Nanoparticles and Vaccine Development

Author(s): Mehdi kheirollahpour, Mohsen Mehrabi*, Naser Mohammadpour Dounighi*, Mohsen Mohammadi, Alireza Masoudi.

Journal Name: Pharmaceutical Nanotechnology

Volume 8 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses. The use of nanoparticles in vaccine formulations allows not only enhanced immunogenicity and stability of antigen, but also targeted delivery and slow release. Over the past decade, nanoscale size materials such as virus-like particles, liposomes, ISCOMs, polymeric, inorganic nanoparticles and emulsions have gained attention as potential delivery vehicles for vaccine antigens, which can both stabilize vaccine antigens and act as adjuvants. This advantage is attributable to the nanoscale particle size, which facilitates uptake by Antigen- Presenting Cells (APCs), then leading to efficient antigen recognition and presentation. Modifying the surfaces of nanoparticles with different targeting moieties permits the delivery of antigens to specific receptors on the cell surface, thereby stimulating selective and specific immune responses. This review provides an overview of recent advances in nanovaccinology.

Keywords: Adjuvants, antigens, immune responses, nanoparticles, nanovaccinology, vaccine delivery.

[1]
Plotkin SL, Plotkin SA. A short history of vaccination. Vaccines 2004; 5: 1-16.
[2]
Hasson SSAA, Al-Busaidi JKZ, Sallam TA. The past, current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed 2015; 5(5): 344-53.
[http://dx.doi.org/10.1016/S2221-1691(15)30366-X]
[3]
Klimov VV. Vaccination from basic to clinical immunology. Springer: The Netherlands 2019; pp. 291-304.
[http://dx.doi.org/10.1007/978-3-030-03323-1_8]
[4]
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines 2015; 3(2): 320-43.
[http://dx.doi.org/10.3390/vaccines3020320] [PMID: 26343190]
[5]
Laupèze B, Hervé C, Di Pasquale A, Tavares Da Silva F. Adjuvant systems for vaccines:13 years of post-licensure experience in diverse populations have progressed the way adjuvanted vaccine safety is investigated and understood. Vaccine 2019; 37(38): 5670-80.
[http://dx.doi.org/10.1016/j.vaccine.2019.07.098] [PMID: 31420171]
[6]
Lakshmi P, Kumar S, Pawar S, Sudheesh M, Pawar RS. Plant-based adjuvant in vaccine immunogenicity: a review. Curr Tradit Med 2018; 4(3): 215-36.
[http://dx.doi.org/10.2174/2215083804666180830142648]
[7]
Moser M, Leo O. Key concepts in immunology. Vaccine 2010; 28(Suppl. 3): C2-C13.
[http://dx.doi.org/10.1016/j.vaccine.2010.07.022] [PMID: 20713253]
[8]
Mehrabi M, Dounighi NM, Rezayat Sorkhabadi SM, et al. Development and physicochemical, toxicity and immunogenicity assessments of recombinant hepatitis B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: as a novel vaccine delivery system and adjuvant. Artif Cells Nanomed Biotechnol 2018; 46(Suppl. 1): 230-40.
[9]
Sekhon BS, Saluja V. Nanovaccines-an overview. Int J Pharm Front Res 2011; 1(1): 101-9.
[10]
Mamo T, Poland GA. Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine 2012; 30(47): 6609.
[11]
Yadav HK, Dibi M, Mohammad A, Srouji AE. Nanovaccines formulation and applications-a review. J Drug Deliv Sci Technol 2018; 44: 380-7.
[http://dx.doi.org/10.1016/j.jddst.2018.01.015]
[12]
Sulczewski FB, Liszbinski RB, Romão PRT, Rodrigues Jr LC. Nanoparticle vaccines against viral infections. Arch Virol 2018; 163(9): 2313-25.
[http://dx.doi.org/10.1007/s00705-018-3856-0] [PMID: 29728911]
[13]
Rabkin A, Samuha S, Abutbul RE, Ezersky V, Meshi L, Golan Y. New nanocrystalline materials: a previously unknown simple cubic phase in the SnS binary system. Nano Lett 2015; 15(3): 2174-9.
