Bisindolization Reaction Employing Phthalimide-N-sulfonic Acid as an Efficient Catalyst

Author(s): Hoda Banari, Hamzeh Kiyani*, Ali Reza Pourali

Journal Name: Current Organocatalysis

Volume 7 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Bis(indolyl) methanes (BIMs) have a wide spectrum of applications in biomedicine and agriculture as well as are present in natural products. These bisheterocyclic compounds possess vast pharmacological, including antifungal, antitubercular, anti-inflammatory, antibacterial, anticancer, anticonvulsant, antibiotic, antiviral, antimalarial, analgesic, and antidiabetic properties. BIMs scaffolds have also been employed as selective optical chemosensors for detection of some anions and cations with the naked eye. Because of the importance of these bisheterocycles, various methods have been reported for their synthesis through reaction of indole derivatives and aldehydes or ketones. Therefore, the synthesis of BIMs through different methodologies has received widespread attention in the field of organic synthesis and medicinal chemistry.

Objective: In this study, the catalytic activity of phthalimide-N-sulfonic acid (PISA) as an efficient and safe solid acidic organocatalyst toward the synthesis of BIMs derivatives in ethanol is described.

Methods: Indole derivatives (2 mmol), aryl/heteroaryl aldehydes (1 mmol), and PISA (10 mol%) were mixture in ethanol. The reaction mixture was stirred at room temperature for the appropriate times. After workup and separation of catalyst, the corresponding heterocyclic products were obtained through recrystallization from hot ethanol.

Results: The BIMs derivatives were easily obtained via Bisindolization Reaction (BIR) of two indoles (2-methylindole and indole) with a series of aryl and heteroaryl aldehydes. The BIR was efficiently catalyzed at room temperature using PISA as an excellent organocatalyst under optimized reaction conditions.

Conclusion: The reactions were implemented in simple manner and were completed within acceptable reaction times. The expected BIM products were obtained in satisfactory yields. The catalyst can be recovered and reused several times in the template reaction. This approach provides the benefits of convenience, simple operational procedure, no use of hazardous organic solvents, cheapness and ease of preparation of catalyst.

Keywords: Bis(indolyl)methanes, green synthesis, indole, phthalimide-N-sulfonic acid, aryl aldehyde, organocatalyst.

[1]
Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chem. Rev., 2010, 110(4), 2250-2293.
[http://dx.doi.org/10.1021/cr900195a] [PMID: 20041637]
[2]
Pillaiyar, T.; Dawood, M.; Irum, H.; Müller, C.E. A rapid, efficient and versatile green synthesis of 3,3′-diindolylmethanes. ARKIVOC, 2018, iii, 1-19.
[3]
a) Perumal, P.T.; Nagarajan, R. Potassium hydrogen sulfate-catalyzed reactions of indoles: a mild, expedient synthesis of bis-indolylmethanes. Chem. Lett., 2004, 33, 288-289.
[http://dx.doi.org/10.1246/cl.2004.288]
b) Praveen, C.; DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
c) Nemallapudi, B.R.; Zyryanov, G.V.; Avula, B.; Guda, M.R.; Cirandur, S.R.; Venkataramaiah, C.; Rajendra, W.; Gundala, S. Meglumine as a green, efficient and reusable catalyst for synthesis and molecular docking studies of bis(indolyl)methanes as antioxidant agents. Bioorg. Chem., 2019, 87, 465-473.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.005] [PMID: 30927587]
d) Praveen, C.; Ayyanar, A.; Perumal, P.T. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones. Bioorg. Med. Chem. Lett., 2011, 21(13), 4072-4077.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.117] [PMID: 21621411]
e) Nemallapudi, B.R.; Zyryanov, G.V.; Avula, B.; Guda, M.R.; Gundala, S. An effective green and ecofriendly catalyst for synthesis of bis(indolyl)methanes as promising antimicrobial agents. J. Heterocycl. Chem., 2019, 56, 3324-3332.
[http://dx.doi.org/10.1002/jhet.3729]
[4]
Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull. (Tokyo), 1994, 42(12), 2449-2451.
[http://dx.doi.org/10.1248/cpb.42.2449] [PMID: 7697760]
[5]
Sarva, S.; Harinath, J.S.; Sthanikam, S.P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S.R. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin. Chem. Lett., 2016, 27, 16-20.
[http://dx.doi.org/10.1016/j.cclet.2015.08.012]
[6]
Sujatha, K.; Perumal, P.T.; Muralidharan, D.; Rajendran, M. Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes. Indian J. Chem., 2009, 48B, 267-272.
[7]
Osawa, T.; Namiki, M. Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria. Tetrahedron Lett., 1983, 24, 4719-4722.
[http://dx.doi.org/10.1016/S0040-4039(00)86237-1]
[8]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(22), 6504-6507.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.055] [PMID: 20932744]
[9]
a) Mari, M.; Tassoni, A.; Lucarini, S.; Fanelli, M.; Piersanti, G.; Spadoni, G. Brønsted acid catalyzed bisindolization of α-amido acetals: synthesis and anticancer activity of bis(indolyl)ethanamino derivatives. Eur. J. Org. Chem., 2014, 2014, 3822-3830.
