A Variety of Bio-nanogold in the Fabrication of Lateral Flow Biosensors for the Detection of Pathogenic Bacteria

Author(s): Nan Cheng*, Zhansen Yang, Weiran Wang, Xinxian Wang, Wentao Xu, Yunbo Luo*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 27 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Pathogenic bacteria constitute one of the most serious threats to human health. This has led to the development of technologies for the rapid detection of bacteria. Bio-nanogold-based lateral flow biosensors (LFBs) are a promising assay due to their low limit of detection, high sensitivity, good selectivity, robustness, low cost, and quick assay performance ability. The aim of this review is to provide a critical overview of the current variety of bio-nanogold LFBs and their targets, with a special focus on whole-cell and DNA detection of pathogenic bacteria. The challenges of bio-nanogold-based LFBs in improving their performance and accessibility are also comprehensively discussed.

Keywords: Bio-nanogold, Lateral flow biosensor, Pathogenic bacteria, Rapid detection, LFBs, Nitrocellular membrane.

Alvarez-Ordóñez, A.; Broussolle, V.; Colin, P.; Nguyen-The, C.; Prieto, M. The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. Int. J. Food Microbiol., 2015, 213, 99-109.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.06.004] [PMID: 26116419]
Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61.
[http://dx.doi.org/10.2147/IDR.S55778] [PMID: 25878509]
Lee, K-M. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control, 2015, 47, 264-276.
Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect., 2015, 17(3), 173-183.
[http://dx.doi.org/10.1016/j.micinf.2015.01.004] [PMID: 25637951]
Bhunia, A.K. Foodborne microbial pathogens: mechanisms and pathogenesis; Springer: New York, 2018.
Abraham, N.M.; Liu, L.; Jutras, B.L.; Yadav, A.K.; Narasimhan, S.; Gopalakrishnan, V.; Ansari, J.M.; Jefferson, K.K.; Cava, F.; Jacobs-Wagner, C.; Fikrig, E. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA, 2017, 114(5), E781-E790.
[http://dx.doi.org/10.1073/pnas.1613422114] [PMID: 28096373]
Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathog. Dis., 2015, 12(1), 32-38.
[http://dx.doi.org/10.1089/fpd.2014.1821] [PMID: 25587926]
Bennett, S.D.; Sodha, S.V.; Ayers, T.L.; Lynch, M.F.; Gould, L.H.; Tauxe, R.V. Produce-associated foodborne disease outbreaks, USA, 1998-2013. Epidemiol. Infect., 2018, 146(11), 1397-1406.
[http://dx.doi.org/10.1017/S0950268818001620] [PMID: 29923474]
Cacciò, S.M. Foodborne parasites: Outbreaks and outbreak investigations. A meeting report from the European network for foodborne parasites (Euro-FBP). Food Waterborne Parasitol., 2018, 10, 1-5.
Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet., 2012, 13(9), 601-612.
[http://dx.doi.org/10.1038/nrg3226] [PMID: 22868263]
Deng, Y. An improved plate culture procedure for the rapid detection of beer‐spoilage lactic acid bacteria. J. Inst. Brew., 2014, 120(2), 127-132.
Yang, L. A review of multifunctions of dielectrophoresis in biosensors and biochips for bacteria detection. Anal. Lett., 2012, 45(2-3), 187-201.
Tabit, F.T. Advantages and limitations of potential methods for the analysis of bacteria in milk: a review. J. Food Sci. Technol., 2016, 53(1), 42-49.
[http://dx.doi.org/10.1007/s13197-015-1993-y] [PMID: 26787931]
Hemraj, V. A review on commonly used biochemical test for bacteria. Innovare J Life Sci, 2013, 1(1), 1-7.
Zhang, G. Foodborne pathogenic bacteria detection: an evaluation of current and developing methods. The Meducator 1.,, 2013, 1(24)
Inglis, G.D.; Thomas, M.C.; Thomas, D.K.; Kalmokoff, M.L.; Brooks, S.P.; Selinger, L.B. Molecular methods to measure intestinal bacteria: A review. J. AOAC Int., 2012, 95(1), 5-23.
[http://dx.doi.org/10.5740/jaoacint.SGE_Inglis] [PMID: 22468337]
Lebonah, D. DNA barcoding on bacteria: A Review. Adv. Biol., 2014, 2014, 9.
Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev., 2013, 42(2), 450-457.
[http://dx.doi.org/10.1039/C2CS35255A] [PMID: 23032871]
Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron., 2014, 54, 585-597.
[http://dx.doi.org/10.1016/j.bios.2013.10.075] [PMID: 24333570]
Lee, H.; Choi, S. An origami paper-based bacteria-powered battery. Nano Energy, 2015, 15, 549-557.
Tian, T.; Li, J.; Song, Y.; Zhou, L.; Zhu, Z.; Yang, C.J. Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip, 2016, 16(7), 1139-1151.
