The Anti-tumor Activity and Mechanisms of rLj-RGD3 on Human Laryngeal Squamous Carcinoma Hep2 Cells

Author(s): Yang Jin, Li Lv, Shu-Xiang Ning, Ji-Hong Wang*, Rong Xiao*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 17 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells.

Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues.

Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights.

Conclusion: These results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.

Keywords: Lampetra japonica, buccal gland, rLj-RGD3, integrin, Hep2, LSCC.

[1]
Thompson, L.D. Laryngeal dysplasia, squamous cell carcinoma, and variants. Surg. Pathol. Clin., 2017, 10(1), 15-33.
[http://dx.doi.org/10.1016/j.path.2016.10.003] [PMID: 28153131]
[2]
Wang, J.; Gao, J.; Li, Y.; Zhao, X.; Gao, W.; Peng, L.; Yan, D.; Liu, L.; Li, D.; Wei, L.; Qi, J.; Zhou, C. Functional polymorphisms in FAS and FASL contribute to risk of squamous cell carcinoma of the larynx and hypopharynx in a Chinese population. Gene, 2013, 524(2), 193-196.
[http://dx.doi.org/10.1016/j.gene.2013.04.034] [PMID: 23618817]
[3]
Pakkanen, P.P.; Aaltonen, L.M.; Sorsa, T.A.; Tervahartiala, T.I.; Hagström, J.K.; Ilmarinen, T.T. Serum matrix metalloproteinase 8 and tissue inhibitor of metalloproteinase 1: Potential markers for malignant transformation of recurrent respiratory papillomatosis and for prognosis of laryngeal cancer. Head Neck, 2018, 41(2), 309-314.
[http://dx.doi.org/10.1002/hed.25459] [PMID: 30549356]
[4]
Zhao, X.; Zhang, W.; Ji, W. miR-196b is a prognostic factor of human laryngeal squamous cell carcinoma and promotes tumor progression by targeting SOCS2. Biochem. Biophys. Res. Commun., 2018, 501(2), 584-592.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.052] [PMID: 29753737]
[5]
Schlüter, A.; Weller, P.; Kanaan, O. Nel, I.; Heusgen, L.; Höing, B.; Haßkamp, P.; Zander, S.; Mandapathil, M.; Dominas, N.; Arnolds, J.; Stuck, B.A.; Lang, S.; Bankfalvi, A.; Brandau, S. CD31 and VEGF are prognostic biomarkers in early-stage, but not in late-stage, laryngeal squamous cell carcinoma. BMC Cancer, 2018, 18(1), 272.
[http://dx.doi.org/10.1186/s12885-018-4180-5] [PMID: 29523110]
[6]
Yang, C.W.; Wang, S.F.; Yang, X.L.; Wang, L.; Niu, L.; Liu, J.X. Identification of gene expression models for laryngeal squamous cell carcinoma using co-expression network analysis. Medicine (Baltimore), 2018, 97(7)e9738
[http://dx.doi.org/10.1097/MD.0000000000009738] [PMID: 29443735]
[7]
Xia, X.; Zhu, Y.Y.; Diao, W.W.; Zhu, X.L.; Shi, X.H.; Li, W.Y.; Gao, Z.Q.; Li, G.J.; Chen, X.M. Matched-pair analysis of survival in the patients with T3 laryngeal squamous cell carcinoma treated with supracricoid partial laryngectomy or total laryngectomy. OncoTargets Ther., 2018, 11, 7947-7953.
[http://dx.doi.org/10.2147/OTT.S175358] [PMID: 30519036]
[8]
Marur, S.; Forastiere, A.A. Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clin. Proc., 2016, 91(3), 386-396.
[http://dx.doi.org/10.1016/j.mayocp.2015.12.017] [PMID: 26944243]
[9]
Zapp, C.; Minsky, B.B.; Boehm, H. Tuning RGD motif and hyaluronan density to study integrin binding. Front. Physiol., 2018, 9, 1022.
[http://dx.doi.org/10.3389/fphys.2018.01022] [PMID: 30131707]
[10]