[http://dx.doi.org/10.1002/ejoc.201402055]
b) Grosso, C.; Cardoso, A.L.; Lemos, A.; Varela, J.; Rodrigues, M.J.; Custódio, L.; Barreira, L.; Pinho e Melo, T.M.V.D. Novel approach to bis(indolyl)methanes: de novo synthesis of 1-hydroxyiminomethyl derivatives with anti-cancer properties. Eur. J. Med. Chem., 2015, 93, 9-15.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.050] [PMID: 25644672]
c) ayindir, S.; Ayna, A.; Temel, Y.; Ciftci, M. The synthesis of new oxindoles as analogs of natural product 3,3′ -bis(indolyl)oxindole and in vitro evaluation of the enzyme activity of G6PD and 6PGD. Turk. J. Chem., 2018, 42, 332-345.
[http://dx.doi.org/10.3906/kim-1706-51]
d) Hedrick, E.; Li, X.; Cheng, Y.; Lacey, A.; Mohankumar, K.; Zarei, M.; Safe, S. Potent inhibition of breast cancer by bis-indole-derived nuclear receptor 4A1 (NR4A1) antagonists. Breast Cancer Res. Treat., 2019, 177(1), 29-40.
[http://dx.doi.org/10.1007/s10549-019-05279-9] [PMID: 31119568]
[10]
a) Chen, C.C.; Hong, B.C.; Li, W.S.; Chang, T.T.; Lee, G.H. Synthesis of biologically active bis(Indolyl)Methane derivatives by bisindole alkylation of tetrahydroisoquinolines with visible‐light induced ring‐opening fragmentation. Asian J. Org. Chem., 2017, 6, 426-431.
[http://dx.doi.org/10.1002/ajoc.201600415]
b) Zendah, I.; Shaaban, K.A.; Helmke, E.; Maier, A.; Fiebig, H.H.; Laatsch, H. Barakacin: a thiazolyl-indole alkaloid isolated from a ruminal Pseudomonas sp. Z. Naturforsch., 2012, 67b, 417-420.
[http://dx.doi.org/10.5560/znb.2011-0277]
[11]
a) Buzid, A.; Muimhneacháin, E.Ó.; Reen, F.J.; Hayes, P.E.; Pardo, L.M.; Shang, F.; O’Gara, F.; Sperry, J.; Luong, J.H.T.; Glennon, J.D.; McGlacken, G.P. Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa. Anal. Bioanal. Chem., 2016, 408(23), 6361-6367.
[http://dx.doi.org/10.1007/s00216-016-9749-8] [PMID: 27473426]
b) Yaghoubi, A.; Dekamin, M.G.; Arefi, E.; Karimi, B. Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-ICS-Pr-SO3H): A new and highly efficient recoverable nanoporous catalyst for the one-pot synthesis of bis(indolyl)methane derivatives. J. Colloid Interface Sci., 2017, 505, 956-963.
[http://dx.doi.org/10.1016/j.jcis.2017.06.055] [PMID: 28687033]
[12]
Danne, A.B.; Choudhari, A.S.; Chakraborty, S.; Sarkar, D.; Khedkar, V.M.; Shingate, B.B. Triazole-diindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. MedChemComm, 2018, 9(7), 1114-1130.
[http://dx.doi.org/10.1039/C8MD00055G] [PMID: 30108999]
[13]
Mandal, S.M.; Pegu, R.; Porto, W.F.; Franco, O.L.; Pratihar, S. Novel boronic acid derivatives of bis(indolyl) methane as anti-MRSA agents. Bioorg. Med. Chem. Lett., 2017, 27(10), 2135-2138.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.070] [PMID: 28377058]
[14]
Gong, Y.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-diindolylmethane is a novel topoisomerase IIalpha catalytic inhibitor that induces S-phase retardation and mitotic delay in human hepatoma HepG2 cells. Mol. Pharmacol., 2006, 69(4), 1320-1327.
[http://dx.doi.org/10.1124/mol.105.018978] [PMID: 16385077]
[15]
a) Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
b) Lafzi, F.; Kilic, H.; Saracoglu, N. Protocols for the Syntheses of 2,2′-Bis(indolyl)arylmethanes, 2-Benzylated Indoles, and 5,7-Dihydroindolo[2,3-b]carbazoles. J. Org. Chem., 2019, 84(18), 12120-12130.
[http://dx.doi.org/10.1021/acs.joc.9b02124] [PMID: 31454241]
[16]
Bonnesen, C.; Eggleston, I.M.; Hayes, J.D. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res., 2001, 61(16), 6120-6130.
