Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

The Trinity of Matrix Metalloproteinases, Inflammation, and Cancer: A Literature Review of Recent Updates

Author(s): Erva Ozkan and Filiz Bakar-Ates*

Volume 19, Issue 3, 2020

Page: [206 - 221] Pages: 16

DOI: 10.2174/1871523018666191023141807

Abstract

The critical link between cancer and inflammation has been known for many years. This complex network was further complexed by revealing the association of the matrix metalloproteinase family members with inflammatory cytokines, which were previously known to be responsible for the development of metastasis. This article summarizes the current studies which evaluate the relationship between cancer and inflammatory microenvironment as well as the roles of MMPs on invasion and metastasis together.

Keywords: Cancer, cytokine, inflammation, matrix metalloproteinase, TIMP, inhibitors.

Graphical Abstract
[1]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[2]
Nagase, H.; Woessner, J.F. Jr Matrix metalloproteinases. J. Biol. Chem., 1999, 274(31), 21491-21494.
[http://dx.doi.org/10.1074/jbc.274.31.21491] [PMID: 10419448]
[3]
Sbardella, D.; Fasciglione, G.F.; Gioia, M.; Ciaccio, C.; Tundo, G.R.; Marini, S.; Coletta, M. Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol. Aspects Med., 2012, 33(2), 119-208.
[http://dx.doi.org/10.1016/j.mam.2011.10.015] [PMID: 22100792]
[4]
Gordon, J.L.; Drummond, A.H.; Galloway, W.A. Metalloproteinase inhibitors as therapeutics. Clin. Exp. Rheumatol., 1993, 11(Suppl. 8), S91-S94.
[PMID: 8391953]
[5]
Ennis, B.W.; Matrisian, L.M. Matrix degrading metalloproteinases. J. Neurooncol., 1994, 18(2), 105-109.
[http://dx.doi.org/10.1007/BF01050416] [PMID: 7964973]
[6]
Galis, Z.S.; Sukhova, G.K.; Lark, M.W.; Libby, P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest., 1994, 94(6), 2493-2503.
[http://dx.doi.org/10.1172/JCI117619] [PMID: 7989608]
[7]
McDonnell, S.; Morgan, M.; Lynch, C. Role of matrix metalloproteinases in normal and disease processes. Biochem. Soc. Trans., 1999, 27(4), 734-740.
[http://dx.doi.org/10.1042/bst0270734] [PMID: 10917674]
[8]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278(1), 16-27.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07919.x] [PMID: 21087457]
[9]
Abdelazim, I.A.; Abufaza, M.L.; Al-Kadi, M. Immunoexpression of matrix metalloproteinase-2 in epithelial ovarian cancers. Asian Pac. J. Reprod., 2013, 2(2), 136-141.
[http://dx.doi.org/10.1016/S2305-0500(13)60134-7]
[10]
Adley, B.P.; Gleason, K.J.; Yang, X.J.; Stack, M.S. Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: high level expression in clear cell carcinoma. Gynecol. Oncol., 2009, 112(2), 319-324.
[http://dx.doi.org/10.1016/j.ygyno.2008.09.025] [PMID: 18976802]
[11]
Brinckerhoff, C.E.; Rutter, J.L.; Benbow, U. Interstitial collagenases as markers of tumor progression. Clin. Cancer Res., 2000, 6(12), 4823-4830.
[PMID: 11156241]
[12]
Hofmann, H.S.; Hansen, G.; Richter, G.; Taege, C.; Simm, A.; Silber, R.E.; Burdach, S. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin. Cancer Res., 2005, 11(3), 1086-1092.
[PMID: 15709175]
[13]
Ding, Y.; Shimada, Y.; Gorrin-Rivas, M.J.; Itami, A.; Li, Z.; Hong, T.; Maeda, M.; Komoto, I.; Kawabe, A.; Kaganoi, J.; Imamura, M. Clinicopathological significance of human macrophage metalloelastase expression in esophageal squamous cell carcinoma. Oncology, 2002, 63(4), 378-384.
[http://dx.doi.org/10.1159/000066231] [PMID: 12417793]
[14]
Schveigert, D.; Cicenas, S.; Bruzas, S.; Samalavicius, N.E.; Gudleviciene, Z.; Didziapetriene, J. The value of MMP-9 for breast and non-small cell lung cancer patients’ survival. Adv. Med. Sci., 2013, 58(1), 73-82.
[http://dx.doi.org/10.2478/v10039-012-0066-y] [PMID: 23640949]
[15]
Wang, J.; Shi, Q.; Yuan, T.X.; Song, Q.L.; Zhang, Y.; Wei, Q.; Zhou, L.; Luo, J.; Zuo, G.; Tang, M.; He, T.C.; Weng, Y. Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis. Clin. Chim. Acta, 2014, 433, 225-231.
[http://dx.doi.org/10.1016/j.cca.2014.03.023] [PMID: 24704305]
[16]
Araújo, R.F., Jr; Lira, G.A.; Vilaça, J.A.; Guedes, H.G.; Leitão, M.C.A.; Lucena, H.F.; Ramos, C.C.O. Prognostic and diagnostic implications of MMP-2, MMP-9, and VEGF-α expressions in colorectal cancer. Pathol. Res. Pract., 2015, 211(1), 71-77.
[http://dx.doi.org/10.1016/j.prp.2014.09.007] [PMID: 25446246]
[17]
Fan, D.; Wang, Y.; Qi, P.; Chen, Y.; Xu, P.; Yang, X.; Jin, X.; Tian, X. MicroRNA-183 functions as the tumor suppressor via inhibiting cellular invasion and metastasis by targeting MMP-9 in cervical cancer. Gynecol. Oncol., 2016, 141(1), 166-174.
[http://dx.doi.org/10.1016/j.ygyno.2016.02.006] [PMID: 26873866]
[18]
Ahmed Haji Omar, A.; Haglund, C.; Virolainen, S.; Häyry, V.; Atula, T.; Kontio, R.; Salo, T.; Sorsa, T.; Hagström, J. MMP-7, MMP-8, and MMP-9 in oral and cutaneous squamous cell carcinomas. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2015, 119(4), 459-467.
