Synthetic Methods and Antimicrobial Perspective of Pyrazole Derivatives: An Insight

Author(s): Harish Kumar, Kushal Kumar Bansal, Anju Goyal*

Journal Name: Anti-Infective Agents
(Formerly Anti-Infective Agents in Medicinal Chemistry)

Volume 18 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Due to newly emerging microbial infections and the development of resistance against cutting-edge therapeutics, innovative and robust medicinal agents are required. Small ring heterocycles, such as pyrazole and its derivatives have been acknowledged to possess myriad biological properties and the presence of pyrazole in clinics like celecoxib, phenylbutazone (anti-inflammatory), CDPPB (antipsychotic), rimonabant (anti-obesity), antipyrine, difenamizole (analgesic), fipronil (broad-spectrum insecticidal), betazole (H2-receptor agonist) and fezolamide (antidepressant) drugs has proven the pharmacological perspective of pyrazole nucleus.

Objectives: The current review paper aimed at a recent update made on novel methodologies adopted in the synthesis of pyrazole derivatives with the emphasis on antibacterial (DNA gyrase inhibition) and antifungal activities.

Methods: Pyrazole is one of the major tools to be investigated in drug design and discovery. Many studies have been reported by researchers that have claimed the significant biological potential of these derivatives. However, numerous studies on pyrazoles compounds shown to exhibit potential antifungal and antibacterial activities, the focus has also been made on DNA gyrase inhibition. Additionally, some important patents granted to this heterocyclic nucleus related to antimicrobial potential are also addressed appropriately.

Results: DNA gyrase is a promising biotarget yet to be explored against a number of medicinal agents. The present work provides valuable insight into synthetic methods and antibacterials/antifungal significance of pyrazoles in general as well as new inhibitors of DNA gyrase in particular.

Conclusion: The manuscript constitutes a valuable reference which advocates candidature of pyrazoles as a potential therapeutic alternative as antibacterial and antifungal agent.

Keywords: Pyrazoles, DNA gyrase, antimicrobial activity, patents, anti-inflammatory, antipsychotic.

