 32(23), 2515-2520.
[http://dx.doi.org/10.1097/BRS.0b013e318158cc09] [PMID: 17978648]
[44]
Le Maitre, C.L.; Hoyland, J.A.; Freemont, A.J. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res. Ther., 2007, 9(4), R83.
[http://dx.doi.org/10.1186/ar2282] [PMID: 17760968]
[45]
Cui, M.; Wan, Y.; Anderson, D.G.; Shen, F.H.; Leo, B.M.; Laurencin, C.T.; Balian, G.; Li, X. Mouse growth and differentiation factor-5 protein and DNA therapy potentiates intervertebral disc cell aggregation and chondrogenic gene expression. Spine J., 2008, 8(2), 287-295.
[http://dx.doi.org/10.1016/j.spinee.2007.05.012] [PMID: 17974491]
[46]
Kuh, S.U.; Zhu, Y.; Li, J.; Tsai, K.J.; Fei, Q.; Hutton, W.C.; Yoon, S.T. The AdLMP-1 transfection in two different cells; AF cells, chondrocytes as potential cell therapy candidates for disc degeneration. Acta Neurochir. (Wien), 2008, 150(8), 803-810.
[http://dx.doi.org/10.1007/s00701-008-1617-7] [PMID: 18618069]
[47]
Wang, Y.; Yang, Y.; Sun, J.C.; Kong, Q.J.; Wang, H.B.; Shi, J.G. Effect of the adenovirus-mediated Wip1 gene on lumbar intervertebral disc degeneration in a rabbit model. Mol. Med. Rep., 2017, 16(6), 9487-9493.
[http://dx.doi.org/10.3892/mmr.2017.7774] [PMID: 29039507]
[48]
Zhang, Y.; Markova, D.; Im, H.J.; Hu, W.; Thonar, E.J.; He, T.C.; An, H.S.; Phillips, F.M.; Anderson, D.G. Primary bovine intervertebral disc cells transduced with adenovirus overexpressing 12 BMPs and Sox9 maintain appropriate phenotype. Am. J. Phys. Med. Rehabil., 2009, 88(6), 455-463.
[http://dx.doi.org/10.1097/PHM.0b013e3181a5f0aa] [PMID: 19454853]
[49]
Moon, S.H.; Nishida, K.; Gilbertson, L.G.; Lee, H.M.; Kim, H.; Hall, R.A.; Robbins, P.D.; Kang, J.D. Biologic response of human intervertebral disc cells to gene therapy cocktail. Spine, 2008, 33(17), 1850-1855.
[http://dx.doi.org/10.1097/BRS.0b013e31817e1cd7] [PMID: 18622355]
[50]
Wallach, C.J.; Kim, J.S.; Sobajima, S.; Lattermann, C.; Oxner, W.M.; McFadden, K.; Robbins, P.D.; Gilbertson, L.G.; Kang, J.D. Safety assessment of intradiscal gene transfer: A pilot study. Spine J., 2006, 6(2), 107-112.
[http://dx.doi.org/10.1016/j.spinee.2005.05.002] [PMID: 16517379]
[51]
Vadalà, G.; Sowa, G.A.; Smith, L.; Hubert, M.G.; Levicoff, E.A.; Denaro, V.; Gilbertson, L.G.; Kang, J.D. Regulation of transgene expression using an inducible system for improved safety of intervertebral disc gene therapy. Spine, 2007, 32(13), 1381-1387.
[http://dx.doi.org/10.1097/BRS.0b013e3180601215] [PMID: 17545904]
[52]
Zhang, Y.; Li, Z.; Thonar, E.J.; An, H.S.; He, T.C.; Pietryla, D.; Phillips, F.M. Transduced bovine articular chondrocytes affect the metabolism of cocultured nucleus pulposus cells in vitro: Implications for chondrocyte transplantation into the intervertebral disc. Spine, 2005, 30(23), 2601-2607.
[http://dx.doi.org/10.1097/01.brs.0000187880.39298.f0] [PMID: 16319745]
[53]
Zhang, Y.; Phillips, F.M.; Thonar, E.J.; Oegema, T.; An, H.S.; Roman-Blas, J.A.; He, T.C.; Anderson, D.G. Cell therapy using articular chondrocytes overexpressing BMP-7 or BMP-10 in a rabbit disc organ culture model. Spine, 2008, 33(8), 831-838.