[http://dx.doi.org/10.1016/j.oooo.2014.12.019] [PMID: 25697929]
[19]
Rodriguez-Manzaneque, J.C.; Lane, T.F.; Ortega, M.A.; Hynes, R.O.; Lawler, J.; Iruela-Arispe, M.L. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12485-12490.
[http://dx.doi.org/10.1073/pnas.171460498] [PMID: 11606713]
[20]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[21]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[22]
Schäfer, M.; Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol., 2008, 9(8), 628-638.
[http://dx.doi.org/10.1038/nrm2455] [PMID: 18628784]
[23]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[24]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[25]
Pribluda, A.; Elyada, E.; Wiener, Z.; Hamza, H.; Goldstein, R.E.; Biton, M.; Burstain, I.; Morgenstern, Y.; Brachya, G.; Billauer, H.; Biton, S.; Snir-Alkalay, I.; Vucic, D.; Schlereth, K.; Mernberger, M.; Stiewe, T.; Oren, M.; Alitalo, K.; Pikarsky, E.; Ben-Neriah, Y. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell, 2013, 24(2), 242-256.
[http://dx.doi.org/10.1016/j.ccr.2013.06.005] [PMID: 23890787]
[26]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[27]
Brenner, C.; Galluzzi, L.; Kepp, O.; Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol., 2013, 59(3), 583-594.
[http://dx.doi.org/10.1016/j.jhep.2013.03.033] [PMID: 23567086]
[28]
Weisser, S.B.; McLarren, K.W.; Kuroda, E.; Sly, L.M. Generation and characterization of murine alternatively activated macrophages. Methods Mol. Biol., 2013, 946, 225-239.
[http://dx.doi.org/10.1007/978-1-62703-128-8_14] [PMID: 23179835]
[29]
Komohara, Y.; Takeya, M. CAFs and TAMs: maestros of the tumour microenvironment. J. Pathol., 2017, 241(3), 313-315.
[http://dx.doi.org/10.1002/path.4824] [PMID: 27753093]
[30]
Hu, W.; Jiang, Z.; Zhang, Y.; Liu, Q.; Fan, J.; Luo, N.; Dong, X.; Yu, X. Characterization of infiltrating macrophages in high glucose-induced peritoneal fibrosis in rats. Mol. Med. Rep., 2012, 6(1), 93-99.
[PMID: 22552745]
[31]
Cieslik, K.A.; Trial, J.; Entman, M.L. Mesenchymal stem cell-derived inflammatory fibroblasts promote monocyte transition into myeloid fibroblasts via an IL-6-dependent mechanism in the aging mouse heart. FASEB J., 2015, 29(8), 3160-3170.
[http://dx.doi.org/10.1096/fj.14-268136] [PMID: 25888601]
[32]
Pisetsky, D.S.; Erlandsson-Harris, H.; Andersson, U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res. Ther., 2008, 10(3), 209.
[http://dx.doi.org/10.1186/ar2440] [PMID: 18598385]
[33]
Patidar, A.; Selvaraj, S.; Sarode, A.; Chauhan, P.; Chattopadhyay, D.; Saha, B. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine, 2018, 104, 114-123.
[http://dx.doi.org/10.1016/j.cyto.2017.10.004] [PMID: 29032985]
[34]
Hernandez, C.; Huebener, P.; Schwabe, R.F. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene, 2016, 35(46), 5931-5941.
[http://dx.doi.org/10.1038/onc.2016.104] [PMID: 27086930]
[35]
Oshima, H.; Oshima, M. The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J. Gastroenterol., 2012, 47(2), 97-106.
[http://dx.doi.org/10.1007/s00535-011-0523-6] [PMID: 22218775]
[36]
Yan, J.; Hua, F.; Liu, H.Z.; Yang, H.Z.; Hu, Z.W. Simultaneous TLR2 inhibition and TLR9 activation synergistically suppress tumor metastasis in mice. Acta Pharmacol. Sin., 2012, 33(4), 503-512.
[http://dx.doi.org/10.1038/aps.2011.193] [PMID: 22426694]
[37]
Huang, Z.; Yang, Y.; Jiang, Y.; Shao, J.; Sun, X.; Chen, J.; Dong, L.; Zhang, J. Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials, 2013, 34(3), 746-755.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.062] [PMID: 23107297]
[38]
Magna, M.; Pisetsky, D.S. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med., 2014, 20, 138-146.
[http://dx.doi.org/10.2119/molmed.2013.00164] [PMID: 24531836]
[39]
Bingle, L.; Brown, N.J.; Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol., 2002, 196(3), 254-265.
[http://dx.doi.org/10.1002/path.1027] [PMID: 11857487]
[40]
Kitamura, T.; Qian, B.Z.; Pollard, J.W. Immune cell promotion of metastasis. Nat. Rev. Immunol., 2015, 15(2), 73-86.
[http://dx.doi.org/10.1038/nri3789] [PMID: 25614318]
[41]
Allavena, P.; Mantovani, A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin. Exp. Immunol., 2012, 167(2), 195-205.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04515.x] [PMID: 22235995]
[42]
Finak, G.; Bertos, N.; Pepin, F.; Sadekova, S.; Souleimanova, M.; Zhao, H.; Chen, H.; Omeroglu, G.; Meterissian, S.; Omeroglu, A.; Hallett, M.; Park, M. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med., 2008, 14(5), 518-527.
[http://dx.doi.org/10.1038/nm1764] [PMID: 18438415]
[43]
Sawa-Wejksza, K.; Kandefer-Szerszeń, M. Tumor-associated macrophages as target for antitumor therapy. Arch. Immunol. Ther. Exp. (Warsz.), 2018, 66(2), 97-111.
[http://dx.doi.org/10.1007/s00005-017-0480-8] [PMID: 28660349]
[44]
Condeelis, J.; Pollard, J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 2006, 124(2), 263-266.
[http://dx.doi.org/10.1016/j.cell.2006.01.007] [PMID: 16439202]
[45]
Hadjidaniel, M.D.; Muthugounder, S.; Hung, L.T.; Sheard, M.A.; Shirinbak, S.; Chan, R.Y.; Nakata, R.; Borriello, L.; Malvar, J.; Kennedy, R.J.; Iwakura, H.; Akamizu, T.; Sposto, R.; Shimada, H.; DeClerck, Y.A.; Asgharzadeh, S. Tumor-associated macrophages promote neuroblastoma via STAT3 phosphorylation and up-regulation of c-MYC. Oncotarget, 2017, 8(53), 91516-91529.