[PMID: 11507062]
[17]
Sathiyaraj, S.; Shanavas, A.; Kumar, K.A.; Sathiyaseelan, A.; Senthilselvan, J.; Kalaichelvan, P.T.; Nasar, A.S. The first example of bis(indolyl)methane based hyperbranched polyurethanes: Synthesis, solar cell application and anti-bacterial and anti-oxidant properties. Eur. Polym. J., 2017, 95, 216-231.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.08.021]
[18]
Verma, C.; Singh, P.; Quraishi, M.A. A thermodynamical, electrochemical and surface investigation of Bis (indolyl) methanes as green corrosion inhibitors for mild steel in 1 M hydrochloric acid solution. J. Associat. Arab Univ. Bas. Appl. Sci., 2016, 21, 24-30.
[http://dx.doi.org/10.1016/j.jaubas.2015.04.003]
[19]
Martinez, R.; Espinosa, A.; Tarraga, A.; Molina, P. Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron, 2008, 64, 2184-2191.
[http://dx.doi.org/10.1016/j.tet.2007.12.025]
[20]
Khorshidi, A.; Mardazad, N.; Shaabanzadeh, Z. Zirconium(IV)-catalyzed one-pot synthesis and oxidation of bis- and tris(indolyl)methanes into conjugated chromophores as new pH indicators or calorimetric chemosensors for transition metals. Tetrahedron Lett., 2014, 55, 3873-3877.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.028]
[21]
Kaur, P.; Kaur, S.; Singh, K. Bis(N-methylindolyl)methane-based chemical probes for Hg2+ and Cu2+ and molecular IMPLICATION gate operating in fluorescence mode. Org. Biomol. Chem., 2012, 10(8), 1497-1501.
[http://dx.doi.org/10.1039/c2ob06793e] [PMID: 22228473]
[22]
Deb, M.L.; Deka, B.; Saikia, P.J.; Baruah, P.K. Base-promoted three-component cascade approach to unsymmetrical bis(indolyl)methanes. Tetrahedron Lett., 2017, 58, 1999-2003.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.032]
[23]
Surasani, R.; Kalita, D.; Chandrasekhar, K.B. Indion Ina 225H resin as a novel, selective, recyclable, eco-benign heterogeneous catalyst for the synthesis of bis(indolyl)methanes. Green Chem. Lett. Rev., 2013, 6, 113-122.
[http://dx.doi.org/10.1080/17518253.2012.711372]
[24]
a) Seyedi, N.; Kalantari, M. An efficient green procedure for the synthesis of bis (indolyl) methanes in water. J. Sci. I. R. Iran, 2013, 24, 205-208.
b) Mallik, A.K.; Pal, R.; Guha, C.; Mallik, H. A convenient, eco-friendly, and efficient method for synthesis of bis(3-indolyl)methanes “on water”. Green Chem. Lett. Rev., 2012, 5, 321-327.
[http://dx.doi.org/10.1080/17518253.2011.630027]
c) Wang, S.Y.; Ji, S.J.; Su, X.M. A Meldrum’s acid catalyzed synthesis of bis(indolyl)methanes in water under ultrasonic condition. Chin. J. Chem., 2008, 26, 22-24.
[http://dx.doi.org/10.1002/cjoc.200890029]
d) Simha, P.R.; Mangali, M.S.; Gari, D.K.; Venkatapuram, P.; Adivireddy, P. Benzenesulfonic acid: a versatile catalyst for the synthesis of bis(indolyl)methanes as antioxidants. J. Heterocycl. Chem., 2017, 54, 2717-2724.
[http://dx.doi.org/10.1002/jhet.2873]
e) Bandia, M.; Reddy, V.R. One‐pot, step‐wise, alternative syntheses of quinoline‐substituted bis(Indolyl)methanes using a green approach. J. Heterocycl. Chem., 2017, 54, 3093-3098.
[http://dx.doi.org/10.1002/jhet.2922]
f) Tumtin, S.; Kathing, C.; Phucho, I.T.; Nongrum, R.; Myrboh, B.; Nongkhlaw, R. Triethylbenzylammonium chloride as a useful and efficient catalyst for the alkylation of indole/substituted indoles in water: a comparative study between conventional and microwave irradiation. J. Chin. Chem. Soc. (Taipei), 2015, 62, 321-327.
[http://dx.doi.org/10.1002/jccs.201400221]
g) Karthikeyan, K.; Sivaprasad, G. Synthesis of some bis(Indolyl)methanes catalyzed by ascorbic acid under mild conditions. Org. Prep. Proced. Int., 2015, 47, 449-453.
[http://dx.doi.org/10.1080/00304948.2015.1088755]
h) Banari, H.; Kiyani, H.; Pourali, A. Efficient synthesis of bis(indolyl)methanes, bispyrazoles and biscoumarins using 4-sulfophthalic acid. Res. Chem. Intermed., 2017, 43, 1635-1649.