[http://dx.doi.org/10.1097/BRS.0b013e31816b1f38] [PMID: 18404100]
[54]
Sun, W.; Zhang, K.; Liu, G.; Ding, W.; Zhao, C.; Xie, Y.; Yuan, J.; Sun, X.; Li, H.; Liu, C.; Tang, T.; Zhao, J. Sox9 gene transfer enhanced regenerative effect of bone marrow mesenchymal stem cells on the degenerated intervertebral disc in a rabbit model. PLoS One, 2014, 9(4)e93570
[http://dx.doi.org/10.1371/journal.pone.0093570] [PMID: 24691466]
[55]
Douglas, J.T. Adenoviral vectors for gene therapy. Mol. Biotechnol., 2007, 36(1), 71-80.
[http://dx.doi.org/10.1007/s12033-007-0021-5] [PMID: 17827541]
[56]
Driesse, M.J.; Esandi, M.C.; Kros, J.M.; Avezaat, C.J.; Vecht, C.; Zurcher, C.; van der Velde, I.; Valerio, D.; Bout, A.; Sillevis Smitt, P.A. Intra-CSF administered recombinant adenovirus causes an immune response-mediated toxicity. Gene Ther., 2000, 7(16), 1401-1409.
[http://dx.doi.org/10.1038/sj.gt.3301250] [PMID: 10981667]
[57]
Lotfinia, M.; Abdollahpour-Alitappeh, M.; Hatami, B.; Zali, M.R.; Karimipoor, M. Adeno-associated virus as a gene therapy vector: strategies to neutralize the neutralizing antibodies. Clin. Exp. Med., 2019, 19(3), 289-298. Epub ahead of print
[http://dx.doi.org/10.1007/s10238-019-00557-8] [PMID: 31054018]
[58]
Sai, J.M.; Hu, Y.G.; Wang, D.C. Constructing adeno-associated virus-TGFbeta3 and comparing its biological effect on proteoglycan synthesis in dedifferentiated nucleus pulpous cells with adenovirus-TGFbeta1. Chin. Med. Sci. J., 2007, 22(2), 113-118.
[PMID: 17763584]
[59]
Liu, Y.; Li, J.M.; Hu, Y.G. Transplantation of gene-modified nucleus pulposus cells reverses rabbit intervertebral disc degeneration. Chin. Med. J. (Engl.), 2011, 124(16), 2431-2437.
[PMID: 21933582]
[60]
Wang, C.; Ruan, D.K.; Zhang, C.; Wang, D.L.; Xin, H.; Zhang, Y. Effects of adeno-associated virus-2-mediated human BMP-7 gene transfection on the phenotype of nucleus pulposus cells. J. Orthop. Res., 2011, 29(6), 838-845.
[http://dx.doi.org/10.1002/jor.21310] [PMID: 21246612]
[61]
Wang, Y.Y.; Zhu, Q.S.; Wang, Y.W.; Yin, R.F. Thymosin and Senescence. Chin Beta-4 recombinant adeno-associated virus enhances human nucleus pulposus cell proliferation and reduces cell apoptosis. Med. J. (Engl.), 2015, 128(11), 1529-1535.
[http://dx.doi.org/10.4103/0366-6999.157686] [PMID: 26021512]
[62]
Liu, H.F.; Ning, B.; Zhang, H.; Wang, D.C.; Hu, Y.L.; Qiao, G.X.; Zhao, Y.P.; Hu, Y.G. Effect of rAAV2-hTGFβ1 gene transfer on matrix synthesis in an in vivo rabbit disk degeneration model. Clin. Spine Surg., 2016, 29(3), E127-E134.
[http://dx.doi.org/10.1097/BSD.0b013e3182a26553] [PMID: 27007787]
[63]
Liu, Y.; Kong, J.; Chen, B.H.; Hu, Y.G. Combined expression of CTGF and tissue inhibitor of metalloprotease-1 promotes synthesis of proteoglycan and collagen type II in rhesus monkey lumbar intervertebral disc cells in vitro. Chin. Med. J. (Engl.), 2010, 123(15), 2082-2087.
[PMID: 20819546]
[64]
Leckie, S.K.; Bechara, B.P.; Hartman, R.A.; Sowa, G.A.; Woods, B.I.; Coelho, J.P.; Witt, W.T.; Dong, Q.D.; Bowman, B.W.; Bell, K.M.; Vo, N.V.; Wang, B.; Kang, J.D. Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model. Spine J., 2012, 12(1), 7-20.