[http://dx.doi.org/10.18632/oncotarget.21066] [PMID: 29207662]
[46]
Rolny, C.; Mazzone, M.; Tugues, S.; Laoui, D.; Johansson, I.; Coulon, C.; Squadrito, M.L.; Segura, I.; Li, X.; Knevels, E.; Costa, S.; Vinckier, S.; Dresselaer, T.; Åkerud, P.; De Mol, M.; Salomäki, H.; Phillipson, M.; Wyns, S.; Larsson, E.; Buysschaert, I.; Botling, J.; Himmelreich, U.; Van Ginderachter, J.A.; De Palma, M.; Dewerchin, M.; Claesson-Welsh, L.; Carmeliet, P. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell, 2011, 19(1), 31-44.
[http://dx.doi.org/10.1016/j.ccr.2010.11.009] [PMID: 21215706]
[47]
Coussens, L.M.; Zitvogel, L.; Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science, 2013, 339(6117), 286-291.
[http://dx.doi.org/10.1126/science.1232227] [PMID: 23329041]
[48]
Mantovani, A.; Vecchi, A.; Allavena, P. Pharmacological modulation of monocytes and macrophages. Curr. Opin. Pharmacol., 2014, 17, 38-44.
[http://dx.doi.org/10.1016/j.coph.2014.07.004] [PMID: 25062123]
[49]
Caja, F.; Vannucci, L. TGFβ: A player on multiple fronts in the tumor microenvironment. J. Immunotoxicol., 2015, 12(3), 300-307.
[http://dx.doi.org/10.3109/1547691X.2014.945667] [PMID: 25140864]
[50]
Vannucci, L. Stroma as an active player in the development of the tumor microenvironment. Cancer Microenviron., 2015, 8(3), 159-166.
[http://dx.doi.org/10.1007/s12307-014-0150-x] [PMID: 25106539]
[51]
Gocheva, V.; Wang, H.W.; Gadea, B.B.; Shree, T.; Hunter, K.E.; Garfall, A.L.; Berman, T.; Joyce, J.A. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev., 2010, 24(3), 241-255.
[http://dx.doi.org/10.1101/gad.1874010] [PMID: 20080943]
[52]
Coussens, L.M.; Tinkle, C.L.; Hanahan, D.; Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 2000, 103(3), 481-490.
[http://dx.doi.org/10.1016/S0092-8674(00)00139-2] [PMID: 11081634]
[53]
Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; Hanahan, D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol., 2000, 2(10), 737-744.
[http://dx.doi.org/10.1038/35036374] [PMID: 11025665]
[54]
Wang, F.; Jin, R.; Zou, B.B.; Li, L.; Cheng, F.W.; Luo, X.; Geng, X.; Zhang, S.Q. Activation of Toll-like receptor 7 regulates the expression of IFN-λ1, p53, PTEN, VEGF, TIMP-1 and MMP-9 in pancreatic cancer cells. Mol. Med. Rep., 2016, 13(2), 1807-1812.
[http://dx.doi.org/10.3892/mmr.2015.4730] [PMID: 26718740]
[55]
Brennen, W.N.; Denmeade, S.R.; Isaacs, J.T. Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment. Endocr. Relat. Cancer, 2013, 20(5), R269-R290.
[http://dx.doi.org/10.1530/ERC-13-0151] [PMID: 23975882]
[56]
Ma, S.; Xie, N.; Li, W.; Yuan, B.; Shi, Y.; Wang, Y. Immunobiology of mesenchymal stem cells. Cell Death Differ., 2014, 21(2), 216-225.
[http://dx.doi.org/10.1038/cdd.2013.158] [PMID: 24185619]
[57]
Chu, Y.; Tang, H.; Guo, Y.; Guo, J.; Huang, B.; Fang, F.; Cai, J.; Wang, Z. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer. Exp. Cell Res., 2015, 337(1), 16-27.
[http://dx.doi.org/10.1016/j.yexcr.2015.07.020] [PMID: 26209607]
[58]
Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, 16(3), 183-194.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[59]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[60]
McQuibban, G.A.; Butler, G.S.; Gong, J.H.; Bendall, L.; Power, C.; Clark-Lewis, I.; Overall, C.M. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem., 2001, 276(47), 43503-43508.
[http://dx.doi.org/10.1074/jbc.M107736200] [PMID: 11571304]
[61]
Li, Q.; Park, P.W.; Wilson, C.L.; Parks, W.C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell, 2002, 111(5), 635-646.
[http://dx.doi.org/10.1016/S0092-8674(02)01079-6] [PMID: 12464176]
[62]
Mantovani, A.; Savino, B.; Locati, M.; Zammataro, L.; Allavena, P.; Bonecchi, R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev., 2010, 21(1), 27-39.
[http://dx.doi.org/10.1016/j.cytogfr.2009.11.007] [PMID: 20004131]
[63]
Moed, H.; Boorsma, D.M.; Tensen, C.P.; Flier, J.; Jonker, M.J.; Stoof, T.J.; von Blomberg, B.M.; Bruynzeel, D.P.; Scheper, R.J.; Rustemeyer, T.; Gibbs, S. Increased CCL27-CCR10 expression in allergic contact dermatitis: implications for local skin memory. J. Pathol., 2004, 204(1), 39-46.
[http://dx.doi.org/10.1002/path.1619] [PMID: 15307136]
[64]
Xiong, N.; Fu, Y.; Hu, S.; Xia, M.; Yang, J. CCR10 and its ligands in regulation of epithelial immunity and diseases. Protein Cell, 2012, 3(8), 571-580.
[http://dx.doi.org/10.1007/s13238-012-2927-3] [PMID: 22684736]
[65]
Homey, B.; Alenius, H.; Müller, A.; Soto, H.; Bowman, E.P.; Yuan, W.; McEvoy, L.; Lauerma, A.I.; Assmann, T.; Bünemann, E.; Lehto, M.; Wolff, H.; Yen, D.; Marxhausen, H.; To, W.; Sedgwick, J.; Ruzicka, T.; Lehmann, P.; Zlotnik, A. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat. Med., 2002, 8(2), 157-165.