[http://dx.doi.org/10.1021/acs.nanolett.5b00209] [PMID: 25710674]
[14]
Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9(9): 1095-107.
[http://dx.doi.org/10.1586/erv.10.89] [PMID: 20822351]
[15]
Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 2004; 173(5): 3148-54.
[http://dx.doi.org/10.4049/jimmunol.173.5.3148] [PMID: 15322175]
[16]
Mottram PL, Leong D, Crimeen-Irwin B, et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 2007; 4(1): 73-84.
[http://dx.doi.org/10.1021/mp060096p] [PMID: 17274665]
[17]
Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013; 19(12): 1597-608.
[http://dx.doi.org/10.1038/nm.3409] [PMID: 24309663]
[18]
Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 2011; 29(6): 294-306.
[http://dx.doi.org/10.1016/j.tibtech.2011.02.004] [PMID: 21459467]
[19]
Demento SL, Cui W, Criscione JM, et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 2012; 33(19): 4957-64.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.041] [PMID: 22484047]
[20]
Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology 2010; 151(2): 458-65.
[http://dx.doi.org/10.1210/en.2009-1082] [PMID: 20016026]
[21]
O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant--‘the long and winding road’. Drug Discov Today 2009; 14(11-12): 541-51.
[http://dx.doi.org/10.1016/j.drudis.2009.02.009] [PMID: 19508916]
[22]
Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci 2008; 101(1): 4-21.
[http://dx.doi.org/10.1093/toxsci/kfm169] [PMID: 17602205]
[23]
Moon JJ, Suh H, Polhemus ME, Ockenhouse CF, Yadava A, Irvine DJ. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One 2012; 7(2): e31472
[http://dx.doi.org/10.1371/journal.pone.0031472] [PMID: 22328935]
[24]
Mamo T, Moseman EA, Kolishetti N, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 2010; 5(2): 269-85.
[http://dx.doi.org/10.2217/nnm.10.1] [PMID: 20148638]
[25]
Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011; 28(2): 215-36.
[http://dx.doi.org/10.1007/s11095-010-0241-4] [PMID: 20721603]
[26]
Shae D, Postma A, Wilson JT. Vaccine delivery: where polymer chemistry meets immunology. Ther Deliv 2016; 7(4)
[http://dx.doi.org/10.4155/tde-2016-0008]
[27]
Akagi T, Baba M, Akashi M. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine Polymers in nanomedicine. Springer: the Netherlands 2011; pp. 31-64.
[http://dx.doi.org/10.1007/12_2011_150]
[28]
Kim H, Griffith T, Panyam J. Poly (D, L-lactide-co-glycolide) nanoparticles as a vaccine delivery platform for TLR7/8 agonist-based cancer vaccine. J Pharmacol Exp Ther 2019; 118: 254953
[29]
Urbanavicius D, Alvarez T, Such GK, Johnston APR, Mintern JD. The potential of nanoparticle vaccines as a treatment for cancer. Mol Immunol 2018; 98: 2-7.
[http://dx.doi.org/10.1016/j.molimm.2017.12.022] [PMID: 29395251]
[30]
Li P, Luo Z, Liu P, et al. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release 2013; 168(3): 271-9.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.025] [PMID: 23562637]
[31]
Ekici S, Ilgin P, Butun S, Sahiner N. Hyaluronic acid hydrogel particles with tunable charges as potential drug delivery devices. Carbohydr Polym 2011; 84(4): 1306-13.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.028]
[32]
Biswas A, Gomes A, Sengupta J, et al. Nanoparticle-conjugated animal venom-toxins and their possible therapeutic potential. J Venom Res 2012; 3: 15-21.
[PMID: 23236583]
[33]
Dounighi N, Damavandi M, Zolfagharian H, Moradi S. Preparing and characterizing chitosan nanoparticles containing Hemiscorpius lepturus scorpion venom as an antigen delivery system. Arch Razi Inst 2012; 67(2): 145-53.
[34]
Mehrabi M, Dounighi NM, Rezayat SM, et al. Novel approach to improve vaccine immunogenicity: mannosylated chitosan nanoparticles loaded with recombinant hepatitis B antigen as a targeted vaccine delivery system. J Drug Deliv Sci Technol 2018; 44: 19-26.