[http://dx.doi.org/10.1016/j.spinee.2011.09.011] [PMID: 22023960]
[65]
Ren, S.; Liu, Y.; Ma, J.; Liu, Y.; Diao, Z.; Yang, D.; Zhang, X.; Xi, Y.; Hu, Y. Treatment of rabbit intervertebral disc degeneration with co-transfection by adeno-associated virus-mediated SOX9 and osteogenic protein-1 double genes in vivo. Int. J. Mol. Med., 2013, 32(5), 1063-1068.
[http://dx.doi.org/10.3892/ijmm.2013.1497] [PMID: 24045878]
[66]
Xi, Y.M.; Dong, Y.F.; Wang, Z.J.; Liu, Y.; Diao, Z.Z.; Hu, Y.G. Co-transfection of adeno-associated virus-mediated human vascular endothelial growth factor165 and transforming growth factor-β1 into annulus fibrosus cells of rabbit degenerative intervertebral discs. Genet. Mol. Res., 2013, 12(4), 4895-4908.
[http://dx.doi.org/10.4238/2013.February.28.11] [PMID: 23479156]
[67]
Ren, X.F.; Diao, Z.Z.; Xi, Y.M.; Qi, Z.H.; Ren, S.; Liu, Y.J.; Yang, D.L.; Zhang, X.; Yuan, S.L. Adeno-associated virus-mediated BMP-7 and SOX9 in vitro co-transfection of human degenerative intervertebral disc cells. Genet. Mol. Res., 2015, 14(2), 3736-3744.
[http://dx.doi.org/10.4238/2015.April.22.1] [PMID: 25966142]
[68]
Liu, Y.; Kong, J.; Xi, Y.M.; Yu, T.; Wu, X.L.; Hu, Y.G. Effects of AAV2-mediated co-transfection of CTGF and TIMP1 genes on degenerative lumbar intervertebral discs in rhesus monkeys in vivo. Am. J. Transl. Res., 2018, 10(4), 1085-1096.
[PMID: 29736202]
[69]
Wu, J.; Wang, D.; Zhang, C.; Wang, C.; Zhang, Y.; Xin, H.; He, Q.; Ruan, D. Extending the activities of human nucleus pulposus cells with recombinant adeno-associated virus vector-mediated human telomerase reverse transcriptase gene transfer. Tissue Eng. Part A, 2011, 17(19-20), 2407-2415.
[http://dx.doi.org/10.1089/ten.tea.2011.0132] [PMID: 21563861]
[70]
Shi, Z.; Gu, T.; Xin, H.; Wu, J.; Xu, C.; Zhang, C.; He, Q.; Ruan, D. Intervention of rAAV-hTERT-transducted nucleus pulposus cells in early stage of intervertebral disc degeneration: A study in canine model. Tissue Eng. Part A, 2015, 21(15-16), 2186-2194.
[http://dx.doi.org/10.1089/ten.tea.2014.0408] [PMID: 25953361]
[71]
Mern, D.S.; Tschugg, A.; Hartmann, S.; Thomé, C. Self-complementary adeno-associated virus serotype 6 mediated knockdown of ADAMTS4 induces long-term and effective enhancement of aggrecan in degenerative human nucleus pulposus cells: A new therapeutic approach for intervertebral disc disorders. PLoS One, 2017, 12(2)e0172181
[http://dx.doi.org/10.1371/journal.pone.0172181] [PMID: 28207788]
[72]
Lattermann, C.; Oxner, W.M.; Xiao, X.; Li, J.; Gilbertson, L.G.; Robbins, P.D.; Kang, J.D. The adeno associated viral vector as a strategy for intradiscal gene transfer in immune competent and pre-exposed rabbits. Spine, 2005, 30(5), 497-504.
[http://dx.doi.org/10.1097/01.brs.0000154764.62072.44] [PMID: 15738780]
[73]
Levicoff, E.A.; Kim, J.S.; Sobajima, S.; Wallach, C.J.; Larson, J.W., III; Robbins, P.D.; Xiao, X.; Juan, L.; Vadala, G.; Gilbertson, L.G.; Kang, J.D. Safety assessment of intradiscal gene therapy II: effect of dosing and vector choice. Spine, 2008, 33(14), 1509-1516.