[http://dx.doi.org/10.1007/s11164-016-2720-7]
i) Banari, H.; Kiyani, H.; Pourali, A. Green synthesis of bis(indolyl)methanes catalysed by salicylic acid. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2018, 45, 413-420.
j) Kasar, S.B.; Thopate, S.R. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst. Curr. Org. Chem., 2018, 15, 110-115.
k) Kasar, S.B.; Thopate, S.R. Ultrasonically assisted efficient and green protocol for the synthesis of bisindolylmethanes using malic acid as a homogeneous and reusable organocatalyst. Curr. Green Chem., 2018, 5, 177-184.
[http://dx.doi.org/10.2174/2213346105666180821114459]
[25]
a) Hojati, S.F.; Zeinali, T.; Nematdoust, Z. A novel method for synthesis of bis(indolyl)methanes using 1,3-dibromo-5,5-dimethylhydantoin as a highly efficient catalyst under solvent-free conditions. Bull. Korean Chem. Soc., 2013, 34, 117-120.
[http://dx.doi.org/10.5012/bkcs.2013.34.1.117]
b) Basumatary, G.; Mohanta, R.; Baruah, S.D.; Deka, R.C.; Bez, G. First aminocatalytic synthesis of bis(indolyl)methanes and DFT studies on the reaction pathway. Catal. Lett., 2019.
[http://dx.doi.org/10.1007/s10562-019-02932-2]
c) Shaikh, S.I.; Zaheer, Z.; Mokale, S.N. A simple and efficient supramolecular chemistry approach for synthesis of bis(indolyl)methanes using aqueous β-cyclodextrin as green promoter host. Lett. Org. Chem., 2018, 15, 32-38.
[26]
a) Ravi, K.; Krishnakumar, B.; Swaminathan, M. BiCl3-loaded montmorillonite K10: a new solid acid catalyst for solvent-free synthesis of bis(indolyl)methanes. Res. Chem. Intermed., 2015, 41, 5353-5364.
[http://dx.doi.org/10.1007/s11164-014-1636-3]
b) Khatab, T.K.; Abdelghany, A.M.; Soliman, H.A. V2O5/SiO2 as a heterogeneous catalyst in the synthesis of bis(indolyl)methanes under solvent free condition. Silicon, 2018, 10, 703-708.
[http://dx.doi.org/10.1007/s12633-016-9515-8]
c) Deb, M.L.; Pegu, C.D.; Deka, B.; Dutta, P.; Kotmale, A.S.; Baruah, P.K. Brønsted-acid-mediated divergent reactions of Betti bases with indoles: an approach to chromeno[2,3-b]indoles through intramolecular dehydrogenative C2-alkoxylation of indole. Eur. J. Org. Chem., 2016, 2016, 3441-3448.
[http://dx.doi.org/10.1002/ejoc.201600546]
d) Zou, Y.; Chen, C.; Chen, X.; Zhang, X.; Rao, W. Silica gel mediated Friedel–Crafts alkylation of 3-indolylmethanols with indoles: synthesis of unsymmetrical nis(3-indolyl)methanes. Eur. J. Org. Chem., 2017, 2017, 2266-2271.
[http://dx.doi.org/10.1002/ejoc.201700088]
e) Soliman, H.A.; Mubarak, A.Y.; Elmorsy, S.S. An efficient synthesis of bis(indolyl) methanes and N,N′-alkylidene bisamides by Silzic under solvent free conditions. Chin. Chem. Lett., 2016, 27, 353-356.
[http://dx.doi.org/10.1016/j.cclet.2015.11.013]
f) Suarez, A.; Martinez, F.; Suarez-Pantiga, S.; Sanz, R. PTSA-Catalyzed reaction of ndoles with 2-oxoaldehydes: synthesis of α,α-bis(indol-3-yl) ketones. Chem. Select, 2017, 2, 787-790.
g) Selvakumar, K.; Shanmugaprabha, T.; Annapoorani, R.; Sami, P. One-pot three-component synthesis of bis(indolyl)methanes under solvent-free condition using heteropoly-11-tungsto-1-vanadophosphoric acid supported on natural clay as catalyst. Synth. Commun., 2017, 47, 913-927.
[http://dx.doi.org/10.1080/00397911.2017.1296159]
h) Ravi, K.; Krishnakumar, B.; Swaminathan, M. Efficient, rapid, and solvent-free synthesis of substituted bis(indolyl)methanes using sulfated anatase titania as a solid acid catalyst. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 45, 1380-1386.
[http://dx.doi.org/10.1080/15533174.2013.862710]
i) Esmaielpour, M.; Akhalaghinia, B.; Jahanshahi, R. Green and efficient synthesis of aryl/alkylbis(indolyl)methanes using expanded Perlite-PPA as a heterogeneous solid acid catalyst in aqueous media. J. Chem. Sci., 2017, 129, 313-328.
[http://dx.doi.org/10.1007/s12039-017-1246-x]
j) Wang, Y.; Sang, R.; Zheng, Y.; Guo, L.; Guan, M.; Wu, Y. Graphene oxide: An efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water. Catal. Commun., 2017, 89, 138-142.