[http://dx.doi.org/10.1039/C5LC01562F] [PMID: 26928571]
Leuvering, J.H.; Thal, P.J.; Van der Waart, M.; Schuurs, A.H. A sol particle agglutination assay for human chorionic gonadotrophin. J. Immunol. Methods, 1981, 45(2), 183-194.
[http://dx.doi.org/10.1016/0022-1759(81)90212-X] [PMID: 7288195]
Gnoth, C.; Johnson, S. Strips of hope: Accuracy of home pregnancy tests and new developments. Geburtshilfe Frauenheilkd., 2014, 74(7), 661-669.
[http://dx.doi.org/10.1055/s-0034-1368589] [PMID: 25100881]
Johnson, S.; Cushion, M.; Bond, S.; Godbert, S.; Pike, J. Comparison of analytical sensitivity and women’s interpretation of home pregnancy tests. Clin. Chem. Lab. Med., 2015, 53(3), 391-402.[CCLM]..
[http://dx.doi.org/10.1515/cclm-2014-0643] [PMID: 25274958]
Blum, J.; Shochet, T.; Lynd, K.; Lichtenberg, E.S.; Fischer, D.; Arnesen, M.; Winikoff, B.; Blumenthal, P.D. Can at-home semi-quantitative pregnancy tests serve as a replacement for clinical follow-up of medical abortion? A US study. Contraception, 2012, 86(6), 757-762.
[http://dx.doi.org/10.1016/j.contraception.2012.06.005] [PMID: 22895097]
Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 2016, 34(1), 7-25.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.012] [PMID: 26506111]
Huang, X.; Aguilar, Z.P.; Xu, H.; Lai, W.; Xiong, Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron., 2016, 75, 166-180.
[http://dx.doi.org/10.1016/j.bios.2015.08.032] [PMID: 26318786]
Raeisossadati, M.J.; Danesh, N.M.; Borna, F.; Gholamzad, M.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Lateral flow based immunobiosensors for detection of food contaminants. Biosens. Bioelectron., 2016, 86, 235-246.
[http://dx.doi.org/10.1016/j.bios.2016.06.061] [PMID: 27376194]
Banerjee, R.; Jaiswal, A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst (Lond.), 2018, 143(9), 1970-1996.
[http://dx.doi.org/10.1039/C8AN00307F] [PMID: 29645058]
Shan, S.; Lai, W.; Xiong, Y.; Wei, H.; Xu, H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J. Agric. Food Chem., 2015, 63(3), 745-753.
[http://dx.doi.org/10.1021/jf5046415] [PMID: 25539027]
Tang, R.; Yang, H.; Choi, J.R.; Gong, Y.; Hu, J.; Feng, S.; Pingguan-Murphy, B.; Mei, Q.; Xu, F. Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta, 2016, 152, 269-276.
[http://dx.doi.org/10.1016/j.talanta.2016.02.017] [PMID: 26992520]
Sajid, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc., 2015, 19(6), 689-705.
Zhan, L.; Guo, S.Z.; Song, F.; Gong, Y.; Xu, F.; Boulware, D.R.; McAlpine, M.C.; Chan, W.C.W.; Bischof, J.C. The role of nanoparticle design in determining analytical performance of lateral flow immunoassays. Nano Lett., 2017, 17(12), 7207-7212.
[http://dx.doi.org/10.1021/acs.nanolett.7b02302] [PMID: 29120648]
You, M.; Lin, M.; Gong, Y.; Wang, S.; Li, A.; Ji, L.; Zhao, H.; Ling, K.; Wen, T.; Huang, Y.; Gao, D.; Ma, Q.; Wang, T.; Ma, A.; Li, X.; Xu, F. Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano, 2017, 11(6), 6261-6270.
[http://dx.doi.org/10.1021/acsnano.7b02466] [PMID: 28482150]
Takalkar, S.; Baryeh, K.; Liu, G. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens. Bioelectron., 2017, 98, 147-154.
[http://dx.doi.org/10.1016/j.bios.2017.06.045] [PMID: 28668773]
Park, J-M.; Jung, H.W.; Chang, Y.W.; Kim, H.S.; Kang, M.J.; Pyun, J.C. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity. Anal. Chim. Acta, 2015, 853, 360-367.
[http://dx.doi.org/10.1016/j.aca.2014.10.011] [PMID: 25467480]
Rodríguez, M.O.; Covián, L.B.; García, A.C.; Blanco-López, M.C. Silver and gold enhancement methods for lateral flow immunoassays. Talanta, 2016, 148, 272-278.
[http://dx.doi.org/10.1016/j.talanta.2015.10.068] [PMID: 26653449]
Juntunen, E.; Arppe, R.; Kalliomäki, L.; Salminen, T.; Talha, S.M.; Myyryläinen, T.; Soukka, T.; Pettersson, K. Effects of blood sample anticoagulants on lateral flow assays using luminescent photon-upconverting and Eu(III) nanoparticle reporters. Anal. Biochem., 2016, 492, 13-20.