[http://dx.doi.org/10.1097/BRS.0b013e318178866c] [PMID: 18520636]
[74]
Sowa, G.; Westrick, E.; Pacek, C.; Coelho, P.; Patel, D.; Vadala, G.; Georgescu, H.; Vo, N.; Studer, R.; Kang, J. In vitro and in vivo testing of a novel regulatory system for gene therapy for intervertebral disc degeneration. Spine, 2011, 36(10), E623-E628.
[http://dx.doi.org/10.1097/BRS.0b013e3181ed11c1] [PMID: 21224765]
[75]
Mern, D.S.; Thomé, C. Identification and characterization of human nucleus pulposus cell specific serotypes of adeno-associated virus for gene therapeutic approaches of intervertebral disc disorders. BMC Musculoskelet. Disord., 2015, 16, 341.
[http://dx.doi.org/10.1186/s12891-015-0799-4] [PMID: 26552484]
[76]
Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov., 2019, 18(5), 358-378.
[http://dx.doi.org/10.1038/s41573-019-0012-9] [PMID: 30710128]
[77]
Zhang, Y.H.; Zhao, C.Q.; Jiang, L.S.; Dai, L.Y. Lentiviral shRNA silencing of CHOP inhibits apoptosis induced by cyclic stretch in rat annular cells and attenuates disc degeneration in the rats. Apoptosis, 2011, 16(6), 594-605.
[http://dx.doi.org/10.1007/s10495-011-0596-y] [PMID: 21479580]
[78]
Wu, J.; Wang, D.; Ruan, D.; He, Q.; Zhang, Y.; Wang, C.; Xin, H.; Xu, C.; Liu, Y. Prolonged expansion of human nucleus pulposus cells expressing human telomerase reverse transcriptase mediated by lentiviral vector. J. Orthop. Res., 2014, 32(1), 159-166.
[http://dx.doi.org/10.1002/jor.22474] [PMID: 23983186]
[79]
Ma, X.; Lin, Y.; Yang, K.; Yue, B.; Xiang, H.; Chen, B. Effect of lentivirus-mediated survivin transfection on the morphology and apoptosis of nucleus pulposus cells derived from degenerative human disc in vitro. Int. J. Mol. Med., 2015, 36(1), 186-194.
[http://dx.doi.org/10.3892/ijmm.2015.2225] [PMID: 26017192]
[80]
Liu, Y.; Yu, T.; Ma, X.X.; Xiang, H.F.; Hu, Y.G.; Chen, B.H. Lentivirus-mediated TGF-β3, CTGF and TIMP1 gene transduction as a gene therapy for intervertebral disc degeneration in an in vivo rabbit model. Exp. Ther. Med., 2016, 11(4), 1399-1404.
[http://dx.doi.org/10.3892/etm.2016.3063] [PMID: 27073456]
[81]
Yue, B.; Lin, Y.; Ma, X.; Xiang, H.; Qiu, C.; Zhang, J.; Li, L.; Chen, B. Survivin-TGFB3-TIMP1 gene therapy via lentivirus vector slows the course of intervertebral disc degeneration in an in vivo rabbit model. Spine, 2016, 41(11), 926-934.
[http://dx.doi.org/10.1097/BRS.0000000000001474] [PMID: 26839993]
[82]
Zhang, Y.H.; Zhao, Y.L.; Li, B.; Song, J.; Zhang, J.; Shao, J. Lentivirus is an efficient and stable transduction vector for intervertebral disc cells. World Neurosurg., 2018, 111, e348-e354.
[http://dx.doi.org/10.1016/j.wneu.2017.12.055] [PMID: 29258934]
[83]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[84]
Zhou, X.; Ma, C.; Hu, B.; Tao, Y.; Wang, J.; Huang, X.; Zhao, T.; Han, B.; Li, H.; Liang, C.; Chen, Q.; Li, F. FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway. FASEB J., 2018.fj201800373R
[http://dx.doi.org/10.1096/fj.201800373R] [PMID: 29890089]
[85]
Zhou, J.; Sun, J.; Markova, D.Z.; Li, S.; Kepler, C.K.; Hong, J.; Huang, Y.; Chen, W.; Xu, K.; Wei, F.; Ye, W. MicroRNA-145 overexpression attenuates apoptosis and increases matrix synthesis in nucleus pulposus cells. Life Sci., 2019, 221, 274-283.