[http://dx.doi.org/10.1016/j.jddst.2017.11.022]
[35]
Feng G, Jiang Q, Xia M, et al. Enhanced immune response and protective effects of nano-chitosanbased DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013; 8(4)e61135
[http://dx.doi.org/10.1371/journal.pone.0061135] [PMID: 23637790]
[36]
Zhao K, Zhang Y, Zhang X, et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomedicine 2014; 9: 389-402.
[http://dx.doi.org/10.2147/IJN.S54226] [PMID: 24426783]
[37]
Harde H, Agrawal AK, Jain S. Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine 2014; 9(16): 2511-29.
[http://dx.doi.org/10.2217/nnm.13.225] [PMID: 24593004]
[38]
Rezayat M. Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system. Arch Razi Inst 2015; 70(4): 269-77.
[39]
Mehrabi M, Dounighi NM, Rezayat Sorkhabadi SM, et al. Development and physicochemical, toxicity and immunogenicity assessments of recombinant hepatitis B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: as a novel vaccine delivery system and adjuvant. Artif Cells Nanomed Biotechnol 2018; 46: 230-40.
[PMID: 29260901]
[40]
Oliveira CR, Rezende CM, Silva MR, Pêgo AP, Borges O, Goes AM. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis. PLoS Negl Trop Dis 2012; 6(11): e1894
[http://dx.doi.org/10.1371/journal.pntd.0001894] [PMID: 23209848]
[41]
Pedrosa SS, Gama M. Hyaluronic acid and its application in nanomedicine. Carbo Appl Med 2014; 2014: 55-89.
[42]
Verheul RJ, Slütter B, Bal SM, Bouwstra JA, Jiskoot W, Hennink WE. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J Control Release 2011; 156(1): 46-52.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.014] [PMID: 21784113]
[43]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[44]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[45]
Lou B, De Beuckelaer A, Boonstra E, et al. Modular core-shell polymeric nanoparticles mimicking viral structures for vaccination. J Control Release 2019; 293: 48-62.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.006] [PMID: 30428307]
[46]
Chen Y-S, Hung Y-C, Lin W-H, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 2010; 21(19)195101
[http://dx.doi.org/10.1088/0957-4484/21/19/195101] [PMID: 20400818]
[47]
Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013; 7(5): 3926-38.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[48]
Xu L, Liu Y, Chen Z, et al. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 2012; 12(4): 2003-12.
[http://dx.doi.org/10.1021/nl300027p] [PMID: 22372996]
[49]
Stone JW, Thornburg NJ, Blum DL, Kuhn SJ, Wright DW, Crowe JE Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology 2013; 24(29)295102
[http://dx.doi.org/10.1088/0957-4484/24/29/295102] [PMID: 23799651]
[50]
Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza a virus. Nanomedicine 2014; 9(2): 237-51.
[http://dx.doi.org/10.2217/nnm.13.58] [PMID: 23829488]
[51]
Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V. Enhanced mucosal immune responses against tetanus toxoid using novel delivery system comprised of chitosan-functionalized gold nanoparticles and botanical adjuvant: characterization, immunogenicity, and stability assessment. J Pharm Sci 2014; 103(11): 3448-56.
[http://dx.doi.org/10.1002/jps.24161] [PMID: 25219511]
[52]
Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci 2011; 44(5): 653-9.
[http://dx.doi.org/10.1016/j.ejps.2011.10.012] [PMID: 22064451]
[53]
Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K. Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater 2012; 24(8): 1462-71.
[http://dx.doi.org/10.1021/cm3001688]
[54]
Maquieira Á, Brun EM, Garcés-García M, Puchades R. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem 2012; 84(21): 9340-8.
[http://dx.doi.org/10.1021/ac3020998] [PMID: 23005036]
[55]
Sun B, Ji Z, Liao Y-P, et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 2013; 7(12): 10834-49.
[http://dx.doi.org/10.1021/nn404211j] [PMID: 24261790]
[56]
Temchura VV, Kozlova D, Sokolova V, Überla K, Epple M. Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen. Biomaterials 2014; 35(23): 6098-105.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.010] [PMID: 24776487]
[57]
He Q, Mitchell AR, Johnson SL, Wagner-Bartak C, Morcol T, Bell SJ. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 2000; 7(6): 899-903.
