Clustering and Sampling of the c-Met Conformational Space: A Computational Drug Discovery Study

Author(s): Korosh Mashayekh, Shahrzad Sharifi, Tahereh Damghani, Maryam Elyasi, Mohammad S. Avestan, Somayeh Pirhadi*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 9 , 2019

Become EABM
Become Reviewer

Abstract:

Background: c-Met kinase plays a critical role in a myriad of human cancers, and a massive scientific work was devoted to design more potent inhibitors.

Objective: In this study, 16 molecular dynamics simulations of different complexes of potent c-Met inhibitors with U-shaped binding mode were carried out regarding the dynamic ensembles to design novel potent inhibitors.

Methods: A cluster analysis was performed, and the most representative frame of each complex was subjected to the structure-based pharmacophore screening. The GOLD docking program investigated the interaction energy and pattern of output hits from the virtual screening. The most promising hits with the highest scoring values that showed critical interactions with c-Met were presented for ADME/Tox analysis.

Results: The screening yielded 45,324 hits that all of them were subjected to the docking studies and 10 of them with the highest-scoring values having diverse structures were presented for ADME/Tox analyses.

Conclusion: The results indicated that all the hits shared critical Pi-Pi stacked and hydrogen bond interactions with Tyr1230 and Met1160 respectively.

Keywords: c-Met, molecular dynamics simulation, docking, virtual screening, clustering, potent inhibitor.