[http://dx.doi.org/10.1016/j.lfs.2019.02.041] [PMID: 30797016]
[86]
Zhang, W.L.; Chen, Y.F.; Meng, H.Z.; Du, J.J.; Luan, G.N.; Wang, H.Q.; Yang, M.W.; Luo, Z.J. Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration. J. Orthop. Res., 2017, 35(6), 1323-1334.
[http://dx.doi.org/10.1002/jor.23313] [PMID: 27227700]
[87]
Mali, P.; Esvelt, K.M.; Church, G.M. Cas9 as a versatile tool for engineering biology. Nat. Methods, 2013, 10(10), 957-963.
[http://dx.doi.org/10.1038/nmeth.2649] [PMID: 24076990]
[88]
Kungulovski, G.; Jeltsch, A. Epigenome editing: State of the art, concepts, and perspectives. Trends Genet., 2016, 32(2), 101-113.
[http://dx.doi.org/10.1016/j.tig.2015.12.001] [PMID: 26732754]
[89]
Stover, J.D.; Farhang, N.; Berrett, K.C.; Gertz, J.; Lawrence, B.; Bowles, R.D. CRISPR Epigenome editing of AKAP150 in DRG neurons abolishes degenerative IVD-induced neuronal activation. Mol. Ther., 2017, 25(9), 2014-2027.
[http://dx.doi.org/10.1016/j.ymthe.2017.06.010] [PMID: 28676344]
[90]
Browne, S.; Fontana, G.; Rodriguez, B.J.; Pandit, A. A protective extracellular matrix-based gene delivery reservoir fabricated by electrostatic charge manipulation. Mol. Pharm., 2012, 9(11), 3099-3106.
[http://dx.doi.org/10.1021/mp300231d] [PMID: 23013232]
[91]
Newland, B.; Moloney, T.C.; Fontana, G.; Browne, S.; Abu-Rub, M.T.; Dowd, E.; Pandit, A.S. The neurotoxicity of gene vectors and its amelioration by packaging with collagen hollow spheres. Biomaterials, 2013, 34(8), 2130-2141.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.049] [PMID: 23245921]
[92]
Yang, W.; Wang, F.; Feng, L.; Yan, S.; Guo, R. Applications and prospects of non-viral vectors in bone regeneration. Curr. Gene Ther., 2018, 18(1), 21-28.
[http://dx.doi.org/10.2174/1566523218666180227154232] [PMID: 29493451]
[93]
Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 2014, 15(8), 541-555.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[94]
Zheng, Q.; Lin, D.; Lei, L.; Li, X.; Shi, S. Engineered non-viral gene vectors for combination cancer therapy: A review. J. Biomed. Nanotechnol., 2017, 13(12), 1565-1580.
[http://dx.doi.org/10.1166/jbn.2017.2489] [PMID: 29490748]
[95]
Nishida, K.; Doita, M.; Takada, T.; Kakutani, K.; Miyamoto, H.; Shimomura, T.; Maeno, K.; Kurosaka, M. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine, 2006, 31(13), 1415-1419.
[http://dx.doi.org/10.1097/01.brs.0000219945.70675.dd] [PMID: 16741448]
[96]
Suzuki, T.; Nishida, K.; Kakutani, K.; Maeno, K.; Yurube, T.; Takada, T.; Kurosaka, M.; Doita, M. Sustained long-term RNA interference in nucleus pulposus cells in vivo mediated by unmodified small interfering RNA. Eur. Spine J., 2009, 18(2), 263-270.
[http://dx.doi.org/10.1007/s00586-008-0873-9] [PMID: 19142673]
[97]
Bucher, C.; Gazdhar, A.; Benneker, L.M.; Geiser, T.; Gantenbein-Ritter, B. Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system. Stem Cells Int., 2013, 2013326828
[http://dx.doi.org/10.1155/2013/326828] [PMID: 24454406]
[98]
May, R.D.; Tekari, A.; Frauchiger, D.A.; Krismer, A.; Benneker, L.M.; Gantenbein, B. Efficient nonviral transfection of primary intervertebral disc cells by electroporation for tissue engineering application. Tissue Eng. Part C Methods, 2017, 23(1), 30-37.
[http://dx.doi.org/10.1089/ten.tec.2016.0355] [PMID: 27968705]
[99]
Yang, Z.; Chang, L.; Chiang, C.L.; Lee, L.J. Micro-/nano-electroporation for active gene delivery. Curr. Pharm. Des., 2015, 21(42), 6081-6088.