[PMID: 11063495]
[58]
Al-Deen FN, Selomulya C, Ma C, Coppel RL. Superparamagnetic nanoparticle delivery of DNA vaccine. Methods Mol Biol 2014; 1143: 181-94.
[http://dx.doi.org/10.1007/978-1-4939-0410-5_12]
[59]
Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2(3): 22-32.
[http://dx.doi.org/10.1016/S1748-0132(07)70084-1]
[60]
Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine 2012; 7(12): 1877-93.
[http://dx.doi.org/10.2217/nnm.12.157] [PMID: 23249332]
[61]
Li Z, Ding S, Li Y. Study on the immunity protection of 14-3-3-MPLA-liposome vaccine against cystic echinococcosis in mice. Front Lab Med 2019. in press
[http://dx.doi.org/10.1016/j.flm.2019.05.002]
[62]
Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release 2019; 303: 130-50.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.025] [PMID: 31022431]
[63]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[64]
Li S, Rizzo MA, Bhattacharya S, Huang L. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther 1998; 5(7): 930-7.
[http://dx.doi.org/10.1038/sj.gt.3300683] [PMID: 9813664]
[65]
Morein B, Sundquist B, Höglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 1984; 308(5958): 457-60.
[http://dx.doi.org/10.1038/308457a0] [PMID: 6709052]
[66]
Alexyuk PG, Bogoyavlenskiy AP, Alexyuk MS, et al. Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins. Arch Virol 2019; 164(7): 1793-803.
[http://dx.doi.org/10.1007/s00705-019-04273-2] [PMID: 31079211]
[67]
Buglione-Corbett R, Pouliot K, Marty-Roix R, et al. Reduced MyD88 dependency of ISCOMATRIX™ adjuvant in a DNA prime-protein boost HIV vaccine. Hum Vaccin Immunother 2014; 10(4): 1078-90.
[http://dx.doi.org/10.4161/hv.27907] [PMID: 24513632]
[68]
Pearse MJ, Drane D. ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev 2005; 57(3): 465-74.
[http://dx.doi.org/10.1016/j.addr.2004.09.006] [PMID: 15560952]
[69]
Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 2008; 60(8): 915-28.
[http://dx.doi.org/10.1016/j.addr.2007.05.017] [PMID: 18325628]
[70]
Xu J, Guo H-C, Wei Y-Q, et al. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine. Appl Microbiol Biotechnol 2014; 98(8): 3529-38.
[http://dx.doi.org/10.1007/s00253-013-5485-6] [PMID: 24413974]
[71]
Beyer T, Herrmann M, Reiser C, Bertling W, Hess J. Bacterial carriers and virus-like-particles as antigen delivery devices: role of dendritic cells in antigen presentation. Curr Drug Targets Infect Disord 2001; 1(3): 287-302.
[http://dx.doi.org/10.2174/1568005014605973] [PMID: 12455402]
[72]
Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 2012; 31(1): 58-83.
[http://dx.doi.org/10.1016/j.vaccine.2012.10.083] [PMID: 23142589]
[73]
Markowitz LE, Hariri S, Lin C, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003-2010. J Infect Dis 2013; 208(3): 385-93.
[http://dx.doi.org/10.1093/infdis/jit192] [PMID: 23785124]
[74]
Deschuyteneer M, Elouahabi A, Plainchamp D, et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum Vaccin 2010; 6(5): 407-19.
[http://dx.doi.org/10.4161/hv.6.5.11023] [PMID: 20953154]
[75]
Wu T, Li S-W, Zhang J, Ng M-H, Xia N-S, Zhao Q. Hepatitis E vaccine development: a 14 year odyssey. Hum Vaccin Immunother 2012; 8(6): 823-7.
[http://dx.doi.org/10.4161/hv.20042] [PMID: 22699438]
[76]
Martin SJ, Vyakarnam A, Cheingsong-Popov R, et al. Immunization of human HIV-seronegative volunteers with recombinant p17/p24: Ty virus-like particles elicits HIV-1 p24-specific cellular and humoral immune responses. AIDS 1993; 7(10): 1315-23.