[http://dx.doi.org/10.1016/j.catcom.2016.09.027]
[27]
a) Ganguly, N.C.; Mondal, P.; Barik, S.K. Iodine in aqueous micellar environment: a mild effective ecofriendly catalytic system for expedient synthesis of bis(indolyl)methanes and 3-substituted indolyl ketones. Green Chem. Lett. Rev., 2012, 5, 73-81.
[http://dx.doi.org/10.1080/17518253.2011.581700]
b) Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Wanyi, L.; Ma, B.; Zhan, H.; Bi, S.; Chen, X. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid–surfactant-SiO2-combined nanocatalyst. Green Chem., 2019, 21, 3542-3546.
[http://dx.doi.org/10.1039/C9GC01073D]
c) Ali, R.; Ahamad, M.Z.; Singh, S.; Haq, W. Regioselective synthesis of symmetrical and unsymmetrical bis(heteroaryl)methane (BHM)-containing amino acids. Eur. J. Org. Chem., 2019, 2019, 1820-1824.
[http://dx.doi.org/10.1002/ejoc.201900043]
d) Merinos, J.P.G.; Ruíz, H.L.; López, Y.; Lima, S.R. Synthesis of bis(indolyl)methanes Catalyzed by Triethylborane. Lett. Org. Chem., 2015, 12(5), 332-336.
[http://dx.doi.org/10.2174/1570178612666150220225335] [PMID: 26120289]
e) Noland, W.E.; Kumar, H.V.; Flick, G.C.; Aspros, C.L.; Yoon, J.H.; Wilt, A.C.; Dehkordi, N.; Thao, S.; Schneerer, A.K.; Gao, S.; Tritch, K.J. Hydrated ferric sulfate-catalyzed reactions of indole with aldehydes, ketones, cyclic ketones, and chromanones: Synthesis of bisindoles and trisindoles. Tetrahedron, 2017, 73, 3913-3922.
[http://dx.doi.org/10.1016/j.tet.2017.05.061]
f) Nasreen, A.; Varala, R.; Adapa, S.R. Copper nitrate trihydrate catalyzed efficient synthesis of bis(indolyl)methanes in acetonitrile at room temperature. J. Heterocycl. Chem., 2007, 44, 983-987.
[http://dx.doi.org/10.1002/jhet.5570440440]
g) Silveira, C.C.; Mendes, S.R.; Líbero, F.M.; Lenardão, E.J.; Perin, G. Glycerin and CeCl3•7H2O: a new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Lett., 2009, 50, 6060-6063.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.062]
h) Mohapatra, S.S.; Wilson, Z.E.; Roy, S.; Ley, S.V. Utilization of flow chemistry in catalysis: New avenues for the selective synthesis of bis(indolyl)methanes. Tetrahedron, 2017, 73, 1812-1819.
[http://dx.doi.org/10.1016/j.tet.2017.02.026]
i) Praveen, C.; Narendiran, S.; Dheenkumara, P.; Perumal, P.T. Zn(OTf)2-catalysed indolylation and pyrrolylation of isatins: Efficient synthesis and biochemical assay of 3,3-di(heteroaryl)oxindoles. J. Chem. Sci., 2013, 125, 1543-1553.
[http://dx.doi.org/10.1007/s12039-013-0510-y]
j) Praveen, C.; Sagayaraj, Y.W.; Perumal, P.T. Gold(I) catalyzed sequential cycloisomerization/bis-addition of o-ethynylanilines: an efficient access to bis(indolyl)methanes and di(indolyl)indolin-2-ones. Tetrahedron Lett., 2009, 50, 644-647.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.086]
k) Praveen, C.; Karthikeyan, K.; Perumal, P.T. Efficient synthesis of 3-substituted indoles through a domino gold(I) chloride catalyzed cycloisomerization/C3-functionalization of 2-(alkynyl)anilines. Tetrahedron, 2009, 65, 9244-9255.
[http://dx.doi.org/10.1016/j.tet.2009.09.019]
l) Mo, L.P.; Ma, Z.C.; Zhang, Z.H. CuBr2-Catalyzed synthesis of bis(indolyl)methanes. Synth. Commun., 2005, 35, 1997-2004.
[http://dx.doi.org/10.1081/SCC-200066653]
m) Zhang, Z.H.; Yin, L.; Wang, Y.M. An efficient and practical process for the synthesis of bis(indolyl)methanes catalyzed by zirconium tetrachloride. Synthesis, 2005, 12, 1949-1954.
n) Deshmukh, M.S.; Chaudhary, A.; Zolotarev, P.N.; Boomishankar, R. A 3D coordination network built from CuII 4Cl3(H2O)2 linear clusters and tetrapyridyl tetrahedral silane ligands: reversible iodine uptake and Friedel-Crafts alkylation reactions. Inorg. Chem., 2017, 56(19), 11762-11767.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01781] [PMID: 28933539]
o) Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Wanyi, L.; Ma, B.; Zhan, H.; Bi, S.; Chen, X. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid-surfactant-SiO2-combined nanocatalyst. Green Chem., 2019, 21, 3542-3546.