[1]
Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc., 2011, 86(2), 156-167.
[http://dx.doi.org/10.4065/mcp.2010.0639] [PMID: 21282489]
[2]
Sharma, P.C.; Bansal, K.K.; Deep, A.; Pathak, M. Benzothiazole derivatives as potential anti-infective agents. Curr. Top. Med. Chem., 2017, 17(2), 208-237.
[http://dx.doi.org/10.2174/1568026616666160530152546] [PMID: 27237334]
[3]
Cheng, G.; Dai, M.; Ahmed, S.; Hao, H.; Wang, X.; Yuan, Z. Antimicrobial drugs in fighting against antimicrobial resistance. Front. Microbiol., 2016, 7, 470.
[http://dx.doi.org/10.3389/fmicb.2016.00470] [PMID: 27092125]
[4]
Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem., 2016, 120, 170-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.077] [PMID: 27191614]
[5]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, 2nd ed; Wiley & Sons: New York, 2003.
[http://dx.doi.org/10.1002/352760183X]
[6]
Bansal, R.K. Heterocyclic Chemistry, 4th ed; New Age International Publishers: New Delhi, 2007.
[7]
Krygowski, T.M.; Anulewicz, R.; Cyranski, M.K.; Puchala, A.; Rasala, D. Separation of the energetic and geometric contribution to the aromaticity. Aromaticity of pyrazoles in dependence on the kind of substitution. Tetrahedron, 1998, 54, 12295-12300.
[http://dx.doi.org/10.1016/S0040-4020(98)00749-2]
[8]
Wiley, R.H.; Behr, L.C. The Chemistry of Heterocyclic Chemistry: Pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings. London; Wiley & Sons: New York, 1967.
[http://dx.doi.org/10.1002/9780470186848]
[9]
Yıldırım, I.; Ozdemir, N.; Akcamur, Y.; Dinçer, M.; Andac, O. 4-Benzoyl-1, 5-diphenyl-1H-pyrazole-3-carboxylic acid methanol solvate. Acta Crystallogr., 2005, 61, 256-258.
[10]
Pimenova, E.V.; Voronina, E.V. Antimicrobial activity of pyrazoles and pyridazines obtained by interaction of 4-aryl-3-arylhydrazono-2, 4-dioxobutanoic acids and their esters with hydrazines. Pharm. Chem. J., 2001, 35, 602-604.
[http://dx.doi.org/10.1023/A:1015141710100]
[11]
Bailey, D.M.; Hansen, P.E.; Hlavac, A.G.; Baizman, E.R.; Pearl, J.; DeFelice, A.F.; Feigenson, M.E. 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J. Med. Chem., 1985, 28(2), 256-260.
[http://dx.doi.org/10.1021/jm00380a020] [PMID: 3968690]
[12]
Janus, S.L.; Magdif, A.Z.; Erik, B.P.; Claus, N. Synthesis of triazenopyrazole derivatives as potential inhibitors of HIV-1. Monatsh. Chem., 1999, 130, 1167-1174.
[13]
Park, H.J.; Lee, K.; Park, S.J.; Ahn, B.; Lee, J.C.; Cho, H.; Lee, K.I. Identification of antitumor activity of pyrazole oxime ethers. Bioorg. Med. Chem. Lett., 2005, 15(13), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.082] [PMID: 15922597]
[14]
Chu, C.K.; Cutler, S.J. Chemistry and antiviral activities of acyclonucleosides. J. Heterocycl. Chem., 1986, 23, 289-319.
[http://dx.doi.org/10.1002/jhet.5570230201]
[15]
Spitz, I.M.; Novis, B.H.; Ebert, R.; Trestian, S.; LeRoith, D.; Creutzfeldt, W. Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 1982, 31(4), 380-382.
[http://dx.doi.org/10.1016/0026-0495(82)90114-7] [PMID: 7078422]
[16]
Holder, P.J.; Jones, A.; Tyler, C.R.; Cresswell, J.E. Fipronil pesticide as a suspect in historical mass mortalities of honey bees. Proc. Natl. Acad. Sci. USA, 2018, 115(51), 13033-13038.
[http://dx.doi.org/10.1073/pnas.1804934115] [PMID: 30509996]
[17]
Kobayashi, K.; Chono, S.; Yamada, H. Mepirizole, a non-steroidal antiinflammatory compound, its ulcerogenicity and inhibitory action on lesions induced by acidic antiinflammatory agents in the rat stomach. Gastroenterol. Jpn., 1980, 15(5), 427-432.