[http://dx.doi.org/10.1016/j.ab.2015.09.009] [PMID: 26408349]
Jiang, H.; Li, X.; Xiong, Y.; Pei, K.; Nie, L.; Xiong, Y. Silver nanoparticle-based fluorescence-quenching lateral flow immunoassay for sensitive detection of ochratoxin A in grape juice and wine. Toxins (Basel), 2017, 9(3), 83.
[http://dx.doi.org/10.3390/toxins9030083] [PMID: 28264472]
Hui, W.; Zhang, S.; Zhang, C.; Wan, Y.; Zhu, J.; Zhao, G.; Wu, S.; Xi, D.; Zhang, Q.; Li, N.; Cui, Y. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms. Nanoscale, 2016, 8(6), 3579-3587.
[http://dx.doi.org/10.1039/C5NR07547E] [PMID: 26804455]
Lago-Cachón, D. High frequency lateral flow affinity assay using superparamagnetic nanoparticles. J. Magn. Magn. Mater., 2017, 423, 436-440.
Cheng, N. Nanozyme enhanced colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J. Analy. Test., 2018, 3(1), 1-8.
Cheng, N. An advanced visual qualitative and EVA green‐based quantitative isothermal amplification method to detect listeria monocytogenes. J. Food Saf., 2016, 36(2), 237-246.
Cheng, N.; Xu, Y.; Luo, Y.; Zhu, L.; Zhang, Y.; Huang, K.; Xu, W. Specific and relative detection of urinary microRNA signatures in bladder cancer for point-of-care diagnostics. Chem. Commun. (Camb.), 2017, 53(30), 4222-4225.
[http://dx.doi.org/10.1039/C7CC01007A] [PMID: 28357426]
Cheng, N.; Xu, Y.; Huang, K.; Chen, Y.; Yang, Z.; Luo, Y.; Xu, W. One-step competitive lateral flow biosensor running on an independent quantification system for smart phones based in-situ detection of trace Hg(II) in tap water. Food Chem., 2017, 214, 169-175.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.058] [PMID: 27507462]
Cheng, N.; Wang, Q.; Shang, Y.; Xu, Y.; Huang, K.; Yang, Z.; Pan, D.; Xu, W.; Luo, Y. Rapid and low-cost strategy for detecting genome-editing induced deletion: A single-copy case. Anal. Chim. Acta, 2018, 1019, 111-118.
[http://dx.doi.org/10.1016/j.aca.2018.02.060] [PMID: 29625676]
Cheng, N.; Song, Y.; Zeinhom, M.M.A.; Chang, Y.C.; Sheng, L.; Li, H.; Du, D.; Li, L.; Zhu, M.J.; Luo, Y.; Xu, W.; Lin, Y. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces, 2017, 9(46), 40671-40680.
[http://dx.doi.org/10.1021/acsami.7b12734] [PMID: 28914522]
Cheng, N.; Song, Y.; Fu, Q.; Du, D.; Luo, Y.; Wang, Y.; Xu, W.; Lin, Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron., 2018, 117, 75-83.
[http://dx.doi.org/10.1016/j.bios.2018.06.002] [PMID: 29886189]
Cheng, N.; Shang, Y.; Xu, Y.; Zhang, L.; Luo, Y.; Huang, K.; Xu, W. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. Biosens. Bioelectron., 2017, 91, 408-416.
[http://dx.doi.org/10.1016/j.bios.2016.12.066] [PMID: 28064126]
Degliangeli, F.; Kshirsagar, P.; Brunetti, V.; Pompa, P.P.; Fiammengo, R. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes. J. Am. Chem. Soc., 2014, 136(6), 2264-2267.
[http://dx.doi.org/10.1021/ja412152x] [PMID: 24491135]
Lv, W. Robust and smart gold nanoparticles: one-step synthesis, tunable optical property, and switchable catalytic activity. J. Mater. Chem., 2011, 21(17), 6173-6178.
Guo, Y-J. Multifunctional optical probe based on gold nanorods for detection and identification of cancer cells. Sens. Actuators B Chem., 2014, 191, 741-749.
Chen, S. Synthesis of near-infrared responsive gold nanorod-doped gelatin/hydroxyapatite composite microspheres with controlled photo-thermal property. Ceram. Int., 2018, 44(1), 900-904.
Zhou, Y.; Han, S.T.; Xu, Z.X.; Roy, V.A. The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer. Nanoscale, 2013, 5(5), 1972-1979.
[http://dx.doi.org/10.1039/c2nr32579a] [PMID: 23361624]
Russell, A.G. Gold nanoparticles allow optoplasmonic evaporation from open silica cells with a logarithmic approach to steady-state thermal profiles. J. Phys. Chem. C, 2010, 114(22), 10132-10139.
Niu, W.; Chua, Y.A.; Zhang, W.; Huang, H.; Lu, X. Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc., 2015, 137(33), 10460-10463.
[http://dx.doi.org/10.1021/jacs.5b05321] [PMID: 26259023]
Fang, J.; Du, S.; Lebedkin, S.; Li, Z.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett., 2010, 10(12), 5006-5013.
