Green Synthesis of 4H-pyran Derivatives Using Fe3O4-MNPs as Efficient Nanocatalyst: Study of Antioxidant Activity

Author(s): Faezeh Shafaei*, Asef H. Najar

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Aims and Objective: In this work, pyran derivatives were synthesized via a multicomponent reaction of ninhydrin, α-haloketones, dialkyl acetylenedicarboxylate, and triphenylphosphine in the presence of iron oxide magnetic nanoparticles (Fe3O4-MNPs) as efficient nanocatalyst in ethanol at room temperature.

Materials and Methods: The biosynthesis of Fe3O4-MNPs was performed by Clover Leaf water extract. In addition, antioxidant activity was examined for the prepared compounds employing DPPH radical scavenging and ferric reduction activity potential (FRAP) experiment and comparing results with synthetic antioxidants (TBHQ and BHT).

Results: Compound 5b showed excellent radical trapping activity and good reducing activity relative to standards (BHT and TBHQ).

Conclusion: Some advantages of this procedure are: the workup of reaction is easy and the products can be separated easily by filtration. Fe3O4-MNPs display a good improvement in the yield of the product and showed significant reusable activity.

Keywords: Ninhydrine, Fe3O4-MNPs, α-haloketones, green synthesis, Pyran, Diels-Alder reactions.

