An Investigation of the Anti-Parkinsonism Potential of Co-enzyme Q10 and Co-enzyme Q10 /Levodopa-carbidopa Combination in Mice

Author(s): Olakunle J. Onaolapo, Ademola O. Odeniyi, Stephen O. Jonathan, Moyinoluwa O. Samuel, Deborah Amadiegwu, Ajoke Olawale, Aisha O. Tiamiyu, Folusho O. Ojo, Hameed A. Yahaya, Oluwadamilare J. Ayeni, Adejoke Y. Onaolapo*

Journal Name: Current Aging Science

Volume 14 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Despite decades of research, neurodegenerative disorders like Parkinson’s disease remain a leading cause of disability worldwide, due to the insufficient reduction of disease burden by available medications. Recently, the benefits of dietary supplements like co-enzyme Q10 in neurodegenerative diseases have been reported.

Aim: The protective effects of supplemental co-enzyme Q10 (CQ10) and possible additive benefits of CQ10/Levodopa-Carbidopa (LD) in Chlorpromazine (CPZ)-induced Parkinsonism-like changes in mice were investigated.

Methods: Male mice were assigned to ten groups of 30 mice each. Groups included: Vehicle control (fed Standard Diet (SD), and given intraperitoneal {ip} plus oral saline), LD group (fed SD, and given ip saline plus oral LD), two groups fed CQ10-supplemented diet (at 60 and 120 mg/kg of feed), and given ip plus oral saline, CPZ group (fed SD, and given ip CPZ plus oral saline), CPZ/LD group (fed SD, and given ip CPZ plus oral LD), two groups fed CQ10-supplemented diet (at 60 and 120 mg/kg of feed) and given ip CPZ plus oral saline, and another two groups fed CQ10-supplemented diet (at 60 and 120 mg/kg of feed) and given ip CPZ plus oral LD. The total duration of study was 21 days, and treatments were administered daily. Bodyweight and food intake were measured weekly, while neurobehavioural and biochemical tests were assessed at the end of the experimental period.

Results: CQ10-supplementation was protective against CPZ-induced parkinsonism-like changes including, reduction in mortality, the reversal of retardation of open-field behaviours and reduction of catalepsy, increase in dopamine levels and decreased oxidative stress. CQ10 also showed significant improvements in these parameters when co-administered with LD. CQ10 (in groups administered CPZ/CQ10 60) showed greater benefit over LD on anxiety-related behaviours and also had additive benefits on working-memory.

Conclusion: Dietary CQ10-supplementation was associated with demonstrable benefits in CPZinduced Parkinsonism-like changes in mice.

Keywords: Antioxidant, dopamine, electron transfer chain, neurobehaviour, Parkinson's disease, intraperitoneal.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 1
Year: 2021
Published on: 23 October, 2019
Page: [62 - 75]
Pages: 14
DOI: 10.2174/1874609812666191023153724

Article Metrics

PDF: 227