[http://dx.doi.org/10.1007/BF02773903] [PMID: 7439616]
[18]
Dethlefs, J. Action of the anti-inflammatory agent Lonazolac on experimentally-induced acute inflammation of human skin. Z. Rheumatol., 1978, 37(7-8), 254-259.
[PMID: 358658]
[19]
Hatzimouratidis, K. Sildenafil in the treatment of erectile dysfunction: an overview of the clinical evidence. Clin. Interv. Aging, 2006, 1(4), 403-414.
[http://dx.doi.org/10.2147/ciia.2006.1.4.403] [PMID: 18046917]
[20]
Christopoulou, F.D.; Kiortsis, D.N. An overview of the metabolic effects of rimonabant in randomized controlled trials: potential for other cannabinoid 1 receptor blockers in obesity. J. Clin. Pharm. Ther., 2011, 36(1), 10-18.
[http://dx.doi.org/10.1111/j.1365-2710.2010.01164.x] [PMID: 21198716]
[21]
Gong, L.; Thorn, C.F.; Bertagnolli, M.M.; Grosser, T.; Altman, R.B.; Klein, T.E. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2012, 22(4), 310-318.
[http://dx.doi.org/10.1097/FPC.0b013e32834f94cb] [PMID: 22336956]
[22]
Beatty, L.; Green, R.; Magee, K.; Zed, P. A systematic review of ethanol and fomepizole use in toxic alcohol ingestions. Emerg. Med. Int., 2013, 2013638057
[http://dx.doi.org/10.1155/2013/638057] [PMID: 23431453]
[23]
Naim, M.J.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[http://dx.doi.org/10.4103/0975-7406.171694] [PMID: 26957862]
[24]
Heller, S.T.; Natarajan, S.R. 1,3-diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles. Org. Lett., 2006, 8(13), 2675-2678.
[http://dx.doi.org/10.1021/ol060570p] [PMID: 16774229]
[25]
Deng, X.; Mani, N.S. Reaction of N-monosubstituted hydrazones with nitroolefins: a novel regioselective pyrazole synthesis. Org. Lett., 2006, 8(16), 3505-3508.
[http://dx.doi.org/10.1021/ol061226v] [PMID: 16869646]
[26]
Jiang, J.A.; Du, C.Y.; Gu, C.H.; Ji, Y.F. One-Pot synthesis of 4-substituted 1,5-diaryl-1H-pyrazole-3-carboxylic acids via a MeONa/LiCl-mediated sterically hindered Claisen condensation–Knorr reaction–hydrolysis sequence. Synlett, 2012, 23, 2965-2968.
[http://dx.doi.org/10.1055/s-0032-1317668]
[27]
Hu, J.; Chen, S.; Sun, Y.; Yang, J.; Rao, Y. Synthesis of tri- and tetrasubstituted pyrazoles via Ru(II) catalysis: intramolecular aerobic oxidative C-N coupling. Org. Lett., 2012, 14(19), 5030-5033.
[http://dx.doi.org/10.1021/ol3022353] [PMID: 22988906]
[28]
Wu, L.L.; Ge, Y.G.; Ting, H.; Zhang, L.; Li, X.F.; Fu, H.Y.; Chen, H.; Lia, R.X. An efficient one-pot synthesis of 3,5-disubstituted 1H-pyrazoles. Synthesis, 2012, 44, 1577-1583.
[http://dx.doi.org/10.1055/s-0031-1290772]
[29]
Zhang, G.; Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. One-pot three-component approach to the synthesis of polyfunctional pyrazoles. Org. Lett., 2013, 15(23), 5967-5969.
[http://dx.doi.org/10.1021/ol402810f] [PMID: 24255982]
[30]
Sha, Q.; Wei, Y. An efficient one-pot synthesis of 3,5-diaryl-4-bromopyrazoles by 1,3-dipolar cycloaddition of in situ generated diazo compounds and 1-bromoalk-1-ynes. Synthesis, 2013, 45, 413-420.
[http://dx.doi.org/10.1055/s-0032-1317992]
[31]
Harigae, R.; Moriyama, K.; Togo, H. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem., 2014, 79(5), 2049-2058.
[http://dx.doi.org/10.1021/jo4027116] [PMID: 24512630]
[32]
Kong, Y.; Tang, M.; Wang, Y. Regioselective synthesis of 1,3,5-trisubstituted pyrazoles from N-alkylated tosylhydrazones and terminal alkynes. Org. Lett., 2014, 16(2), 576-579.
[http://dx.doi.org/10.1021/ol403447g] [PMID: 24432814]
[33]