Eliceiri, B.P.; Cheresh, D.A. Role of α v integrins during angiogenesis. Cancer J., 2000, 6(Suppl. 3), S245-S249.
[PMID: 10874494]
[11]
Tome, Y.; Kimura, H.; Sugimoto, N.; Tsuchiya, H.; Kanaya, F.; Bouvet, M.; Hoffman, R.M. The disintegrin echistatin in combination with doxorubicin targets high-metastatic human osteosarcoma overexpressing ανβ3 integrin in chick embryo and nude mouse models. Oncotarget, 2016, 7(52), 87031-87036.
[http://dx.doi.org/10.18632/oncotarget.13497] [PMID: 27894082]
[12]
Arruda Macêdo, J.K.; Fox, J.W.; de Souza Castro, M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci., 2015, 16(6), 532-548.
[http://dx.doi.org/10.2174/1389203716666150515125002] [PMID: 26031306]
[13]
Wang, J.; Han, X.; Yang, H.; Lu, L.; Wu, Y.; Liu, X.; Guo, R.; Zhang, Y.; Zhang, Y.; Li, Q. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie, 2010, 92(10), 1387-1396.
[http://dx.doi.org/10.1016/j.biochi.2010.07.001] [PMID: 20650303]
[14]
Huang, T.F.; Hsu, C.C.; Kuo, Y.J. Anti-thrombotic agents derived from snake venom proteins. Thromb. J., 2016, 14(Suppl. 1), 18.
[http://dx.doi.org/10.1186/s12959-016-0113-1] [PMID: 27766044]
[15]
Jin, M.; Wang, J.; Xiao, R.; Liu, X.; Wu, F.; Pang, Y.; Feng, B.; Yang, D.; Li, Q. Effects of the recombinant toxin protein rLj-RGD3 in multidrug-resistant human breast carcinoma cells. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(5), 455-461.
[http://dx.doi.org/10.1093/abbs/gms009] [PMID: 22349023]
[16]
Jin, M.; Xiao, R.; Wang, J.; Liu, X.; Liu, Y.; Xue, Z.; Lv, L.; Zheng, Y.; Li, Q. Low concentrations of the recombinant toxin protein rLj-RGD3 suppress TNF-α-induced human renal carcinoma cell invasion. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(5), 377-382.
[http://dx.doi.org/10.1093/abbs/gmt015] [PMID: 23435195]
[17]
Wang, Y.; Zheng, Y.; Tu, Z.; Dai, Y.; Xu, H.; Lv, L.; Wang, J. The anti-tumor effects of the recombinant toxin protein rLj-RGD3 from Lampetra japonica on pancreatic carcinoma Panc-1 cells in nude mice. Peptides, 2017, 88, 8-17.
[http://dx.doi.org/10.1016/j.peptides.2016.12.007] [PMID: 27988354]
[18]
Jiang, Q.; Li, Q.; Han, J.; Gou, M.; Zheng, Y.; Li, B.; Xiao, R.; Wang, J. rLj-RGD3 induces apoptosis via the mitochondrial-dependent pathway and inhibits adhesion, migration and invasion of human HeyA8 cells via FAK pathway. Int. J. Biol. Macromol., 2017, 96, 652-668.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.069] [PMID: 28038913]
[19]
Zheng, Y.; Han, J.; Wang, Y.; Jiang, Q.; Wang, Y.; Lv, L.; Xiao, R.; Wang, J. Data for the effects of rLj-RGD3 on normal tissues of rats and its location in HeyA8 cells. Data Brief, 2017, 12, 77-80.
[http://dx.doi.org/10.1016/j.dib.2017.03.033] [PMID: 28393089]
[20]
Zheng, Y.; Lv, L.; Yi, L.; Wu, R.; Xiao, R.; Wang, J. rLj-RGD3 suppresses the growth of HeyA8 cells in nude mice. Molecules, 2017, 22(12)E2234
[http://dx.doi.org/10.3390/molecules22122234] [PMID: 29244724]
[21]
Wang, S.; Jiang, J.; Wang, Y.; Jia, Q.; Dai, S.; Wang, Y.; Lv, L.; Wang, J. rLj-RGD3, a novel recombinant toxin protein from Lampetra japonica, prevents coronary thrombosis-induced acute myocardial infarction by inhibiting platelet functions in rats. Biochem. Biophys. Res. Commun., 2018, 498(1), 240-245.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.021] [PMID: 29407168]