[http://dx.doi.org/10.1038/nm0202-157] [PMID: 11821900]
[66]
Kühnelt-Leddihn, L.; Müller, H.; Eisendle, K.; Zelger, B.; Weinlich, G. Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: a potential prognostic value for CCR7 and CCR10? Arch. Dermatol. Res., 2012, 304(3), 185-193.
[http://dx.doi.org/10.1007/s00403-012-1222-8] [PMID: 22350183]
[67]
Chen, L.; Liu, X.; Zhang, H.Y.; Du, W.; Qin, Z.; Yao, Y.; Mao, Y.; Zhou, L. Upregulation of chemokine receptor CCR10 is essential for glioma proliferation, invasion and patient survival. Oncotarget, 2014, 5(16), 6576-6583.
[http://dx.doi.org/10.18632/oncotarget.2134] [PMID: 25149529]
[68]
Kai, H.; Kadono, T.; Kakinuma, T.; Tomita, M.; Ohmatsu, H.; Asano, Y.; Tada, Y.; Sugaya, M.; Sato, S. CCR10 and CCL27 are overexpressed in cutaneous squamous cell carcinoma. Pathol. Res. Pract., 2011, 207(1), 43-48.
[http://dx.doi.org/10.1016/j.prp.2010.10.007] [PMID: 21144674]
[69]
Lin, H.Y.; Sun, S.M.; Lu, X.F.; Chen, P.Y.; Chen, C.F.; Liang, W.Q.; Peng, C.Y. CCR10 activation stimulates the invasion and migration of breast cancer cells through the ERK1/2/MMP-7 signaling pathway. Int. Immunopharmacol., 2017, 51, 124-130.
[http://dx.doi.org/10.1016/j.intimp.2017.07.018] [PMID: 28830025]
[70]
Fulton, A.M. The chemokine receptors CXCR4 and CXCR3 in cancer. Curr. Oncol. Rep., 2009, 11(2), 125-131.
[http://dx.doi.org/10.1007/s11912-009-0019-1] [PMID: 19216844]
[71]
Wu, Z.; Han, X.; Yan, J.; Pan, Y.; Gong, J.; Di, J.; Cheng, Z.; Jin, Z.; Wang, Z.; Zheng, Q.; Wang, Y. The prognostic significance of chemokine receptor CXCR3 expression in colorectal carcinoma. Biomed. Pharmacother., 2012, 66(5), 373-377.
[http://dx.doi.org/10.1016/j.biopha.2011.12.003] [PMID: 22401929]
[72]
Lo, B.K.; Yu, M.; Zloty, D.; Cowan, B.; Shapiro, J.; McElwee, K.J. CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas. Am. J. Pathol., 2010, 176(5), 2435-2446.
[http://dx.doi.org/10.2353/ajpath.2010.081059] [PMID: 20228225]
[73]
Bronger, H.; Karge, A.; Dreyer, T.; Zech, D.; Kraeft, S.; Avril, S.; Kiechle, M.; Schmitt, M. Induction of cathepsin B by the CXCR3 chemokines CXCL9 and CXCL10 in human breast cancer cells. Oncol. Lett., 2017, 13(6), 4224-4230.
[http://dx.doi.org/10.3892/ol.2017.5994] [PMID: 28599423]
[74]
Saahene, R.O.; Wang, J.; Wang, M.L.; Agbo, E.; Song, H. The role of CXC chemokine ligand 4/CXC chemokine receptor 3-B in breast cancer progression. Biotech. Histochem., 2019, 94(1), 53-59.
[http://dx.doi.org/10.1080/10520295.2018.1497201] [PMID: 30264586]
[75]
Utsumi, T.; Suyama, T.; Imamura, Y.; Fuse, M.; Sakamoto, S.; Nihei, N.; Ueda, T.; Suzuki, H.; Seki, N.; Ichikawa, T. The association of CXCR3 and renal cell carcinoma metastasis. J. Urol., 2014, 192(2), 567-574.
[http://dx.doi.org/10.1016/j.juro.2014.01.100] [PMID: 24518777]
[76]
Maekawa, S.; Iwasaki, A.; Shirakusa, T.; Kawakami, T.; Yanagisawa, J.; Tanaka, T.; Shibaguchi, H.; Kinugasa, T.; Kuroki, M.; Kuroki, M. Association between the expression of chemokine receptors CCR7 and CXCR3, and lymph node metastatic potential in lung adenocarcinoma. Oncol. Rep., 2008, 19(6), 1461-1468.
[PMID: 18497951]
[77]
Zhou, H.; Wu, J.; Wang, T.; Zhang, X.; Liu, D. CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomed. Pharmacother., 2016, 82, 479-488.
[http://dx.doi.org/10.1016/j.biopha.2016.04.069] [PMID: 27470388]
[78]
Shaul, M.E.; Fridlender, Z.G. Neutrophils as active regulators of the immune system in the tumor microenvironment. J. Leukoc. Biol., 2017, 102(2), 343-349.
[http://dx.doi.org/10.1189/jlb.5MR1216-508R] [PMID: 28264904]
[79]
Xu, X.; Jackson, P.L.; Tanner, S.; Hardison, M.T.; Abdul Roda, M.; Blalock, J.E.; Gaggar, A. A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLoS One, 2011, 6(1)e15781
[http://dx.doi.org/10.1371/journal.pone.0015781] [PMID: 21249198]
[80]
Overbeek, S.A.; Kleinjan, M.; Henricks, P.A.; Kamp, V.M.; Ricciardolo, F.L.; Georgiou, N.A.; Garssen, J.; Kraneveld, A.D.; Folkerts, G. Chemo-attractant N-acetyl proline-glycine-proline induces CD11b/CD18-dependent neutrophil adhesion. Biochim. Biophys. Acta, 2013, 1830(1), 2188-2193.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.023] [PMID: 23041749]
[81]
Pfister, R.R.; Haddox, J.L.; Sommers, C.I.; Lam, K.W. Identification and synthesis of chemotactic tripeptides from alkali-degraded whole cornea. A study of N-acetyl-proline-glycine-proline and N-methyl-proline-glycine-proline. Invest. Ophthalmol. Vis. Sci., 1995, 36(7), 1306-1316.