[http://dx.doi.org/10.1039/C9GC01073D]
[28]
a) Chakraborti, A.K.; Roy, S.R.; Kumar, D.; Chopra, P. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MSand MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem., 2008, 10, 1111-1118.
[http://dx.doi.org/10.1039/b807572g]
b) Song, Y.; Cheng, C.; Jing, H. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions. Chemistry, 2014, 20(40), 12894-12900.
[http://dx.doi.org/10.1002/chem.201403118] [PMID: 25154312]
c) Liu, C.; Yu, C. An efficient one-pot synthesis of bis-indolylmethanes containing pyrazolyl catalyzed by Brønsted acidic ionic liquid under solvent-free conditions. J. Heterocycl. Chem., 2011, 48, 845-848.
[http://dx.doi.org/10.1002/jhet.650]
d) Choudhary, S.; Pandey, K.; Budania, S.; Kumar, A. Functionalized ionic liquid-assisted chromatography-free synthesis of bis(indolyl)methanes. Mol. Divers., 2017, 21(1), 155-162.
[http://dx.doi.org/10.1007/s11030-016-9713-8] [PMID: 28078549]
e) Honarmand, M.; Esmaeili, E. Tris(hydroxymethyl)methane ammonium hydrogensulphate as a nano ionic liquid and its catalytic activity in the synthesis of bis(indolyl)methanes. J. Mol. Liq., 2017, 225, 741-749.
[http://dx.doi.org/10.1016/j.molliq.2016.10.136]
f) Ghaffari Khaligh, N.; Mihankhah, T.; Johan, M.R.; Ching, J.J. Two novel binuclear sulfonic-functionalized ionic liquids: Influence of anion and carbon-spacer on catalytic efficiency for one-pot synthesis of bis(indolyl)methanes. J. Mol. Liq., 2018, 259, 260-273.
[http://dx.doi.org/10.1016/j.molliq.2018.03.044]
g) Chatterjee, R.; Mahato, S.; Santra, S.; Zyryanov, G.V.; Hajra, A.; Majee, A. Imidazolium zwitterionic molten salt: an efficient organocatalyst under neat conditions at room temperature for the synthesis of dipyrromethanes as well as bis(indolyl)methanes. ChemistrySelect, 2018, 3, 5843-5847.
[http://dx.doi.org/10.1002/slct.201800227]
[29]
a) Armstrong, E.L.; Grover, H.K.; Kerr, M.A. Scandium triflate-catalyzed nucleophilic additions to indolylmethyl Meldrum’s acid derivatives via a gramine-type fragmentation: synthesis of substituted indolemethanes. J. Org. Chem., 2013, 78(20), 10534-10540.
[http://dx.doi.org/10.1021/jo4017524] [PMID: 24066671]
b) Swetha, A.; Babu, B.M.; Meshram, H.M. An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes. Tetrahedron Lett., 2015, 56, 1775-1779.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.032]
c) Ganesan, A.; Kothandapani, J.; Nanubolu, J.B.; Ganesan, S.S. Oleic acid: a benign Brønsted acidic catalyst for densely substituted indole derivative synthesis. RSC Advances, 2015, 5, 28597-28600.
[http://dx.doi.org/10.1039/C5RA02906F]
[30]
a) Handy, S.; Westbrook, N.M. A mild synthesis of bis(indolyl)methanes using a deep eutectic solvent. Tetrahedron Lett., 2014, 55, 4969-4971.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.024]
b) Chandam, D.; Mulik, A.; Patil, P.; Jagdale, S.; Patil, D.; Sankpal, S.; Deshmukh, M. Oxalic acid dihydrate: Proline (LTTM) as a new generation solvent for synthesis of 3,3-diaryloxindole and chromone based bis(indolyl)alkanes: Green, chromatography free protocol. J. Mol. Liq., 2015, 207, 14-20.
[http://dx.doi.org/10.1016/j.molliq.2015.02.036]
c) Grosso, C.; Brigas, A.; de los Santos, J.M.; Palacios, F.; Lemos, A.; Pinho e Melo, T.M.V.D. Natural deep eutectic solvents in the hetero Diels-Alder approach to bis(indolyl)methanes. Monatsh. Chem., 2019, 150, 1275-1288.
[http://dx.doi.org/10.1007/s00706-019-02421-7]
[31]
a) Pal, R. Tamarind fruit juice as a natural catalyst: An excellent catalyst for efficient and green synthesis of bis-, tris-, and tetraindolyl compounds in water. Indian J. Chem., 2014, 53B, 763-768.
[http://dx.doi.org/10.1002/chin.201447118]
b) Pal, R. New greener alternative for biocondensation of aldehydes and indoles using Lemon juice: formation of bis-, tris-, and tetraindoles. Int. J. Org. Chem. (Irvine), 2013, 3, 136-142.
[http://dx.doi.org/10.4236/ijoc.2013.32015]
c) Ahmed, M.Z.; Khillare, C.B.; Ahmed, S.K. Synthesis of bis(indolyl)methanes: a natural approach. Chem. Sci. Trans., 2013, 2, 1513-1517.