[http://dx.doi.org/10.2174/1381612821666151027152121] [PMID: 26503150]
[100]
Lambricht, L.; Lopes, A.; Kos, S.; Sersa, G.; Préat, V.; Vandermeulen, G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin. Drug Deliv., 2016, 13(2), 295-310.
[http://dx.doi.org/10.1517/17425247.2016.1121990] [PMID: 26578324]
[101]
Wan, C.; Li, F.; Li, H. Gene therapy for ocular diseases meditated by ultrasound and microbubbles. (Review) Mol. Med. Rep., 2015, 12(4), 4803-4814.
[http://dx.doi.org/10.3892/mmr.2015.4054] [PMID: 26151686]
[102]
Chung, S.A.; Wei, A.Q.; Connor, D.E.; Webb, G.C.; Molloy, T.; Pajic, M.; Diwan, A.D. Nucleus pulposus cellular longevity by telomerase gene therapy. Spine, 2007, 32(11), 1188-1196.
[http://dx.doi.org/10.1097/BRS.0b013e31805471a3] [PMID: 17495775]
[103]
Morrey, M.E.; Anderson, P.A.; Chambers, G.; Paul, R. Optimizing nonviral-mediated transfection of human intervertebral disc chondrocytes. Spine J., 2008, 8(5), 796-803.
[http://dx.doi.org/10.1016/j.spinee.2007.05.010] [PMID: 18023624]
[104]
Han, D.; Ding, Y.; Liu, S.L.; Wang, G.; Si, I.C.; Wang, X.; Cui, L.; Huang, D. Double role of Fas ligand in the apoptosis of intervertebral disc cells in vitro. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41(11), 938-947.
[http://dx.doi.org/10.1093/abbs/gmp087] [PMID: 19902128]
[105]
Banala, R.R.; Vemuri, S.K.; Dar, G.H.; Palanisamy, V.; Penkulinti, M.; Surekha, M.V.; Gurava Reddy, A.V.; Nalam, M.R.; Subbaiah, G. Efficiency of dual siRNA-mediated gene therapy for Intervertebral Disc Degeneration (IVDD). Spine J., 2019, 19(5), 896-904.
[http://dx.doi.org/10.1016/j.spinee.2018.10.016] [PMID: 30439528]
[106]
Tros de Ilarduya, C.; Sun, Y.; Düzgüneş, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci., 2010, 40(3), 159-170.
[http://dx.doi.org/10.1016/j.ejps.2010.03.019] [PMID: 20359532]
[107]
Feng, G.; Chen, H.; Li, J.; Huang, Q.; Gupte, M.J.; Liu, H.; Song, Y.; Ge, Z. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials, 2015, 52, 1-13.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.024] [PMID: 25818409]
[108]
Feng, G.; Zhang, Z.; Dang, M.; Zhang, X.; Doleyres, Y.; Song, Y.; Chen, D.; Ma, P.X. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials, 2017, 131, 86-97.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.029] [PMID: 28376367]
[109]
Tkach, M.; Théry, C. Communication by extracellular vesicles: Where we are and where we need to go. Cell, 2016, 164(6), 1226-1232.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[110]
György, B.; Hung, M.E.; Breakefield, X.O.; Leonard, J.N. Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Annu. Rev. Pharmacol. Toxicol., 2015, 55, 439-464.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124630] [PMID: 25292428]
[111]
EL, Andaloussi S.; Mäger, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov., 2013, 12(5), 347-357.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[112]
Lu, K.; Li, H.Y.; Yang, K.; Wu, J.L.; Cai, X.W.; Zhou, Y.; Li, C.Q. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: In-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res. Ther., 2017, 8(1), 108.
[http://dx.doi.org/10.1186/s13287-017-0563-9] [PMID: 28486958]
[113]
Mathiyalagan, P.; Sahoo, S. Exosomes-based gene therapy for microRNA delivery. Methods Mol. Biol., 2017, 1521, 139-152.
[http://dx.doi.org/10.1007/978-1-4939-6588-5_9] [PMID: 27910046]
[114]
Tan, A.; Rajadas, J.; Seifalian, A.M. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv. Drug Deliv. Rev., 2013, 65(3), 357-367.
[http://dx.doi.org/10.1016/j.addr.2012.06.014] [PMID: 22820532]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 3
Year: 2020
Page: [194 - 205]
Pages: 12
DOI: 10.2174/1389201020666191024171618
Price: $65

Article Metrics

PDF: 31
HTML: 3