[PMID: 7775108]
[82]
Pfister, R.R.; Haddox, J.L.; Sommers, C.I. Injection of chemoattractants into normal cornea: a model of inflammation after alkali injury. Invest. Ophthalmol. Vis. Sci., 1998, 39(9), 1744-1750.
[PMID: 9699566]
[83]
Saintigny, P.; Massarelli, E.; Lin, S.; Ahn, Y.H.; Chen, Y.; Goswami, S.; Erez, B.; O’Reilly, M.S.; Liu, D.; Lee, J.J.; Zhang, L.; Ping, Y.; Behrens, C.; Solis Soto, L.M.; Heymach, J.V.; Kim, E.S.; Herbst, R.S.; Lippman, S.M.; Wistuba, I.I.; Hong, W.K.; Kurie, J.M.; Koo, J.S. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma. Cancer Res., 2013, 73(2), 571-582.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0263] [PMID: 23204236]
[84]
Nannuru, K.C.; Sharma, B.; Varney, M.L.; Singh, R.K. Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J. Carcinog., 2011, 10, 40.
[http://dx.doi.org/10.4103/1477-3163.92308] [PMID: 22368515]
[85]
Taki, M.; Abiko, K.; Baba, T.; Hamanishi, J.; Yamaguchi, K.; Murakami, R.; Yamanoi, K.; Horikawa, N.; Hosoe, Y.; Nakamura, E.; Sugiyama, A.; Mandai, M.; Konishi, I.; Matsumura, N. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat. Commun., 2018, 9(1), 1685.
[http://dx.doi.org/10.1038/s41467-018-03966-7] [PMID: 29703902]
[86]
Bekaert, S.; Fillet, M.; Detry, B.; Pichavant, M.; Marée, R.; Noel, A.; Rocks, N.; Cataldo, D. Inflammation-generated extracellular matrix fragments drive lung metastasis. Cancer Growth Metastasis, 2017, 101179064417745539
[http://dx.doi.org/10.1177/1179064417745539] [PMID: 29308014]
[87]
Samara, G.J.; Lawrence, D.M.; Chiarelli, C.J.; Valentino, M.D.; Lyubsky, S.; Zucker, S.; Vaday, G.G. CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett., 2004, 214(2), 231-241.
[http://dx.doi.org/10.1016/j.canlet.2004.04.035] [PMID: 15363550]
[88]
Brand, S.; Dambacher, J.; Beigel, F.; Olszak, T.; Diebold, J.; Otte, J.M.; Göke, B.; Eichhorst, S.T. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp. Cell Res., 2005, 310(1), 117-130.
[http://dx.doi.org/10.1016/j.yexcr.2005.07.006] [PMID: 16125170]
[89]
Qiao, N.; Wang, L.; Wang, T.; Li, H. Inflammatory CXCL12-CXCR4/CXCR7 axis mediates G-protein signaling pathway to influence the invasion and migration of nasopharyngeal carcinoma cells. Tumour Biol., 2016, 37(6), 8169-8179.
[http://dx.doi.org/10.1007/s13277-015-4686-2] [PMID: 26715277]
[90]
Hao, L.; Zhang, C.; Qiu, Y.; Wang, L.; Luo, Y.; Jin, M.; Zhang, Y.; Guo, T.B.; Matsushima, K.; Zhang, Y. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Lett., 2007, 253(1), 34-42.
[http://dx.doi.org/10.1016/j.canlet.2007.01.005] [PMID: 17306924]
[91]
Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional specialization of interleukin-17 family members. Immunity, 2011, 34(2), 149-162.
[http://dx.doi.org/10.1016/j.immuni.2011.02.012] [PMID: 21349428]
[92]
Iida, T.; Iwahashi, M.; Katsuda, M.; Ishida, K.; Nakamori, M.; Nakamura, M.; Naka, T.; Ojima, T.; Ueda, K.; Hayata, K.; Yasuoka, H.; Yamaue, H. Prognostic significance of IL-17 mRNA expression in peritoneal lavage in gastric cancer patients who underwent curative resection. Oncol. Rep., 2014, 31(2), 605-612.
[http://dx.doi.org/10.3892/or.2013.2911] [PMID: 24337702]
[93]
Fabre, J.; Giustiniani, J.; Garbar, C.; Antonicelli, F.; Merrouche, Y.; Bensussan, A.; Bagot, M.; Al-Dacak, R. Targeting the tumor microenvironment: the protumor effects of IL-17 related to cancer type. Int. J. Mol. Sci., 2016, 17(9), 1433.
[http://dx.doi.org/10.3390/ijms17091433] [PMID: 27589729]
[94]
Liao, R.; Sun, J.; Wu, H.; Yi, Y.; Wang, J.X.; He, H.W.; Cai, X.Y.; Zhou, J.; Cheng, Y.F.; Fan, J.; Qiu, S.J. High expression of IL-17 and IL-17RE associate with poor prognosis of hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2013, 32, 3.
[http://dx.doi.org/10.1186/1756-9966-32-3] [PMID: 23305119]
[95]
Parajuli, P.; Anand, R.; Mandalaparty, C.; Suryadevara, R.; Sriranga, P.U.; Michelhaugh, S.K.; Cazacu, S.; Finniss, S.; Thakur, A.; Lum, L.G.; Schalk, D.; Brodie, C.; Mittal, S. Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal. Oncotarget, 2016, 7(5), 6121-6135.
[http://dx.doi.org/10.18632/oncotarget.6847] [PMID: 26755664]
[96]
Bie, Q.L.; Sun, C.X.; Gong, A.H.; Li, C.Y.; Su, Z.L.; Zheng, D.; Ji, X.Y.; Wu, Y.M.; Guo, Q.; Wang, S.; Xu, H. Non-tumor tissue derived interleukin-17 B activates IL-17RB/AKT/beta-catenin pathway to enhance the stemness of gastric cancer. Sci. Rep. U.K., 2016, 6, 25447.
[97]
Wu, H.H.; Hwang-Verslues, W.W.; Lee, W.H.; Huang, C.K.; Wei, P.C.; Chen, C.L.; Shew, J.Y.; Lee, E.Y.; Jeng, Y.M.; Tien, Y.W.; Ma, C.; Lee, W.H. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J. Exp. Med., 2015, 212(3), 333-349.