[http://dx.doi.org/10.1021/nl103161q] [PMID: 21090587]
Yi, S. One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties. RSC Advances, 2013, 3(26), 10139-10144.
Ghosh, D.; Chattopadhyay, N. Gold nanoparticles: Acceptors for efficient energy transfer from the photoexcited fluorophores. OPJ, 2013, 3(1), 18-26.
Burrows, N.D.; Lin, W.; Hinman, J.G.; Dennison, J.M.; Vartanian, A.M.; Abadeer, N.S.; Grzincic, E.M.; Jacob, L.M.; Li, J.; Murphy, C.J. Surface chemistry of gold nanorods. Langmuir, 2016, 32(39), 9905-9921.
[http://dx.doi.org/10.1021/acs.langmuir.6b02706] [PMID: 27568788]
Wang, Z.; Zhang, J.; Ekman, J.M.; Kenis, P.J.; Lu, Y. DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett., 2010, 10(5), 1886-1891.
[http://dx.doi.org/10.1021/nl100675p] [PMID: 20405820]
Ondera, T.J.; Hamme, A.T. II A gold nanopopcorn attached single-walled carbon nanotube hybrid for rapid detection and killing of bacteria. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(43), 7534-7543.
[http://dx.doi.org/10.1039/C4TB01195C] [PMID: 25414794]
Xu, Q. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens. Actuators B Chem., 2017, 241, 1008-1013.
Zhang, L.; Huang, Y.; Wang, J.; Rong, Y.; Lai, W.; Zhang, J.; Chen, T. Hierarchical flowerlike gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157: H7. Langmuir, 2015, 31(19), 5537-5544.
[http://dx.doi.org/10.1021/acs.langmuir.5b00592] [PMID: 25919084]
Ngom, B.; Guo, Y.; Wang, X.; Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal. Chem., 2010, 397(3), 1113-1135.
[http://dx.doi.org/10.1007/s00216-010-3661-4] [PMID: 20422164]
Anfossi, L.; Baggiani, C.; Giovannoli, C.; D’Arco, G.; Giraudi, G. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal. Bioanal. Chem., 2013, 405(2-3), 467-480.
[http://dx.doi.org/10.1007/s00216-012-6033-4] [PMID: 22543716]
Mak, W.C. Lateral-flow technology: From visual to instrumental. Trends Analyt. Chem., 2016, 79, 297-305.
Gong, X. A review of fluorescent signal-based lateral flow immunochromatographic strips. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(26), 5079-5091.
Wang, K. The application of lateral flow immunoassay in point of care testing: a review. Nano Biomed. Eng., 2016, 8(3), 172-183.
Singh, J.; Sharma, S.; Nara, S. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem., 2015, 170, 470-483.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.092] [PMID: 25306373]
Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron., 2015, 71, 230-242.
[http://dx.doi.org/10.1016/j.bios.2015.04.041] [PMID: 25912679]
Miočević, O.; Cole, C.R.; Laughlin, M.J.; Buck, R.L.; Slowey, P.D.; Shirtcliff, E.A. Quantitative lateral flow assays for salivary biomarker assessment: a review. Front. Public Health, 2017, 5, 133.
[http://dx.doi.org/10.3389/fpubh.2017.00133] [PMID: 28660183]
Jeong, S-G.; Kim, J.; Jin, S.H.; Park, K-S.; Lee, C-S. Flow control in paper-based microfluidic device for automatic multistep assays: a focused minireview. Korean J. Chem. Eng., 2016, 33(10), 2761-2770.
Eltzov, E. Lateral flow immunoassays–from paper strip to smartphone technology. Electroanalysis, 2015, 27(9), 2116-2130.
Wang, J.; Katani, R.; Li, L.; Hegde, N.; Roberts, E.L.; Kapur, V. DebRoy, C. Rapid detection of Escherichia coli O157 and shiga toxins by lateral flow immunoassays. Toxins (Basel), 2016, 8(4), 92.
[http://dx.doi.org/10.3390/toxins8040092] [PMID: 27023604]
Cheng, S.; Chen, M.H.; Zhang, G.G.; Yu, Z.B.; Liu, D.F.; Xiong, Y.H.; Wei, H.; Lai, W.H. Strategy for accurate detection of Escherichia Coli O157: H7 in ground pork using a lateral flow immunoassay. Sensors (Basel), 2017, 17(4), 753.
[http://dx.doi.org/10.3390/s17040753] [PMID: 28368342]
Wang, W. Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. Food Agric. Immunol., 2017, 28(2), 274-287.
Zeng, H.; Guo, W.; Liang, B.; Li, J.; Zhai, X.; Song, C.; Zhao, W.; Fan, E.; Liu, Q. Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli. Anal. Bioanal. Chem., 2016, 408(22), 6071-6078.
[http://dx.doi.org/10.1007/s00216-016-9715-5] [PMID: 27370686]
Song, C. Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157: H7 in bread, milk and jelly samples. Food Control, 2016, 59, 345-351.