[1]
Heymach, J.; Krilov, L.; Alberg, A.; Baxter, N.; Chang, S.M.; Corcoran, R.B.; Dale, W.; DeMichele, A.; Magid Diefenbach, C.S.; Dreicer, R.; Epstein, A.S.; Gillison, M.L.; Graham, D.L.; Jones, J.; Ko, A.H.; Lopez, A.M.; Maki, R.G.; Rodriguez-Galindo, C.; Schilsky, R.L.; Sznol, M.; Westin, S.N.; Burstein, H. Clinical cancer advances 2018: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol., 2018, 36(10), 1020-1044.
[http://dx.doi.org/10.1200/JCO.2017.77.0446] [PMID: 29380678]
[2]
Vaidya, J.S.; Bulsara, M.; Wenz, F.; Tobias, J.S.; Joseph, D.; Baum, M. Targeted radiotherapy for early breast cancer. Lancet, 2018, 391(10115), 26-27.
[http://dx.doi.org/10.1016/S0140-6736(17)33316-0] [PMID: 29323648]
[3]
Low, P.S.; Singhal, S.; Srinivasarao, M. Fluorescence-guided surgery of cancer: Applications, tools and perspectives. Curr. Opin. Chem. Biol., 2018, 45, 64-72.
[http://dx.doi.org/10.1016/j.cbpa.2018.03.002] [PMID: 29579618]
[4]
Fakih, M. Biological therapy in colorectal cancer in the era of sidedness. Oncol. Times, 2017, 39, 1-11.
[http://dx.doi.org/10.1097/01.COT.0000520157.37084.23]
[5]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[6]
Basilico, C.; Arnesano, A.; Galluzzo, M.; Comoglio, P.M.; Michieli, P. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J. Biol. Chem., 2008, 283(30), 21267-21277.
[http://dx.doi.org/10.1074/jbc.M800727200] [PMID: 18495663]
[7]
Ma, P.C.; Maulik, G.; Christensen, J.; Salgia, R. c-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev., 2003, 22(4), 309-325.
[http://dx.doi.org/10.1023/A:1023768811842] [PMID: 12884908]
[8]
Bradley, C.A.; Salto-Tellez, M.; Laurent-Puig, P.; Bardelli, A.; Rolfo, C.; Tabernero, J.; Khawaja, H.A.; Lawler, M.; Johnston, P.G.; Van Schaeybroeck, S. Targeting c-MET in gastrointestinal tumours: Rationale, opportunities and challenges. Nat. Rev. Clin. Oncol., 2017, 14(9), 562-576.
[http://dx.doi.org/10.1038/nrclinonc.2017.40] [PMID: 28374784]
[9]
Yamamoto, S.; Tsuda, H.; Miyai, K.; Takano, M.; Tamai, S.; Matsubara, O. Gene amplification and protein overexpression of MET are common events in ovarian clear-cell adenocarcinoma: their roles in tumor progression and prognostication of the patient. Mod. Pathol., 2011, 24(8), 1146-1155.
[http://dx.doi.org/10.1038/modpathol.2011.70] [PMID: 21478826]
[10]
Blumenschein, G.R., Jr; Mills, G.B.; Gonzalez-Angulo, A.M. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J. Clin. Oncol., 2012, 30(26), 3287-3296.
[http://dx.doi.org/10.1200/JCO.2011.40.3774] [PMID: 22869872]
[11]
Parikh, P.K.; Ghate, M.D. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur. J. Med. Chem., 2018, 143, 1103-1138.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.044] [PMID: 29157685]
[12]
Cui, J.J. Targeting receptor tyrosine kinase MET in cancer: Small molecule inhibitors and clinical progress. J. Med. Chem., 2014, 57(11), 4427-4453.
[http://dx.doi.org/10.1021/jm401427c] [PMID: 24320965]
[13]
Asses, Y.; Leroux, V.; Tairi-Kellou, S.; Dono, R.; Maina, F.; Maigret, B. Analysis of c-Met kinase domain complexes: A new specific catalytic site receptor model for defining binding modes of ATP-competitive ligands. Chem. Biol. Drug Des., 2009, 74(6), 560-570.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00895.x] [PMID: 19909299]
[14]
Gonçalves, M.A.; Santos, L.S.; Peixoto, F.C.; da Cunha, E.F.; Silva, T.C.; Ramalho, T.C. Comparing structure and dynamics of solvation of different iron oxide phases for enhanced magnetic resonance imaging. ChemistrySelect, 2017, 2(31), 10136-10142.
[http://dx.doi.org/10.1002/slct.201701705]
[15]
Sohn, Y.S.; Park, C.; Lee, Y.; Kim, S.; Thangapandian, S.; Kim, Y.; Kim, H-H.; Suh, J-K.; Lee, K.W. Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J. Mol. Graph. Model., 2013, 46, 1-9.
[http://dx.doi.org/10.1016/j.jmgm.2013.08.012] [PMID: 24104184]
[16]
Shiri, F.; Pirhadi, S.; Ghasemi, J.B. Dynamic structure based pharmacophore modeling of the Acetylcholinesterase reveals several potential inhibitors. J. Biomol. Struct. Dyn., 2019, 37(7), 1800-1812.
[http://dx.doi.org/10.1080/07391102.2018.1468281] [PMID: 29695192]
[17]
Nazarshodeh, E.; Gharaghani, S. Toward a hierarchical virtual screening and toxicity risk analysis for identifying novel CA XII inhibitors. Biosystems, 2017, 162, 35-43.
[http://dx.doi.org/10.1016/j.biosystems.2017.09.005] [PMID: 28899791]
[18]
Choudhury, C.; Sastry, G.N. Pharmacophore modelling and screening: Concepts, recent developments and applications in rational drug design.In: Structural Bioinformatics: Applications in Preclinical Drug Discovery Process; Gopi, M.C., Ed.; Springer, 2019, pp. 25-53.
[http://dx.doi.org/10.1007/978-3-030-05282-9_2]
[19]
Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1)W442-8
[http://dx.doi.org/10.1093/nar/gkw287] [PMID: 27095195]
[20]
Bender, A.; Glen, R.C. A discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication. J. Chem. Inf. Model., 2005, 45(5), 1369-1375.
[http://dx.doi.org/10.1021/ci0500177] [PMID: 16180913]
[21]
Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P-P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363.
[http://dx.doi.org/10.1021/jm2007613] [PMID: 21812414]
[22]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[23]
DataWarrior program available at http://www.openmolecules.org/datawarrior/
[24]
Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2013, 2, 353-353.
[http://dx.doi.org/10.1186/2193-1801-2-353] [PMID: 23961417]
[25]
Newby, D.; Freitas, A.A.; Ghafourian, T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur. J. Med. Chem., 2015, 90, 751-765.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.006] [PMID: 25528330]
[26]
Gupta, R.C.; Malik, J.K.; Milatovic, D. Organophosphate and carbamate pesticides.Reproductive and Developmental Toxicology; Gupta, R.C., Ed.; Elsevier, 2011, pp. 471-486.
[http://dx.doi.org/10.1016/B978-0-12-382032-7.10037-2]
[27]
Tovar, R.; Leikin, J.B. Irritants and corrosives. Emerg. Med. Clin. North Am., 2015, 33(1), 117-131.
[http://dx.doi.org/10.1016/j.emc.2014.09.009] [PMID: 25455665]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 9
Year: 2019
Page: [635 - 648]
Pages: 14
DOI: 10.2174/1386207322666191024103902
Price: $65

Article Metrics

PDF: 19
HTML: 4
PRC: 2