[http://dx.doi.org/10.1084/jem.20141702] [PMID: 25732306]
[98]
Eiro, N.; Fernandez-Gomez, J.; Sacristán, R.; Fernandez-Garcia, B.; Lobo, B.; Gonzalez-Suarez, J.; Quintas, A.; Escaf, S.; Vizoso, F.J. Stromal factors involved in human prostate cancer development, progression and castration resistance. J. Cancer Res. Clin. Oncol., 2017, 143(2), 351-359.
[http://dx.doi.org/10.1007/s00432-016-2284-3] [PMID: 27787597]
[99]
Ren, L.; Xu, Y.; Liu, C.; Wang, S.; Qin, G. IL-17RB enhances thyroid cancer cell invasion and metastasis via ERK1/2 pathway-mediated MMP-9 expression. Mol. Immunol., 2017, 90, 126-135.
[http://dx.doi.org/10.1016/j.molimm.2017.06.034] [PMID: 28715683]
[100]
Liu, D.; Zhang, R.; Wu, J.; Pu, Y.; Yin, X.; Cheng, Y.; Wu, J.; Feng, C.; Luo, Y.; Zhang, J. Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-κB-mediated MMP-2/9 activation. Oncol. Rep., 2017, 37(3), 1779-1785.
[http://dx.doi.org/10.3892/or.2017.5426] [PMID: 28184939]
[101]
Apte, R.N.; Dotan, S.; Elkabets, M.; White, M.R.; Reich, E.; Carmi, Y.; Song, X.; Dvozkin, T.; Krelin, Y.; Voronov, E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev., 2006, 25(3), 387-408.
[http://dx.doi.org/10.1007/s10555-006-9004-4] [PMID: 17043764]
[102]
Xu, D.; Matsuo, Y.; Ma, J.; Koide, S.; Ochi, N.; Yasuda, A.; Funahashi, H.; Okada, Y.; Takeyama, H. Cancer cell-derived IL-1α promotes HGF secretion by stromal cells and enhances metastatic potential in pancreatic cancer cells. J. Surg. Oncol., 2010, 102(5), 469-477.
[http://dx.doi.org/10.1002/jso.21530] [PMID: 20872950]
[103]
Tjomsland, V.; Pomianowska, E.; Aasrum, M.; Sandnes, D.; Verbeke, C.S.; Gladhaug, I.P. Profile of MMP and TIMP expression in human pancreatic stellate cells: regulation by IL-1α and TGFβ and implications for migration of pancreatic cancer cells. Neoplasia, 2016, 18(7), 447-456.
[http://dx.doi.org/10.1016/j.neo.2016.06.003] [PMID: 27435927]
[104]
Apte, M.V.; Wilson, J.S.; Lugea, A.; Pandol, S.J. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology, 2013, 144(6), 1210-1219.
[http://dx.doi.org/10.1053/j.gastro.2012.11.037] [PMID: 23622130]
[105]
Adachi, T.; Alam, R. The mechanism of IL-5 signal transduction. Am. J. Physiol., 1998, 275(3), C623-C633.
[http://dx.doi.org/10.1152/ajpcell.1998.275.3.C623] [PMID: 9730944]
[106]
Takatsu, K.; Nakajima, H. IL-5 and eosinophilia. Curr. Opin. Immunol., 2008, 20(3), 288-294.
[http://dx.doi.org/10.1016/j.coi.2008.04.001] [PMID: 18511250]
[107]
Sato, S.; Katagiri, T.; Takaki, S.; Kikuchi, Y.; Hitoshi, Y.; Yonehara, S.; Tsukada, S.; Kitamura, D.; Watanabe, T.; Witte, O.; Takatsu, K. IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton’s tyrosine and Janus 2 kinases. J. Exp. Med., 1994, 180(6), 2101-2111.
[http://dx.doi.org/10.1084/jem.180.6.2101] [PMID: 7525847]
[108]
Lee, E.J.; Lee, S.J.; Kim, S.; Cho, S.C.; Choi, Y.H.; Kim, W.J.; Moon, S.K. Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: involvement of the p21WAF1 expression. Cell. Signal., 2013, 25(10), 2025-2038.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.004] [PMID: 23770289]
[109]
Park, S.L.; Kim, W.J.; Moon, S.K. p21WAF1 mediates the IL-15-induced migration and invasion of human bladder cancer 5637 cells via the ERK1/2/NF-κB/MMP-9 pathway. Int. Immunopharmacol., 2014, 22(1), 59-65.
[http://dx.doi.org/10.1016/j.intimp.2014.06.008] [PMID: 24953855]
[110]
Ghosh, P.; Mitra, D.; Mitra, S.; Ray, S.; Banerjee, S.; Murmu, N. Madhuca indica inhibits breast cancer cell proliferation by modulating COX-2 expression. Curr. Mol. Med., 2018, 18(7), 459-474.
[http://dx.doi.org/10.2174/1566524019666181212100808] [PMID: 30539699]
[111]
Ren, J.; Liu, J.; Sui, X. Correlation of COX-2 and MMP-13 expressions with gastric cancer and their effects on prognosis. J. BUON, 2018, 23(3), 665-671.
[PMID: 30003735]
[112]
Tang, H.; Liu, Y.; Wang, C.; Zheng, H.; Chen, Y.; Liu, W.; Chen, X.; Zhang, J.; Chen, H.; Yang, Y.; Yang, J. Inhibition of COX-2 and EGFR by Melafolone improves Anti-PD-1 therapy through vascular normalization and PD-L1 downregulation in lung cancer. J. Pharmacol. Exp. Ther., 2019, 368(3), 401-413.
[http://dx.doi.org/10.1124/jpet.118.254359] [PMID: 30591531]
[113]
Li, T.J.; Cui, J. COX-2, MMP-7 expression in oral lichen planus and oral squamous cell carcinoma. Asian Pac. J. Trop. Med., 2013, 6(8), 640-643.
[http://dx.doi.org/10.1016/S1995-7645(13)60110-8] [PMID: 23790336]
[114]
Lopez-Gonzalez, J.S.; Avila-Moreno, F.; Prado-Garcia, H.; Aguilar-Cazares, D.; Mandoki, J.J.; Meneses-Flores, M. Lung carcinomas decrease the number of monocytes/macrophages (CD14+ cells) that produce TNF-alpha. Clin. Immunol., 2007, 122(3), 323-329.