Cui, X. A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157: H7. RSC Advances, 2015, 5(56), 45092-45097.
Alcaine, S.D.; Law, K.; Ho, S.; Kinchla, A.J.; Sela, D.A.; Nugen, S.R. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria. Biosens. Bioelectron., 2016, 82, 14-19.
[http://dx.doi.org/10.1016/j.bios.2016.03.047] [PMID: 27031186]
Kong, M.; Shin, J.H.; Heu, S.; Park, J.K.; Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron., 2017, 96, 173-177.
[http://dx.doi.org/10.1016/j.bios.2017.05.010] [PMID: 28494369]
Bruno, J.G. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens, 2014, 3(2), 341-355.
[http://dx.doi.org/10.3390/pathogens3020341] [PMID: 25437803]
Fang, Z.; Wu, W.; Lu, X.; Zeng, L. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens. Bioelectron., 2014, 56, 192-197.
[http://dx.doi.org/10.1016/j.bios.2014.01.015] [PMID: 24491961]
Wu, W.; Zhao, S.; Mao, Y.; Fang, Z.; Lu, X.; Zeng, L. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta, 2015, 861, 62-68.
[http://dx.doi.org/10.1016/j.aca.2014.12.041] [PMID: 25702275]
Tao, Y.; Yang, J.; Chen, L.; Huang, Y.; Qiu, B.; Guo, L.; Lin, Z. Dialysis assisted ligand exchange on gold nanorods: Amplification of the performance of a lateral flow immunoassay for E. coli O157:H7. Mikrochim. Acta, 2018, 185(7), 350.
[http://dx.doi.org/10.1007/s00604-018-2897-0] [PMID: 29967949]
Cho, I.H.; Bhunia, A.; Irudayaraj, J. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int. J. Food Microbiol., 2015, 206, 60-66.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.032] [PMID: 25955290]
Park, J.; Shin, J.H.; Park, J.K. Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem., 2016, 88(7), 3781-3788.
[http://dx.doi.org/10.1021/acs.analchem.5b04743] [PMID: 26977712]
Shin, J.H.; Hong, J.; Go, H.; Park, J.; Kong, M.; Ryu, S.; Kim, K.P.; Roh, E.; Park, J.K. Multiplexed detection of foodborne pathogens from contaminated lettuces using a handheld multistep lateral flow assay device. J. Agric. Food Chem., 2018, 66(1), 290-297.
[http://dx.doi.org/10.1021/acs.jafc.7b03582] [PMID: 29198101]
Ren, W.; Ballou, D.R.; FitzGerald, R.; Irudayaraj, J. Plasmonic enhancement in lateral flow sensors for improved sensing of E. coli O157:H7. Biosens. Bioelectron., 2019, 126, 324-331.
[http://dx.doi.org/10.1016/j.bios.2018.10.066] [PMID: 30453132]
Jin, S-A. Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157: H7. Mikrochim. Acta, 2017, 184(12), 4879-4886.
Wang, Y.; Qin, Z.; Boulware, D.R.; Pritt, B.S.; Sloan, L.M.; González, I.J.; Bell, D.; Rees-Channer, R.R.; Chiodini, P.; Chan, W.C.; Bischof, J.C. thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays. Anal. Chem., 2016, 88(23), 11774-11782.
[http://dx.doi.org/10.1021/acs.analchem.6b03406] [PMID: 27750420]
Zhang, D.; Du, S.; Su, S.; Wang, Y.; Zhang, H. Rapid detection method and portable device based on the photothermal effect of gold nanoparticles. Biosens. Bioelectron., 2019, 123, 19-24.
[http://dx.doi.org/10.1016/j.bios.2018.09.039] [PMID: 30292074]
Gumustas, A. Paper based lateral flow immunoassay for the enumeration of Escherichia coli in urine. Anal. Methods, 2018, 10(10), 1213-1218.
Wang, R. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sens. Actuators B Chem., 2018, 270, 72-79.
Liu, C-C.; Yeung, C.Y.; Chen, P.H.; Yeh, M.K.; Hou, S.Y. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem., 2013, 141(3), 2526-2532.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.089] [PMID: 23870991]
Ben, A.A.; Jara, J.J.; Sebastián, R.M.; Vallribera, A.; Campoy, S.; Pividori, M.I. Comparing nucleic acid lateral flow and electrochemical genosensing for the simultaneous detection of foodborne pathogens. Biosens. Bioelectron., 2017, 88, 265-272.
[http://dx.doi.org/10.1016/j.bios.2016.08.046] [PMID: 27599431]
Blažková, M. Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeriamonocytogenes in food. Eur. Food Res. Technol., 2009, 229(6), 867.
Nihonyanagi, S.; Kanoh, Y.; Okada, K.; Uozumi, T.; Kazuyama, Y.; Yamaguchi, T.; Nakazaki, N.; Sakurai, K.; Hirata, Y.; Munekata, S.; Ohtani, S.; Takemoto, T.; Bandoh, Y.; Akahoshi, T. Clinical usefulness of multiplex PCR lateral flow in MRSA detection: a novel, rapid genetic testing method. Inflammation, 2012, 35(3), 927-934.
