The Use of Texture Features to Extract and Analyze Useful Information from Retinal Images

Author(s): Xiaobo Zhang, Weiyang Chen*, Gang Li*, Weiwei Li

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: The analysis of retinal images can help to detect retinal abnormalities that are caused by cardiovascular and retinal disorders.

Objective: In this paper, we propose methods based on texture features for mining and analyzing information from retinal images.

Methods: The recognition of the retinal mask region is a prerequisite for retinal image processing. However, there is no way to automatically recognize the retinal region. By quantifying and analyzing texture features, a method is proposed to automatically identify the retinal region. The boundary of the circular retinal region is detected based on the image texture contrast feature, followed by the filling of the closed circular area, and then the detected circular retinal mask region can be obtained.

Results: The experimental results show that the method based on the image contrast feature can be used to detect the retinal region automatically. The average accuracy of retinal mask region detection of images from the Digital Retinal Images for Vessel Extraction (DRIVE) database was 99.34%.

Conclusion: This is the first time these texture features of retinal images are analyzed, and texture features are used to recognize the circular retinal region automatically.

Keywords: Retinal image, texture feature, mask image, image contrast, retinal mask, retinal disorders.

[1]
Oliveira, W.S.; Teixeira, J.V.; Ren, T.I.; Cavalcanti, G.D.; Sijbers, J. Unsupervised retinal vessel segmentation using combined filters. PLoS One, 2016, 11(2), e0149943
[http://dx.doi.org/10.1371/journal.pone.0149943] [PMID: 26919587]
[2]
Syed, A.M.; Hassan, T.; Akram, M.U.; Naz, S.; Khalid, S. Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces. Comput. Methods Programs Biomed., 2016, 137, 1-10.
[http://dx.doi.org/10.1016/j.cmpb.2016.09.004] [PMID: 28110716]
[3]
Santhi, D.; Manimegalai, D.; Parvathi, S.; Karkuzhali, S. Segmentation and classification of bright lesions to diagnose diabetic retinopathy in retinal images. Biomed. Tech. (Berl.), 2016, 61(4), 443-453.
[http://dx.doi.org/10.1515/bmt-2015-0188] [PMID: 27060730]
[4]
Oloumi, F.; Rangayyan, R.M.; Casti, P.; Ells, A.L. Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants. Comput. Biol. Med., 2015, 66, 316-329.
[http://dx.doi.org/10.1016/j.compbiomed.2015.09.009] [PMID: 26457930]
[5]
Yu, S.; Xiao, D.; Kanagasingam, Y. Automatic detection of neovascularization on optic disk region with feature extraction and support vector machine. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2016, 2016, 1324-1327.
[PMID: 28268569]
[6]
Shin, J.W.; Sung, K.R.; Lee, J.Y.; Kwon, J.; Seong, M. Optical coherence tomography angiography vessel density mapping at various retinal layers in healthy and normal tension glaucoma eyes. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(6), 1193-1202.
[http://dx.doi.org/10.1007/s00417-017-3671-4] [PMID: 28429123]
[7]
Hatanaka, Y.; Tachiki, H.; Ogohara, K.; Muramatsu, C.; Okumura, S.; Fujita, H. Artery and vein diameter ratio measurement based on improvement of arteries and veins segmentation on retinal images. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2016, 2016, 1336-1339.
[http://dx.doi.org/10.1109/EMBC.2016.7590954] [PMID: 28268572]
[8]
Aliahmad, B.; Kumar, D.K. Adaptive Higuchi’s dimension-based retinal vessel diameter measurement. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2016, 2016, 1308-1311.
[http://dx.doi.org/10.1109/EMBC.2016.7590947] [PMID: 28268566]
[9]
Chen, Q.; Huang, S.; Ma, Q.; Lin, H.; Pan, M.; Liu, X.; Lu, F.; Shen, M. Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma. Sci. Rep., 2017, 7, 41100.
[http://dx.doi.org/10.1038/srep41100] [PMID: 28169283]
[10]
Oliveira, J.; Pereira, S.; Gonçalves, L.; Ferreira, M.; Silva, C.A. Multi-surface segmentation of OCT images with AMD using sparse high order potentials. Biomed. Opt. Express, 2016, 8(1), 281-297.
[http://dx.doi.org/10.1364/BOE.8.000281] [PMID: 28101418]
[11]
Fu, D.; Tong, H.; Zheng, S.; Luo, L.; Gao, F.; Minar, J. Retinal status analysis method based on feature extraction and quantitative grading in OCT images. Biomed. Eng. Online, 2016, 15(1), 87.
[http://dx.doi.org/10.1186/s12938-016-0206-x] [PMID: 27449218]
[12]