[http://dx.doi.org/10.1016/j.clim.2006.11.003] [PMID: 17175197]
[115]
Hagemann, T.; Biswas, S.K.; Lawrence, T.; Sica, A.; Lewis, C.E. Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood, 2009, 113(14), 3139-3146.
[http://dx.doi.org/10.1182/blood-2008-12-172825] [PMID: 19171876]
[116]
Wang, X.; Zhao, X.; Wang, K.; Wu, L.; Duan, T. Interaction of monocytes/macrophages with ovarian cancer cells promotes angiogenesis in vitro. Cancer Sci., 2013, 104(4), 516-523.
[http://dx.doi.org/10.1111/cas.12110] [PMID: 23347208]
[117]
Ke, X.; Zhang, S.; Wu, M.; Lou, J.; Zhang, J.; Xu, T.; Huang, L.; Huang, P.; Wang, F.; Pan, S. Tumor-associated macrophages promote invasion via Toll-like receptors signaling in patients with ovarian cancer. Int. Immunopharmacol., 2016, 40, 184-195.
[http://dx.doi.org/10.1016/j.intimp.2016.08.029] [PMID: 27608303]
[118]
Rao, A.; Luo, C.; Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol., 1997, 15, 707-747.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.707] [PMID: 9143705]
[119]
Chen, L.; Rao, A.; Harrison, S.C. Signal integration by transcription-factor assemblies: interactions of NF-AT1 and AP-1 on the IL-2 promoter. Cold Spring Harb. Symp. Quant. Biol., 1999, 64, 527-531.
[http://dx.doi.org/10.1101/sqb.1999.64.527] [PMID: 11232329]
[120]
Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol., 2005, 5(6), 472-484.
[http://dx.doi.org/10.1038/nri1632] [PMID: 15928679]
[121]
Lee, J.U.; Kim, L.K.; Choi, J.M. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Front. Immunol., 2018, 9, 2747.
[http://dx.doi.org/10.3389/fimmu.2018.02747] [PMID: 30538703]
[122]
Werneck, M.B.; Vieira-de-Abreu, A.; Chammas, R.; Viola, J.P. NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis. Cancer Immunol. Immunother., 2011, 60(4), 537-546.
[http://dx.doi.org/10.1007/s00262-010-0964-4] [PMID: 21225259]
[123]
Pan, M.G.; Xiong, Y.; Chen, F. NFAT gene family in inflammation and cancer. Curr. Mol. Med., 2013, 13(4), 543-554.
[http://dx.doi.org/10.2174/1566524011313040007] [PMID: 22950383]
[124]
Qin, J.J.; Nag, S.; Wang, W.; Zhou, J.; Zhang, W.D.; Wang, H.; Zhang, R. NFAT as cancer target: mission possible? Biochim. Biophys. Acta, 2014, 1846(2), 297-311.
[PMID: 25072963]
[125]
Quang, C.T.; Leboucher, S.; Passaro, D.; Fuhrmann, L.; Nourieh, M.; Vincent-Salomon, A.; Ghysdael, J. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. Cell Death Dis., 2015, 6e1658
[http://dx.doi.org/10.1038/cddis.2015.14] [PMID: 25719243]
[126]
Qin, J.J.; Wang, W.; Voruganti, S.; Wang, H.; Zhang, W.D.; Zhang, R. Inhibiting NFAT1 for breast cancer therapy: new insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget, 2015, 6(32), 33106-33119.
[http://dx.doi.org/10.18632/oncotarget.5851] [PMID: 26461225]
[127]
Braeuer, R.R.; Zigler, M.; Kamiya, T.; Dobroff, A.S.; Huang, L.; Choi, W.; McConkey, D.J.; Shoshan, E.; Mobley, A.K.; Song, R.; Raz, A.; Bar-Eli, M. Galectin-3 contributes to melanoma growth and metastasis via regulation of NFAT1 and autotaxin. Cancer Res., 2012, 72(22), 5757-5766.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2424] [PMID: 22986745]
[128]
Shoshan, E.; Braeuer, R.R.; Kamiya, T.; Mobley, A.K.; Huang, L.; Vasquez, M.E.; Velazquez-Torres, G.; Chakravarti, N.; Ivan, C.; Prieto, V.; Villares, G.J.; Bar-Eli, M. NFAT1 directly regulates IL-8 and MMP-3 to promote melanoma tumor growth and metastasis. Cancer Res., 2016, 76(11), 3145-3155.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2511] [PMID: 27013197]
[129]
Liu, J.F.; Zhao, S.H.; Wu, S.S. Depleting NFAT1 expression inhibits the ability of invasion and migration of human lung cancer cells. Cancer Cell Int., 2013, 13(1), 41.
[http://dx.doi.org/10.1186/1475-2867-13-41] [PMID: 23663403]
[130]
Vázquez-Cedeira, M.; Lazo, P.A. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J. Biol. Chem., 2012, 287(51), 42739-42750.
[http://dx.doi.org/10.1074/jbc.M112.404285] [PMID: 23105117]
[131]
Chen, P.; Shan, Z.; Zhao, J.; Li, F.; Zhang, W.; Yang, L.; Huang, Z. NFAT1 promotes cell motility through MMP-3 in esophageal squamous cell carcinoma. Biomed. Pharmacother., 2017, 86, 541-546.
[http://dx.doi.org/10.1016/j.biopha.2016.12.050] [PMID: 28024290]
[132]
Kollias, G.; Douni, E.; Kassiotis, G.; Kontoyiannis, D. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann. Rheum. Dis., 1999, 58(Suppl. 1), 132-139.
[http://dx.doi.org/10.1136/ard.58.2008.i32] [PMID: 10577971]
[133]
Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; Nelson, N.; Boiani, N.; Schooley, K.A.; Gerhart, M.; Davis, R.; Fitzner, J.N.; Johnson, R.S.; Paxton, R.J.; March, C.J.; Cerretti, D.P. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature, 1997, 385(6618), 729-733.