[http://dx.doi.org/10.1007/s10753-011-9395-4] [PMID: 21994180]
Wang, J.; Wang, X.; Li, Y.; Yan, S.; Zhou, Q.; Gao, B.; Peng, J.; Du, J.; Fu, Q.; Jia, S.; Zhang, J.; Zhan, L. A novel, universal and sensitive lateral-flow based method for the detection of multiple bacterial contamination in platelet concentrations. Anal. Sci., 2012, 28(3), 237-241.
[http://dx.doi.org/10.2116/analsci.28.237] [PMID: 22451363]
Ang, G.Y.; Yu, C.Y.; Yean, C.Y. Ambient temperature detection of PCR amplicons with a novel sequence-specific nucleic acid lateral flow biosensor. Biosens. Bioelectron., 2012, 38(1), 151-156.
[http://dx.doi.org/10.1016/j.bios.2012.05.019] [PMID: 22705404]
Zhan, F.; Wang, T.; Iradukunda, L.; Zhan, J. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Anal. Chim. Acta, 2018, 1036, 153-161.
[http://dx.doi.org/10.1016/j.aca.2018.06.083] [PMID: 30253826]
Chen, Y.; Cheng, N.; Xu, Y.; Huang, K.; Luo, Y.; Xu, W. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens. Bioelectron., 2016, 81, 317-323.
[http://dx.doi.org/10.1016/j.bios.2016.03.006] [PMID: 26985584]
Nurul Najian, A.B.; Engku Nur Syafirah, E.A.; Ismail, N.; Mohamed, M.; Yean, C.Y. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal. Chim. Acta, 2016, 903, 142-148.
[http://dx.doi.org/10.1016/j.aca.2015.11.015] [PMID: 26709307]
Phillips, E.A.; Moehling, T.J.; Bhadra, S.; Ellington, A.D.; Linnes, J.C. Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal. Chem., 2018, 90(11), 6580-6586.
[http://dx.doi.org/10.1021/acs.analchem.8b00269] [PMID: 29667809]
Park, B.H.; Oh, S.J.; Jung, J.H.; Choi, G.; Seo, J.H.; Kim, D.H.; Lee, E.Y.; Seo, T.S. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens. Bioelectron., 2017, 91, 334-340.
[http://dx.doi.org/10.1016/j.bios.2016.11.063] [PMID: 28043075]
Xu, Y.; Wei, Y.; Cheng, N.; Huang, K.; Wang, W.; Zhang, L.; Xu, W.; Luo, Y. Nucleic acid biosensor synthesis of an all-in-one universal blocking linker recombinase polymerase amplification with a peptide nucleic acid-based lateral flow device for ultrasensitive detection of food pathogens. Anal. Chem., 2018, 90(1), 708-715.
[http://dx.doi.org/10.1021/acs.analchem.7b01912] [PMID: 29202232]
Jauset-Rubio, M.; Tomaso, H.; El-Shahawi, M.S.; Bashammakh, A.S.; Al-Youbi, A.O.; O’Sullivan, C.K. Duplex lateral flow assay for the simultaneous detection of yersinia pestis and francisella tularensis. Anal. Chem., 2018, 90(21), 12745-12751.
[http://dx.doi.org/10.1021/acs.analchem.8b03105] [PMID: 30296053]
Kim, T.H.; Park, J.; Kim, C.J.; Cho, Y.K. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal. Chem., 2014, 86(8), 3841-3848.
[http://dx.doi.org/10.1021/ac403971h] [PMID: 24635032]
Liu, H.B.; Du, X.J.; Zang, Y.X.; Li, P.; Wang, S. SERS-based lateral flow strip biosensor for simultaneous detection of listeria monocytogenes and Salmonella enterica serotype enteritidis. J. Agric. Food Chem., 2017, 65(47), 10290-10299.
[http://dx.doi.org/10.1021/acs.jafc.7b03957] [PMID: 29095602]
Ying, N.; Ju, C.; Li, Z.; Liu, W.; Wan, J. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talanta, 2017, 164, 432-438.
[http://dx.doi.org/10.1016/j.talanta.2016.10.098] [PMID: 28107953]
Tarr, G.A.M.; Shringi, S.; Phipps, A.I.; Besser, T.E.; Mayer, J.; Oltean, H.N.; Wakefield, J.; Tarr, P.I.; Rabinowitz, P. Geogenomic segregation and temporal trends of human pathogenic escherichia coli O157:H7, Washington, USA, 2005-2014. Emerg. Infect. Dis., 2018, 24(1), 32-39.
[http://dx.doi.org/10.3201/eid2401.170851] [PMID: 29260688]
Vanitha, H. An epidemiological investigation on occurrence of enterohemorrhagic Escherichia coli in raw milk. Vet. World, 2018, 11(8), 1164-1170.
Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis., 2005, 11(4), 603-609.