[22]
Gao, L.; Cao, H.; Cheng, X. A positive feedback regulation between long noncoding RNA SNHG1 and YAP1 modulates growth and metastasis in laryngeal squamous cell carcinoma. Am. J. Cancer Res., 2018, 8(9), 1712-1724.
[PMID: 30323965]
[23]
Fife, C.M.; McCarroll, J.A.; Kavallaris, M. Movers and shakers: Cell cytoskeleton in cancer metastasis. Br. J. Pharmacol., 2014, 171(24), 5507-5523.
[http://dx.doi.org/10.1111/bph.12704] [PMID: 24665826]
[24]
Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev., 2009, 28(1-2), 15-33.
[http://dx.doi.org/10.1007/s10555-008-9169-0] [PMID: 19169796]
[25]
Li, F.; Liu, Y.; Kan, X.; Li, Y.; Liu, M.; Lu, J.G. Elevated expression of integrin αv and β5 subunit in laryngeal squamous-cell carcinoma associated with lymphatic metastasis and angiogenesis. Pathol. Res. Pract., 2013, 209(2), 105-109.
[http://dx.doi.org/10.1016/j.prp.2012.11.001] [PMID: 23261238]
[26]
Lv, P.C.; Jiang, A.Q.; Zhang, W.M.; Zhu, H.L. FAK inhibitors in Cancer, a patent review. Expert Opin. Ther. Pat., 2018, 28(2), 139-145.
[http://dx.doi.org/10.1080/13543776.2018.1414183] [PMID: 29210300]
[27]
Fu, W.; Hall, J.E.; Schaller, M.D. Focal adhesion kinase-regulated signaling events in human cancer. Biomol. Concepts, 2012, 3(3), 225-240.
[http://dx.doi.org/10.1515/bmc-2011-0049] [PMID: 25436535]
[28]
Zhang, X.; Chattopadhyay, A.; Ji, Q.S.; Owen, J.D.; Ruest, P.J.; Carpenter, G.; Hanks, S.K. Focal adhesion kinase promotes phospholipase C-γ1 activity. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 9021-9026.
[http://dx.doi.org/10.1073/pnas.96.16.9021] [PMID: 10430888]
[29]
Kale, J.; Kutuk, O.; Brito, G.C.; Andrews, T.S.; Leber, B.; Letai, A.; Andrews, D.W. Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Rep., 2018, 19(9)e45235
[http://dx.doi.org/10.15252/embr.201745235] [PMID: 29987135]
[30]
Tsuruta, F.; Masuyama, N.; Gotoh, Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J. Biol. Chem., 2002, 277(16), 14040-14047.
[http://dx.doi.org/10.1074/jbc.M108975200] [PMID: 11842081]
[31]
Strasser, A.; Cory, S.; Adams, J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J., 2011, 30(18), 3667-3683.
[http://dx.doi.org/10.1038/emboj.2011.307] [PMID: 21863020]
[32]
Amé, J.C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. BioEssays, 2004, 26(8), 882-893.
[http://dx.doi.org/10.1002/bies.20085] [PMID: 15273990]
[33]
López-Colomé, A.M.; Lee-Rivera, I.; Benavides-Hidalgo, R.; López, E. Paxillin: A crossroad in pathological cell migration. J. Hematol. Oncol., 2017, 10(1), 50.
[http://dx.doi.org/10.1186/s13045-017-0418-y] [PMID: 28214467]
[34]
Turner, C.E. Paxillin and focal adhesion signalling. Nat. Cell Biol., 2000, 2(12), E231-E236.
[http://dx.doi.org/10.1038/35046659] [PMID: 11146675]
[35]
Lattanzio, R.; Piantelli, M.; Falasca, M. Role of phospholipase C in cell invasion and metastasis. Adv. Biol. Regul., 2013, 53(3), 309-318.
[http://dx.doi.org/10.1016/j.jbior.2013.07.006] [PMID: 23925006]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 17
Year: 2019
Page: [2108 - 2119]
Pages: 12
DOI: 10.2174/1871520619666191022160024
Price: $65

Article Metrics

PDF: 23
HTML: 5