[http://dx.doi.org/10.1038/385729a0] [PMID: 9034190]
[134]
Moss, M.L.; Jin, S.L.; Milla, M.E.; Bickett, D.M.; Burkhart, W.; Carter, H.L.; Chen, W.J.; Clay, W.C.; Didsbury, J.R.; Hassler, D.; Hoffman, C.R.; Kost, T.A.; Lambert, M.H.; Leesnitzer, M.A.; McCauley, P.; McGeehan, G.; Mitchell, J.; Moyer, M.; Pahel, G.; Rocque, W.; Overton, L.K.; Schoenen, F.; Seaton, T.; Su, J.L.; Becherer, J.D. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature, 1997, 385(6618), 733-736.
[http://dx.doi.org/10.1038/385733a0] [PMID: 9034191]
[135]
Arcone, R.; Palma, M.; Pagliara, V.; Graziani, G.; Masullo, M.; Nardone, G. Green tea polyphenols affect invasiveness of human gastric MKN-28 cells by inhibition of LPS or TNF-α induced Matrix Metalloproteinase-9/2. Biochim Open, 2016, 3, 56-63.
[http://dx.doi.org/10.1016/j.biopen.2016.10.002] [PMID: 29450132]
[136]
Jung, Y.S.; Lee, S.O. Apomorphine suppresses TNF-α-induced MMP-9 expression and cell invasion through inhibition of ERK/AP-1 signaling pathway in MCF-7 cells. Biochem. Biophys. Res. Commun., 2017, 487(4), 903-909.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.151] [PMID: 28465234]
[137]
Lee, S.J.; Park, S.S.; Lee, U.S.; Kim, W.J.; Moon, S.K. Signaling pathway for TNF-α-induced MMP-9 expression: mediation through p38 MAP kinase, and inhibition by anti-cancer molecule magnolol in human urinary bladder cancer 5637 cells. Int. Immunopharmacol., 2008, 8(13-14), 1821-1826.
[http://dx.doi.org/10.1016/j.intimp.2008.08.018] [PMID: 18801463]
[138]
García, M.A.; Gil, J.; Ventoso, I.; Guerra, S.; Domingo, E.; Rivas, C.; Esteban, M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol. Mol. Biol. Rev., 2006, 70(4), 1032-1060.
[http://dx.doi.org/10.1128/MMBR.00027-06] [PMID: 17158706]
[139]
Gilbert, S.J.; Duance, V.C.; Mason, D.J. Does protein kinase R mediate TNF-alpha- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? Arthritis Res. Ther., 2004, 6(1), R46-R55.
[http://dx.doi.org/10.1186/ar1024] [PMID: 14979937]
[140]
Ma, C.H.; Wu, C.H.; Jou, I.M.; Tu, Y.K.; Hung, C.H.; Hsieh, P.L.; Tsai, K.L. PKR activation causes inflammation and MMP-13 secretion in human degenerated articular chondrocytes. Redox Biol., 2018, 14, 72-81.
[http://dx.doi.org/10.1016/j.redox.2017.08.011] [PMID: 28869834]
[141]
Huang, H.; Wu, K.; Ma, J.; Du, Y.; Cao, C.; Nie, Y. Dopamine D2 receptor suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Int. Immunopharmacol., 2016, 39, 113-120.
[http://dx.doi.org/10.1016/j.intimp.2016.07.002] [PMID: 27468100]
[142]
Wu, Z.; Yin, H.; Liu, T.; Yan, W.; Li, Z.; Chen, J.; Chen, H.; Wang, T.; Jiang, Z.; Zhou, W.; Xiao, J. MiR-126-5p regulates osteoclast differentiation and bone resorption in giant cell tumor through inhibition of MMP-13. Biochem. Biophys. Res. Commun., 2014, 443(3), 944-949.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.075] [PMID: 24360951]
[143]
Zhou, Y.; Hu, Z.; Li, N.; Jiang, R. Interleukin-32 stimulates osteosarcoma cell invasion and motility via AKT pathway-mediated MMP-13 expression. Int. J. Mol. Med., 2015, 35(6), 1729-1733.
[http://dx.doi.org/10.3892/ijmm.2015.2159] [PMID: 25846944]
[144]
Phienwej, H.; Swasdichira, I.S.; Amnuoypol, S.; Pavasant, P.; Sumrejkanchanakij, P. Tinospora crispa extract inhibits MMP-13 and migration of head and neck squamous cell carcinoma cell lines. Asian Pac. J. Trop. Biomed., 2015, 5(9), 738-743.
[http://dx.doi.org/10.1016/j.apjtb.2015.07.001]
[145]
Eba, H.; Murasawa, Y.; Iohara, K.; Isogai, Z.; Nakamura, H.; Nakamura, H.; Nakashima, M. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth. PLoS One, 2012, 7(12)e52523
[http://dx.doi.org/10.1371/journal.pone.0052523] [PMID: 23285075]
[146]
McMillan, S.J.; Kearley, J.; Campbell, J.D.; Zhu, X.W.; Larbi, K.Y.; Shipley, J.M.; Senior, R.M.; Nourshargh, S.; Lloyd, C.M. Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J. Immunol., 2004, 172(4), 2586-2594.
[http://dx.doi.org/10.4049/jimmunol.172.4.2586] [PMID: 14764732]
[147]
Brauer, R.; Tureckova, J.; Kanchev, I.; Khoylou, M.; Skarda, J.; Prochazka, J.; Spoutil, F.; Beck, I.M.; Zbodakova, O.; Kasparek, P.; Korinek, V.; Chalupsky, K.; Karhu, T.; Herzig, K.H.; Hajduch, M.; Gregor, M.; Sedlacek, R. MMP-19 deficiency causes aggravation of colitis due to defects in innate immune cell function. Mucosal Immunol., 2016, 9(4), 974-985.
[http://dx.doi.org/10.1038/mi.2015.117] [PMID: 26555704]
[148]
McMahan, R.S.; Birkland, T.P.; Smigiel, K.S.; Vandivort, T.C.; Rohani, M.G.; Manicone, A.M.; McGuire, J.K.; Gharib, S.A.; Parks, W.C. Stromelysin-2 (MMP10) moderates inflammation by controlling macrophage activation. J. Immunol., 2016, 197(3), 899-909.
[http://dx.doi.org/10.4049/jimmunol.1600502] [PMID: 27316687]

© 2024 Bentham Science Publishers | Privacy Policy