[http://dx.doi.org/10.3201/eid1104.040739] [PMID: 15829201]
Liu, J.; Mazumdar, D.; Lu, Y. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. Engl., 2006, 45(47), 7955-7959.
[http://dx.doi.org/10.1002/anie.200603106] [PMID: 17094149]
Zhou, W.; Kong, W.; Dou, X.; Zhao, M.; Ouyang, Z.; Yang, M. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1022, 102-108.
[http://dx.doi.org/10.1016/j.jchromb.2016.04.016] [PMID: 27085019]
Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron., 2005, 20(12), 2424-2434.
[http://dx.doi.org/10.1016/j.bios.2004.11.006] [PMID: 15854817]
Kim, Y.S.; Raston, N.H.; Gu, M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron., 2016, 76, 2-19.
[http://dx.doi.org/10.1016/j.bios.2015.06.040] [PMID: 26139320]
Qin, Z.; Chan, W.C.; Boulware, D.R.; Akkin, T.; Butler, E.K.; Bischof, J.C. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew. Chem. Int. Ed. Engl., 2012, 51(18), 4358-4361.
[http://dx.doi.org/10.1002/anie.201200997] [PMID: 22447488]
Nie, S.; Emory, S.R. S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science.,, 1997, 275(5303), 1102-1106.
Gao, X.; Zheng, P.; Kasani, S.; Wu, S.; Yang, F.; Lewis, S.; Nayeem, S.; Engler-Chiurazzi, E.B.; Wigginton, J.G.; Simpkins, J.W.; Wu, N. Paper-based surface-enhanced raman scattering lateral flow strip for detection of neuron-specific enolase in blood plasma. Anal. Chem., 2017, 89(18), 10104-10110.
[http://dx.doi.org/10.1021/acs.analchem.7b03015] [PMID: 28817769]
Maneeprakorn, W. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Advances, 2016, 6(113), 112079-112085.
Randall, C.P.; Gupta, A.; Jackson, N.; Busse, D.; O’Neill, A.J. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother., 2015, 70(4), 1037-1046.
[http://dx.doi.org/10.1093/jac/dku523] [PMID: 25567964]
Ong, P.Y.; Leung, D.Y. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin. Rev. Allergy Immunol., 2016, 51(3), 329-337.
[http://dx.doi.org/10.1007/s12016-016-8548-5] [PMID: 27377298]
Png, C.W.; Lindén, S.K.; Gilshenan, K.S. Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol., 2010, 105(11), 2420-2428.
[http://dx.doi.org/10.1038/ajg.2010.281] [PMID: 20648002]
Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res., 2013, 41(15), 7429-7437.
[http://dx.doi.org/10.1093/nar/gkt520] [PMID: 23761437]
Nelson, K.E.; Fouts, D.E.; Mongodin, E.F.; Ravel, J.; DeBoy, R.T.; Kolonay, J.F.; Rasko, D.A.; Angiuoli, S.V.; Gill, S.R.; Paulsen, I.T.; Peterson, J.; White, O.; Nelson, W.C.; Nierman, W.; Beanan, M.J.; Brinkac, L.M.; Daugherty, S.C.; Dodson, R.J.; Durkin, A.S.; Madupu, R.; Haft, D.H.; Selengut, J.; Van Aken, S.; Khouri, H.; Fedorova, N.; Forberger, H.; Tran, B.; Kathariou, S.; Wonderling, L.D.; Uhlich, G.A.; Bayles, D.O.; Luchansky, J.B.; Fraser, C.M. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res., 2004, 32(8), 2386-2395.
[http://dx.doi.org/10.1093/nar/gkh562] [PMID: 15115801]
Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7687-7692.
[http://dx.doi.org/10.1073/pnas.122108599] [PMID: 12032344]
Becker, K.; Denis, O.; Roisin, S.; Mellmann, A.; Idelevich, E.A.; Knaack, D.; van Alen, S.; Kriegeskorte, A.; Köck, R.; Schaumburg, F.; Peters, G.; Ballhausen, B. Detection of mecA-and mecC-positive methicillin-resistant Staphylococcus aureus (MRSA) isolates by the new Xpert MRSA Gen 3 PCR assay. J. Clin. Microbiol., 2016, 54(1), 180-184.
[http://dx.doi.org/10.1128/JCM.02081-15] [PMID: 26491186]
Basanisi, M.G.; La Bella, G.; Nobili, G.; Franconieri, I.; La Salandra, G. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol., 2017, 62, 141-146.
[http://dx.doi.org/10.1016/j.fm.2016.10.020] [PMID: 27889140]
Liu, F.; Liu, H.; Liao, Y.; Wei, J.; Zhou, X.; Xing, D. Multiplex detection and genotyping of pathogenic bacteria on paper-based biosensor with a novel universal primer mediated asymmetric PCR. Biosens. Bioelectron., 2015, 74, 778-785.
[http://dx.doi.org/10.1016/j.bios.2015.06.054] [PMID: 26226347]
Heiat, M.; Ranjbar, R.; Latifi, A.M.; Rasaee, M.J.; Farnoosh, G. Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers. Biotechnol. Appl. Biochem., 2017, 64(4), 541-548.