Vijayakumar, V.; Koozekanani, D.D.; White, R.; Kohler, J.; Roychowdhury, S.; Parhi, K.K. Artery/vein classification of retinal blood vessels using feature selection. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2016, 2016, 1320-1323.
[http://dx.doi.org/10.1109/EMBC.2016.7590950] [PMID: 28268568]
[13]
Xu, X.; Ding, W.; Abràmoff, M.D.; Cao, R. An improved arteriovenous classification method for the early diagnostics of various diseases in retinal image. Comput. Methods Programs Biomed., 2017, 141, 3-9.
[http://dx.doi.org/10.1016/j.cmpb.2017.01.007] [PMID: 28241966]
[14]
Roy, P.K.; Bhuiyan, A.; Lee, K.; Wong, T.Y.; Ramamohanarao, K. A novel computer aided quantification method of focal arteriolar narrowing using colour retinal image. Comput. Biol. Med., 2016, 74, 18-29.
[http://dx.doi.org/10.1016/j.compbiomed.2016.04.018] [PMID: 27160638]
[15]
Xiong, L.; Li, H.; Xu, L. An enhancement method for color retinal images based on image formation model. Comput. Methods Programs Biomed., 2017, 143, 137-150.
[http://dx.doi.org/10.1016/j.cmpb.2017.02.026] [PMID: 28391812]
[16]
Yang, X.; Liu, C.; Le Minh, H.; Wang, Z.; Chien, A.; Cheng, K.T. An automated method for accurate vessel segmentation. Phys. Med. Biol., 2017, 62(9), 3757-3778.
[http://dx.doi.org/10.1088/1361-6560/aa6418] [PMID: 28384126]
[17]
Yin, B.; Li, H.; Sheng, B.; Hou, X.; Chen, Y.; Wu, W.; Li, P.; Shen, R.; Bao, Y.; Jia, W. Vessel extraction from non-fluorescein fundus images using orientation-aware detector. Med. Image Anal., 2015, 26(1), 232-242.
[http://dx.doi.org/10.1016/j.media.2015.09.002] [PMID: 26474120]
[18]
He, Y.; Zheng, Y.; Zhao, Y.; Ren, Y.; Lian, J.; Gee, J. Retinal image denoising via bilateral filter with a spatial kernel of optimally oriented line spread function. Comput. Math. Methods Med., 2017, 2017, 1769834
[http://dx.doi.org/10.1155/2017/1769834] [PMID: 28261320]
[19]
Baghaie, A.; D’Souza, R.M.; Yu, Z. Application of independent component analysis techniques in speckle noise reduction of retinal OCT images. Optik (Stuttg.), 2016, 127(15), 5783-5791.
[http://dx.doi.org/10.1016/j.ijleo.2016.03.078] [PMID: 27667860]
[20]
Li, M.; Ma, Z.; Liu, C.; Zhang, G.; Han, Z. Robust retinal blood vessel segmentation based on reinforcement local descriptions. BioMed Res. Int., 2017, 2017, 2028946
[http://dx.doi.org/10.1155/2017/2028946] [PMID: 28194407]
[21]
Singh, N.P.; Srivastava, R. Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput. Methods Programs Biomed., 2016, 129, 40-50.
[http://dx.doi.org/10.1016/j.cmpb.2016.03.001] [PMID: 27084319]
[22]
Mapayi, T.; Viriri, S.; Tapamo, J.R. Adaptive thresholding technique for retinal vessel segmentation based on GLCM-energy information. Comput. Math. Methods Med., 2015, 2015, 597475
[http://dx.doi.org/10.1155/2015/597475] [PMID: 25802550]
[23]
Kar, S.S.; Maity, S.P. Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means. Comput. Biol. Med., 2016, 70, 174-189.
[http://dx.doi.org/10.1016/j.compbiomed.2015.12.018] [PMID: 26848729]
[24]
Bao, X.R.; Ge, X.; She, L.H.; Zhang, S. Segmentation of retinal blood vessels based on cake filter. BioMed Res. Int., 2015, 2015, 137024
[http://dx.doi.org/10.1155/2015/137024] [PMID: 26636095]
[25]
Sedai, S.; Roy, P.K.; Mahapatra, D.; Garnavi, R. Segmentation of optic disc and optic cup in retinal fundus images using shape regression. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2016, 2016, 3260-3264.
[PMID: 28269003]
[26]
Rahebi, J.; Hardalaç, F. A new approach to optic disc detection in human retinal images using the firefly algorithm. Med. Biol. Eng. Comput., 2016, 54(2-3), 453-461.
[http://dx.doi.org/10.1007/s11517-015-1330-7] [PMID: 26093773]
[27]
Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging, 2004, 23(4), 501-509.
[http://dx.doi.org/10.1109/TMI.2004.825627] [PMID: 15084075]
[28]
Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S.A. Blood vessel segmentation methodologies in retinal images--a survey. Comput. Methods Programs Biomed., 2012, 108(1), 407-433.
[http://dx.doi.org/10.1016/j.cmpb.2012.03.009] [PMID: 22525589]
[29]
Cole, E.D.; Novais, E.A.; Louzada, R.N.; Waheed, N.K. Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clin. Exp. Ophthalmol., 2016, 44(4), 289-299.
[http://dx.doi.org/10.1111/ceo.12711] [PMID: 26841250]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 4
Year: 2020
Published on: 19 May, 2020
Page: [313 - 318]
Pages: 6
DOI: 10.2174/1386207322666191022123445
Price: $65

Article Metrics

PDF: 19
HTML: 4
EPUB: 1
PRC: 1