[1]
Wagh, Y.B.; Tayade, Y.A.; Padvi, S.A.; Patil, B.S.; Patil, N.B.; Dalal, D.S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett., 2015, 26, 1273-1277.
[http://dx.doi.org/10.1016/j.cclet.2015.06.014]
[2]
a) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
b) Fringuelli, F.; Taticchi, A. The Diels–Alder Reaction. Selected Practical Methods; John Wiley: New York, 2002.
c) Cycloaddition Reactions in Organic SynthesisKobayashi, S.; Jorgensen, K.A., Eds.; ; Wiley-VCH, 2002.
[3]
a) Ichihara, A.; Oikawa, H. Diels-Alder type natural products - structures and biosynthesis. Curr. Org. Chem., 1998, 2, 365-394.
b) Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels--Alder reaction in total synthesis. Angew. Chem. Int. Ed. Engl., 2002, 41(10), 1668-1698.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1668:AID-ANIE1668>3.0.CO;2-Z] [PMID: 19750686]
c) Corey, E.J. Catalytic enantioselective Diels--Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed. Engl., 2002, 41(10), 1650-1667.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1650:AID-ANIE1650>3.0.CO;2-B] [PMID: 19750685]
[4]
a) Tietze, L.F.; Kettschau, G. Hetero Diels-Alder reactions in organic chemistry. Top. Curr. Chem., 1997, 189, 1-20.
[http://dx.doi.org/10.1007/BFb0119240]
b) Boger, D.L.; Weinreb, S.M. Hetero Diels-Alder Methodology in Organic Synthesis; Wasserman, H.H., Ed.; Academic Press: San Diego, CA, 1987, Vol. 47, pp. 1-349.
[5]
a) Schmidt, R.R. Hetero-Diels-Alder reaction in highly functionalized natural product synthesis. Acc. Chem. Res., 1986, 19, 250.
[http://dx.doi.org/10.1021/ar00128a004]
b) Danishefsky, S.J.; DeNinno, M.P. Totally synthetic routes to the higher monosaccharides. Angew. Chem. Int. Ed. Engl., 1987, 26, 155.
[http://dx.doi.org/10.1002/anie.198700151]
c) Kametani, T.; Hibino, S. The synthesis of natural heterocyclic products by hetero Diels-Alder cycloaddition reactions. Adv. Heterocycl. Chem., 1987, 42, 245.
[http://dx.doi.org/10.1016/S0065-2725(08)60645-5]
d) Bednarski, M.D.; Lyssikatos, J.P. Comprehensive Organic Synthesis; Trost, B.M.; Heathcock, C.H., Eds.; Pergamon Press: New York, 1991, Vol. 2, p. 661.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00044-5]
[6]
Abe, I.; Oguro, S.; Utsumi, Y.; Sano, Y.; Noguchi, H. Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase. J. Am. Chem. Soc., 2005, 127(36), 12709-12716.
[http://dx.doi.org/10.1021/ja053945v] [PMID: 16144421]
[7]
Sibi, M.P.; Zimmerman, J. Pyrones to pyrans: enantioselective radical additions to acyloxy pyrones. J. Am. Chem. Soc., 2006, 128(41), 13346-13347.
[http://dx.doi.org/10.1021/ja0648108] [PMID: 17031933]
[8]
Hussein, A.H.M.; Gad-Elkareem, M.A.M.; El-Adasy, A.A.M.; Khames, A.A.; Othman, I.M.M. β-oxoanilides in heterocyclic synthesis: Synthesis and antimicrobial activity of pyridines, pyrans, pyrimidines and azolo, azinopyrimidines incorporating antipyrine moiety. Int. J. Org. Chem. (Irvine), 2012, 2, 341-351.
[http://dx.doi.org/10.4236/ijoc.2012.24047]
[9]
Chattapadhyay, T.K.; Dureja, P. Residues of azoxystrobin from grapes to raisins. J. Agric. Food Chem., 2006, 54, 2129-2133.
[http://dx.doi.org/10.1021/jf052792s] [PMID: 16536586]
[10]
Wang, T.; Liu, J.; Zhong, H.; Chen, H.; Lv, Z.; Zhang, Y.; Zhang, M.; Geng, D.; Niu, C.; Li, Y.; Li, K. Synthesis and anti-tumor activity of novel ethyl 3-aryl-4-oxo-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran-3a-carboxylates. Bioorg. Med. Chem. Lett., 2011, 21(11), 3381-3383.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.003] [PMID: 21515044]
[11]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[12]
Safari, J.; Zarnegar, Z.; Heydarian, M. Magnetic Fe3O4 nanoparticles as efficient and reusable catalyst for the green synthesis of 2-amino-4H-chromene in aqueous media. Bull. Chem. Soc. Jpn., 2012, 85, 1332-1338.
[http://dx.doi.org/10.1246/bcsj.20120209]
[13]
Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28, 517-520.
[http://dx.doi.org/10.1016/0223-5234(93)90020-F]
[14]
Heravi, M.M.; Baghernejad, B.; Oskooie, H.A. A Novel and efficient catalyst to one-pot synthesis of 2-amino-4H-chromenes by methanesulfonic acid. J. Chin. Chem. Soc. (Taipei), 2008, 55, 659-662.
[http://dx.doi.org/10.1002/jccs.200800098]
[15]
Andreani, L.L.; Lapi, E. Aspects and orientations of modern pharmacognosy. Boll. Chim. Farm., 1960, 99, 583-586.
[16]
Hatakeyama, S.; Ochi, N.; Numata, H.; Takano, S.A. An enantio- and stereocontrolled synthesis of (−)-mycestericin E via cinchona alkaloid-catalyzed asymmetric Baylis–Hillman reaction. J. Chem. Soc. Chem. Commun., 1988, 17, 1202-1204.
[http://dx.doi.org/10.1039/C39880001202]
[17]
Singh, K.; Singh, J.; Singh, H. A synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles. Tetrahedron, 1996, 52, 14273-14280.
[http://dx.doi.org/10.1016/0040-4020(96)00879-4]
[18]
Perkin, W.H. XXIII.—On the hydride of aceto-salicyl. J. Chem. Soc., 1868, 21, 181-186.
[http://dx.doi.org/10.1039/JS8682100181]
[19]
Khafagy, M.M.; Abd el-Wahab, A.H.F.; Eid, F.A.; el-Agrody, A.M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco, 2002, 57(9), 715-722.
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[20]
Singh, K.; Singh, J.; Singh, H. A synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles. Tetrahedron, 1996, 52, 14273-14280.
[http://dx.doi.org/10.1016/0040-4020(96)00879-4]
[21]
Lee, Y.R.; Choi, J.H.; Yoon, S.H. Efficient and general method for the synthesis of benzopyrans by ethylenediamine diacetate-catalyzed reactions of resorcinols with α,β-unsaturated aldehydes. One step synthesis of biologically active (±)-confluentin and (±)-daurichromenic acid. Tetrahedron Lett., 2005, 46, 7539-7543.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.159]
[22]
Pałasz, A. Synthesis of fused uracils: pyrano[2,3-d]pyrimidines and 1,4-bis(pyrano[2,3-d]pyrimidinyl)benzenes by domino Knoevenagel/Diels-Alder reactions. Monatsh. Chem., 2012, 143(8), 1175-1185.
[http://dx.doi.org/10.1007/s00706-012-0781-x] [PMID: 26166870]
[23]
Shestopalov, A.A.; Rodinovskaya, A.M.; Shestopalov, A.M.; Litvinov, V.P. Single-step synthesis of substituted 7-aminopyrano[2,3-d]pyrimidines. Russ. Chem. Bull., 2004, 53(10), 2342-2344.
[http://dx.doi.org/10.1007/s11172-005-0128-4]
[24]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4 (3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374-375, 102-110.
[http://dx.doi.org/10.1016/j.molcata.2013.04.002]
[25]
Beydoun, D.; Amal, R.; Low, G.; McEvoy, S.J. Role of nanoparticles in photocatalysis. J. Nanopart. Res., 1999, 1, 439-458.
[26]
Abdul, H.; Sivaraj, R.; Venckatesh, R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascensBenth.-Lamiaceae leaf extract. Mater. Lett., 2014, 131, 16-18.
[http://dx.doi.org/10.1016/j.matlet.2014.05.033]
[27]
Wei, Y.; Han, B.; Hu, X. lin, Y.; Wang, X.; Deng, X. Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng., 2012, 27, 632-637.
[http://dx.doi.org/10.1016/j.proeng.2011.12.498]
[28]
Zarghani, M.; Akhlaghinia, B. Fe3O4 magnetic nanoparticles (MNPs) as an efficient catalyst for selective oxidation of benzylic and allylic C–H bonds to carbonyl compounds withtert-butyl hydroperoxide. RSC Advances, 2016, 6(45), 38592-38601.
[http://dx.doi.org/10.1039/C6RA04903F]
[29]
Yew, Y.P.; Shameli, K.; Miyake, M.; Kuwano, N.; Bt Ahmad Khairudin, N.B.; Bt Mohamad, S.E.; Lee, K.X. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res. Lett., 2016, 11(1), 276.
[http://dx.doi.org/10.1186/s11671-016-1498-2] [PMID: 27251326]
[30]
a) Halliwell, B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic. Res., 1999, 31(4), 261-272.
[http://dx.doi.org/10.1080/10715769900300841] [PMID: 10517532]
b) Ahmadi, F.; Kadivar, M.; Shahedi, M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem., 2007, 105, 57.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.056]