[32]
Matzkeit, Y.H.; Tornquist, B.L.; Manarin, F.; Botteselle, G.V.; Rafique, J.; Saba, S.; Braga, A.L.; Felix, J.F.; Schneider, R. Borophosphate glasses: Synthesis, characterization and application as catalyst for bis(indolyl)methanes synthesis under greener conditions. J. Non-Cryst. Solids, 2018, 498, 153-159.
[http://dx.doi.org/10.1016/j.jnoncrysol.2018.06.020]
[33]
a) Saiadian, S.; Khorshidi, A. Comparison of the catalytic activity of copper nanostructures in Friedel-Crafts-type condensation reactions. ChemistrySelect, 2018, 3, 142-146.
[http://dx.doi.org/10.1002/slct.201702438]
b) Bahuguna, A.; Kumar, S.; Krishnan, V. Nanohybrid of ZnO-RGO as heterogeneous green catalyst for the synthesis of medicinally significant indole alkaloids and their derivatives. ChemistrySelect, 2018, 3, 314-320.
[http://dx.doi.org/10.1002/slct.201701990]
c) Kangari, S.; Yavari, I. Preparation of immobilized hexamine on Fe3O4/SiO2core/shell nanoparticles: a novel catalyst for solvent-free synthesis of bis(indolyl)methanes. Res. Chem. Intermed., 2016, 42, 8217-8226.
[http://dx.doi.org/10.1007/s11164-016-2590-z]
d) Pegu, R.; Majumdar, K.J.; Talukdar, D.J.; Pratihar, S. Oxalate capped iron nanomaterial: from methylene blue degradation to bis(indolyl)methane synthesis. RSC Advances, 2014, 4, 33446-33456.
[http://dx.doi.org/10.1039/C4RA04214J]
e) Sabitha, G.; Reddy, N.M.; Prasad, M.N.; Yadav, J.S.; Sivudu, K.S.; Shailaja, D. Efficient synthesis of bis(indolyl)methanes using nano ceria supported on vinyl pyridine polymer at ambient temperature. Lett. Org. Chem., 2008, 5, 300-303.
[http://dx.doi.org/10.2174/157017808784049560]
f) Parvanak Boroujeni, K.; Asadi, F.; Kazemi, R.; Fadavi, A. Carbon nanotubes grafted with sulfonated polyacrylamide as a heterogeneous catalyst for the preparation of bis(indolyl)methanes. J. Nanopart. Res., 2019, 21, 151.
[http://dx.doi.org/10.1007/s11051-019-4543-0]
[34]
a) Zhang, D.W.; Zhang, Y.M.; Zhang, Y.L.; Zhao, T.Q.; Liu, H.W.; Gan, Y.M.; Gu, Q. Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation. Chem. Pap., 2015, 69, 470-478.
b) Bankar, S. Nano-Fe3O4@L-cysteine as an efficient recyclable organocatalyst for the green synthesis of bis (indolyl) methanes under microwave irradiation. Curr. Organocatal., 2018, 5, 42-50.
[35]
a) Mendes, S.R.; Thurow, S.; Penteado, F.; da Silva, M.S.; Gariani, R.A.; Perin, G.; Lenardão, E.J. Synthesis of bis(indolyl)methanes using ammonium niobium oxalate (ANO) as an efficient and recyclable catalyst. Green Chem., 2015, 17, 4334-4339.
[http://dx.doi.org/10.1039/C5GC00932D]
b) Gao, G.; Han, Y.; Zhang, Z.H. Catalyst free synthesis of bis(indolyl)methanes and 3,3-bis(indolyl)oxindoles in aqueous ethyl lactate. ChemistrySelect, 2017, 2, 11561-11564.
[http://dx.doi.org/10.1002/slct.201702326]
c) Kasar, S.B.; Thopate, S.R. Ultrasonically assisted efficient and green protocol for the synthesis of bisindolylmethanes using malic acid as a homogeneous and reusable organocatalyst. Curr. Green Chem., 2018, 5, 177-184.
[http://dx.doi.org/10.2174/2213346105666180821114459]
[36]
Mhaldar, S.N.; Mandrekar, K.S.; Gawde, M.K.; Shet, R.V.; Tilve, S.G. Solventless mechanosynthesis Of bis(indolyl)methanes. Synth. Commun., 2019, 49, 94-101.
[http://dx.doi.org/10.1080/00397911.2018.1542732]
[37]
a) Shirini, F.; Khaligh, N.G. Succinimide-N-sulfonic acid catalyzed synthesis of bis(indolyl)methane and coumarin derivatives under mild conditions. Chin. J. Catal., 2013, 34, 1890-1896.
[http://dx.doi.org/10.1016/S1872-2067(12)60669-X]
b) Ekbote, S.S.; Deshmukh, K.M.; Qureshi, Z.S.; Bhanage, B.M. Polyvinylsulfonic acid as a novel Brønsted acid catalyst for the synthesis of bis(indolyl)methanes. Green Chem. Lett. Rev., 2011, 4, 177-183.