[http://dx.doi.org/10.1002/bab.1507] [PMID: 27222205]
Yang, G. Construction of gene chip for detecting NDV-IBV-ILTV of chicken (Gallus gallus) with asymmetric PCR. J. Agric. Biotechnol., 2016, 24(1), 142-150.
Sanchez, J.A.; Pierce, K.E.; Rice, J.E.; Wangh, L.J. Linear-after-the-exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 1933-1938.
[http://dx.doi.org/10.1073/pnas.0305476101] [PMID: 14769930]
Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol., 2015, 53(1), 1-5.
[http://dx.doi.org/10.1007/s12275-015-4656-9] [PMID: 25557475]
Njiru, Z.K. Loop-mediated isothermal amplification technology: Towards point of care diagnostics. PLoS Negl. Trop. Dis., 2012, 6(6)e1572
[http://dx.doi.org/10.1371/journal.pntd.0001572] [PMID: 22745836]
Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP): Recent progress in research and development. J. Infect. Chemother., 2013, 19(3), 404-411.
[http://dx.doi.org/10.1007/s10156-013-0590-0] [PMID: 23539453]
Le, D.T.; Vu, N.T. Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases. Appl. Biolog. Chem., 2017, 60(2), 169-180.
Priye, A. Loop-Mediated Isothermal Amplification (LAMP): An insight into reaction mechanism and application in point-of-care diagnostics; Sandia National Lab: Livermore, CA, 2016.
Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol., 2018, 124(3), 626-643.
[http://dx.doi.org/10.1111/jam.13647] [PMID: 29165905]
Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem., 2016, 62(7), 947-958.
[http://dx.doi.org/10.1373/clinchem.2015.245829] [PMID: 27160000]
Lillis, L.; Siverson, J.; Lee, A.; Cantera, J.; Parker, M.; Piepenburg, O.; Lehman, D.A.; Boyle, D.S. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol. Cell. Probes, 2016, 30(2), 74-78.
[http://dx.doi.org/10.1016/j.mcp.2016.01.009] [PMID: 26854117]
James, A.; Macdonald, J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev. Mol. Diagn., 2015, 15(11), 1475-1489.
[http://dx.doi.org/10.1586/14737159.2015.1090877] [PMID: 26517245]
Bi, S.; Yue, S.; Zhang, S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev., 2017, 46(14), 4281-4298.
[http://dx.doi.org/10.1039/C7CS00055C] [PMID: 28573275]
Bi, S.; Chen, M.; Jia, X.; Dong, Y.; Wang, Z. Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew. Chem. Int. Ed. Engl., 2015, 54(28), 8144-8148.
[http://dx.doi.org/10.1002/anie.201501457] [PMID: 26012841]
Hou, T.; Li, W.; Liu, X.; Li, F. Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: A facile, sensitive, and highly specific microRNA assay. Anal. Chem., 2015, 87(22), 11368-11374.
[http://dx.doi.org/10.1021/acs.analchem.5b02790] [PMID: 26523931]
Koos, B.; Cane, G.; Grannas, K.; Löf, L.; Arngården, L.; Heldin, J.; Clausson, C.M.; Klaesson, A.; Hirvonen, M.K.; de Oliveira, F.M.; Talibov, V.O.; Pham, N.T.; Auer, M.; Danielson, U.H.; Haybaeck, J.; Kamali-Moghaddam, M.; Söderberg, O. Proximity-dependent initiation of hybridization chain reaction. Nat. Commun., 2015, 6, 7294.
[http://dx.doi.org/10.1038/ncomms8294] [PMID: 26065580]
Yang, D. Hybridization chain reaction directed DNA superstructures assembly for biosensing applications. Trends Analyt. Chem., 2017, 94, 1-13.
Yamaguchi, T.; Kawakami, S.; Hatamoto, M.; Imachi, H.; Takahashi, M.; Araki, N.; Yamaguchi, T.; Kubota, K. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ. Microbiol., 2015, 17(7), 2532-2541.
[http://dx.doi.org/10.1111/1462-2920.12745] [PMID: 25523128]
Guo, Q.; Han, J.J.; Shan, S.; Liu, D.F.; Wu, S.S.; Xiong, Y.H.; Lai, W.H. DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157: H7 through ELISA. Biosens. Bioelectron., 2016, 86, 990-995.
[http://dx.doi.org/10.1016/j.bios.2016.07.049] [PMID: 27498326]
Tang, J.; Wang, Z.; Zhou, J.; Lu, Q.; Deng, L. Enzyme-free hybridization chain reaction-based signal amplification strategy for the sensitive detection of Staphylococcus aureus. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 215, 41-47.
[http://dx.doi.org/10.1016/j.saa.2019.02.035] [PMID: 30818216]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [2476 - 2493]
Pages: 18
DOI: 10.2174/1568026619666191023125020
Price: $65

Article Metrics

PDF: 25