[http://dx.doi.org/10.1097/00002030-199310000-00003] [PMID: 8267904]
[77]
Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods 2006; 40(1): 60-5.
[http://dx.doi.org/10.1016/j.ymeth.2006.07.018] [PMID: 16997714]
[78]
Shah P, Belodia D, Shelat P. Nanoemulsion: a pharmaceutical review. Sys Rev Pharma 2010; 1(1): 24-32.
[http://dx.doi.org/10.4103/0975-8453.59509]
[79]
O’Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 2007; 6(5): 699-710.
[http://dx.doi.org/10.1586/14760584.6.5.699] [PMID: 17931151]
[80]
Klucker MF, Dalençon F, Probeck P, Haensler J. AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method. J Pharm Sci 2012; 101(12): 4490-500.
[http://dx.doi.org/10.1002/jps.23311] [PMID: 22941944]
[81]
Cotte J-F, Sonnery S, Martial F, et al. Characterization of surfactants in an oil-in-water emulsion-based vaccine adjuvant using MS and HPLC-MS: structural analysis and quantification. Int J Pharm 2012; 436(1-2): 233-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.018] [PMID: 22713283]
[82]
Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 2002; 1(1): 111-8.
[http://dx.doi.org/10.1586/14760584.1.1.111] [PMID: 12908518]
[83]
Dar P, Kalaivanan R, Sied N, et al. Montanide ISA™ 201 adjuvanted FMD vaccine induces improved immune responses and protection in cattle. Vaccine 2013; 31(33): 3327-32.
[http://dx.doi.org/10.1016/j.vaccine.2013.05.078] [PMID: 23735678]
[84]
Marques Neto LM, Kipnis A, Junqueira-Kipnis AP. Role of metallic nanoparticles in vaccinology: implications for infectious disease vaccine development. Front Immunol 2017; 8: 239.
[http://dx.doi.org/10.3389/fimmu.2017.00239] [PMID: 28337198]
[85]
Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine 2011; 6(5): 815-35.
[http://dx.doi.org/10.2217/nnm.11.79] [PMID: 21793674]
[86]
Hirsch C, Roesslein M, Krug HF, Wick P. Nanomaterial cell interactions: are current in vitro tests reliable? Nanomedicine 2011; 6(5): 837-47.
[http://dx.doi.org/10.2217/nnm.11.88] [PMID: 21793675]
[87]
Fubini B, Fenoglio I, Tomatis M, Turci F. Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine 2011; 6(5): 899-920.
[http://dx.doi.org/10.2217/nnm.11.80] [PMID: 21793679]
[88]
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 2018; 13(1): 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[89]
Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int 2014; 2014498420
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[90]
Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother 2014; 10(9): 2761-74.
[http://dx.doi.org/10.4161/hv.29589] [PMID: 25483497]
[91]
Bastola R, Lee S. Physicochemical properties of particulate vaccine adjuvants: their pivotal role in modulating immune responses. J Pharm Investig 2019; 49(3): 279-85.
[http://dx.doi.org/10.1007/s40005-018-0406-4]
[92]
Fong W-K, Moore TL, Balog S, et al. Nanoparticle behaviour in complex media: methods for characterizing physicochemical properties, evaluating protein corona formation, and implications for biological studies Biological responses to nanoscale particles. Springer 2019; pp. 101-50.
[http://dx.doi.org/10.1007/978-3-030-12461-8_5]
[93]
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019; 143: 3-21.
[http://dx.doi.org/10.1016/j.addr.2019.01.002] [PMID: 30639257]
[94]
Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol 2018; 9: 2224.
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[95]
Hsiao PF, Tsai H-C, Peng S, et al. Transdermal delivery of poly (ethylene glycol)-co-oleylamine modified gold nanoparticles: Effect of size and shape. Mater Chem Phys 2019; 224: 22-8.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.060]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 8
ISSUE: 1
Year: 2020
Page: [6 - 21]
Pages: 16
DOI: 10.2174/2211738507666191024162042

Article Metrics

PDF: 23
HTML: 6