[31]
Babizhayev, M.A.; Deyev, A.I.; Yermakovea, V.N.; Brikman, I.V.; Bours, J. N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Drugs R D., 2004, 5, 125.
[http://dx.doi.org/10.2165/00126839-200405030-00001] [PMID: 15139774]
[32]
Liu, L.; Meydani, M. Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr. Rev., 2002, 60(11), 368-371.
[http://dx.doi.org/10.1301/00296640260385810] [PMID: 12462519]
[33]
Hossaini, Z.S.; Rostami-Charati, F.; Seyfi, S.; Ghambarian, M. Multicomponent reactions for the synthesis of functionalized 1, 4-oxathiane-3-thiones under microwave irradiation in water. Chin. Chem. Lett., 2013, 24, 376-378.
[http://dx.doi.org/10.1016/j.cclet.2013.03.003]
[34]
Hossaini, Z.; Rostami-Charati, F.; Soltani, S.; Mirzaei, A.; Berijani, K. Multicomponent reactions of ammonium thiocyanate, acyl chlorides, alkyl bromides, and enaminones: a facile one-pot synthesis of thiophenes. Mol. Divers., 2011, 15(4), 911-916.
[http://dx.doi.org/10.1007/s11030-011-9322-5] [PMID: 21695452]
[35]
Rostami-Charati, F. Efficient synthesis of functionalized hydroindoles via catalyst-free multicomponent reactions of ninhydrin in water. Chin. Chem. Lett., 2014, 25, 169-171.
[http://dx.doi.org/10.1016/j.cclet.2013.09.016]
[36]
Rostami Charati, F.; Hossaini, Z.S.; Hosseini-Tabatabaei, M.R. A simple synthesis of oxaphospholes. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186, 1443-1448.
[http://dx.doi.org/10.1080/10426507.2010.515953]
[37]
Hossaini, Z.S.; Zareyee, D.; Sheikholeslami-Farahani, F.; Vaseghi, S.; Zamani, A. ZnO-NR as the efficient catalyst for the synthesis of new thiazole and cyclopentadienone phosphonate derivatives in water. Heteroatom Chem., 2017, 28, e21362
[http://dx.doi.org/10.1002/hc.21362]
[38]
Rostami-charati, F.; Hossaini, Z.S.; Zareyee, D.; Afrashteh, S.; Hosseinzadeh, M. ZnO-nanorods as an efficient catalyst for the synthesis of 1,3-thiazolidine derivatives by aqueous multicomponent reactions of isothiocyanates. J. Heterocycl. Chem., 2017, 54, 1937-1942.
[http://dx.doi.org/10.1002/jhet.2789]
[39]
Rostami-Charati, F.; Hossaini, Z.S.; Rostamian, R.; Zamani, A.; Abdoli, M. Green synthesis of indol-2-one derivatives from N-alkylisatins in the presence of KF/clinoptilolite nanoparticles. Chem. Heterocycl. Compd., 2017, 53, 480-483.
[http://dx.doi.org/10.1007/s10593-017-2077-x]
[40]
Rezayati, S.; Sheikholeslami-Farahani, F.; Hossaini, Z.; Hajinasiri, R.; Abad, S.A. Regioselctive thiocyanation of aromatic and heteroaromatic compounds using a novel bronsted acidic ionic liquid. Comb. Chem. High Throughput Screen., 2016, 19(9), 720-727.
[http://dx.doi.org/10.2174/1386207319666160709191851] [PMID: 27396916]
[41]
Rostami-Charati, F.; Hossaini, Z.; Sheikholeslami-Farahani, F.; Azizi, Z.; Siadati, S.A. Synthesis of 9H-furo [2,3-f]chromene derivatives by promoting ZnO nanoparticles. Comb. Chem. High Throughput Screen., 2015, 18(9), 872-880.
[http://dx.doi.org/10.2174/1386207318666150525094109] [PMID: 26004051]
[42]
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945-948.
[http://dx.doi.org/10.1021/jf00018a005]
[43]
Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of Peanut Hulls on free-radical and active-oxygen species. J. Agric. Food Chem., 1994, 42, 629-632.
[http://dx.doi.org/10.1021/jf00039a005]
[44]
Saundane, A.R.; Nandibeoor, M.K. Synthesis, characterization, and biological evaluation of Schiff bases containing indole moiety and their derivatives. Monatsh. Chem., 2015, 146, 1751.
[http://dx.doi.org/10.1007/s00706-015-1440-9]
[45]
Bidchol, A.M. Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food Bioprocess Technol., 2011, 4, 1137.
[http://dx.doi.org/10.1007/s11947-009-0196-9]
[46]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 5
Year: 2020
Page: [446 - 454]
Pages: 9
DOI: 10.2174/1386207322666191022130235
Price: $65

Article Metrics

PDF: 19
HTML: 2