[http://dx.doi.org/10.1080/17518253.2010.528048]
c) Rani, V.J.; Vani, K.V.; Rao, C.V. PEG-SO3H as a catalyst for the preparation of bis-indolyl and tris-indolyl methanes in aqueous media. Synth. Commun., 2012, 42, 2048-2057.
[http://dx.doi.org/10.1080/00397911.2010.551700]
d) Li, J.T.; Sun, M.X.; He, G.Y.; Xu, X.Y. Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(1), 412-414.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.016] [PMID: 20727812]
e) Kidwai, M.; Chauhan, R.; Bhatnagar, D. Nafion-H® catalyzed efficient condensation of indoles with aromatic aldehydes in PEG-water solvent system: A green approach. Arab. J. Chem., 2016, 9, S2004-S2010.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.009]
f) Parvanak Boroujeni, K.; Tohidiyan, Z.; Fadavi, A.; Eskandari, M.M.; Shahsanaei, H.A. Synthesis and catalytic application of poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) grafted on graphene oxide. ChemistrySelect, 2019, 4, 7734-7744.
[http://dx.doi.org/10.1002/slct.201900695]
[38]
a) Singh, N.G.; Nongrum, R.; Kathing, C.; Rani, J.W.S.; Nongkhlaw, R. Bakers’ yeast: an environment benign catalyst for the one-pot synthesis of indolyl chromenes and bisindolyl alkanes. Green Chem. Lett. Rev., 2014, 7, 137-144.
[http://dx.doi.org/10.1080/17518253.2014.902506]
b) Sun, D.; Jiang, G.; Xie, Z.; Le, Z.G. α-Chymotrypsin-catalyzed synthesis of bis(indolyl)alkanes in water. Chin. J. Chem., 2015, 33, 409-412.
[http://dx.doi.org/10.1002/cjoc.201400892]
c) Xie, Z.B.; Sun, D.Z.; Jiang, G.F.; Le, Z.G. Facile synthesis of bis(indolyl)methanes catalyzed by α-chymotrypsin. Molecules, 2014, 19(12), 19665-19677.
[http://dx.doi.org/10.3390/molecules191219665] [PMID: 25438078]
[39]
a) Dhumaskar, K.L.; Tilve, S.G. Synthesis of bis(indolyl)methanes under catalyst-free and solvent-free conditions. Green Chem. Lett. Rev., 2012, 5, 353-402.
[http://dx.doi.org/10.1080/17518253.2011.637967]
b) Patil, V.D.; Dere, G.B.; Rege, P.A.; Patil, J.J. Synthesis of bis(indolyl) methanes in catalyst- and solvent-free reaction. Synth. Commun., 2011, 41, 736-747.
[http://dx.doi.org/10.1080/00397911003642690]
[40]
Kiyani, H.; Ghiasi, M. Phthalimide-N-sulfonic acid: a new and efficient organocatalyst for the Biginelli reaction under solvent-free conditions. Res. Chem. Intermed., 2015, 41, 6635-6648.
[http://dx.doi.org/10.1007/s11164-014-1766-7]
[41]
Sudhan, P.N.; Ghashang, M.; Mansoor, S.S. Ionic liquid 1-butyl-3-methylimidazolium bromide: a green reaction media for the efficient synthesis of 3-ethyl-1,4-diphenyl-1,4,5,7-tetrahydro-pyrazolo[3,4-d]pyrimidine-6-ones/thiones using phthalimide-N-sulfonic acid as catalyst. J. Saudi Chem. Soc., 2017, 21, 776-786.
[http://dx.doi.org/10.1016/j.jscs.2015.09.005]
[42]
Kiyani, H.; Darbandi, H. One-pot three-component synthesis of 1-amidoalkyl-2-naphthols in the presence of phthalimide-N-sulfonic acid. Izv. Him., 2017, 49, 562-568.
[43]
Kiyani, H.; Darbandi, H.; Tazari, M. Green synthesis of biscoumarins using phthalimide-N-sulfonic acid. Jordan J. Chem., 2016, 11, 77-84.
[44]
Sudhan, S.P.N.; Ahmed, R.N.; Kiyani, H.; Mansoor, S.S. Ionic liquid 1-butyl-3-methylimidazolium bromide: A green reaction media for the efficient synthesis of 3-methyl-1,4-diphenyl-1,4,5,7-tetrahydro-pyrazolo[3,4-d]pyrimidine-6-ones/thiones using phthalimide-N-sulfonic acid as catalyst. J. Saudi Chem. Soc., 2018, 22, 269-278.
[http://dx.doi.org/10.1016/j.jscs.2016.07.001]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 2
Year: 2020
Published on: 01 July, 2020
Page: [124 - 133]
Pages: 10
DOI: 10.2174/2213337206666191022110730

Article Metrics

PDF: 23
HTML: 2