Li, D.Y.; Mao, X.F.; Chen, H.J.; Chen, G.R.; Liu, P.N. Rhodium-catalyzed addition-cyclization of hydrazines with alkynes: pyrazole synthesis via unexpected C-N bond cleavage. Org. Lett., 2014, 16(13), 3476-3479.
[http://dx.doi.org/10.1021/ol501402p] [PMID: 24964008]
[34]
Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis of di-, tri-, and tetrasubstituted pyrazoles from α,β-unsaturated aldehydes/ketones and hydrazines. J. Org. Chem., 2014, 79(21), 10170-10178.
[http://dx.doi.org/10.1021/jo501844x] [PMID: 25279429]
[35]
Zhang, Q.; Meng, L.G.; Wang, K.; Wang, L. nBu3P-catalyzed desulfonylative [3+2] cycloadditions of allylic carbonates with arylazosul-fones to pyrazole derivatives. Org. Lett., 2015, 17, 4872-4875.
[36]
Bhatt, H.B.; Sharma, S. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arab. J. Chem., 2017, 10, S1590-S1596.
[http://dx.doi.org/10.1016/j.arabjc.2013.05.029]
[37]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: an insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[38]
Sharma, D.; Bansal, K.K.; Sharma, A.; Pathak, M.; Sharma, P. A brief literature and review of patents on thiazole related derivatives. Curr. Bioact. Compd., 2019, 15, 304-315.
[http://dx.doi.org/10.2174/1573407214666180827094725]
[39]
Nasr, T.; Bondock, S.; Eid, S. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety. Eur. J. Med. Chem., 2014, 84, 491-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.052] [PMID: 25050881]
[40]
Maxwell, A. DNA gyrase as a drug target. Trends Microbiol., 1997, 5(3), 102-109.
[http://dx.doi.org/10.1016/S0966-842X(96)10085-8] [PMID: 9080608]
[41]
Bates, A.D.; Maxwell, A. DNA gyrase can supercoil DNA circles as small as 174 base pairs. EMBO J., 1989, 8(6), 1861-1866.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb03582.x] [PMID: 2548859]
[42]
Schechner, M.; Sirockin, F.; Stote, R.H.; Dejaegere, A.P. Functionality maps of the ATP binding site of DNA gyrase B: generation of a consensus model of ligand binding. J. Med. Chem., 2004, 47(18), 4373-4390.
[http://dx.doi.org/10.1021/jm0311184] [PMID: 15317451]
[43]
Tanitame, A.; Oyamada, Y.; Ofuji, K.; Suzuki, K.; Ito, H.; Kawasaki, M.; Wachi, M.; Yamagishi, J. Potent DNA gyrase inhibitors; novel 5-vinylpyrazole analogues with Gram-positive antibacterial activity. Bioorg. Med. Chem. Lett., 2004, 14(11), 2863-2866.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.045] [PMID: 15125948]
[44]
Tanitame, A.; Oyamada, Y.; Ofuji, K.; Terauchi, H.; Kawasaki, M.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of DNA gyrase inhibitors: 5-[(E)-2-arylvinyl]pyrazoles. Bioorg. Med. Chem. Lett., 2005, 15(19), 4299-4303.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.103] [PMID: 16087337]
[45]
Gomez, L.; Hack, M.D.; Wu, J.; Wiener, J.J.; Venkatesan, H.; Santillán, A., Jr; Pippel, D.J.; Mani, N.; Morrow, B.J.; Motley, S.T.; Shaw, K.J.; Wolin, R.; Grice, C.A.; Jones, T.K. Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: synthesis and preliminary SAR analysis. Bioorg. Med. Chem. Lett., 2007, 17(10), 2723-2727.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.003] [PMID: 17368897]
[46]
Sun, j; Lv, P. C.; Yin,Y.; Yuan, R.J.; Ma, J.; Zhu, H.J. Synthesis, structure and antibacterial activity of potent DNA gyrase inhibitors: N′-benzoyl-3-(4-bromophenyl)-1H-pyrazole-5-carbohydrazide derivatives. Plosone. Org., 2013, 8(7) e69751
[http://dx.doi.org/10.1371/journal.pone.0069751]
[47]
Bansal, S.; Sharad Kumar, S.; Aggarwal, V.; Alex Joseph, A. Design, synthesis, docking study & antibacterial evaluation of 1,3-diarylpyrazolyl substituted indolin-2-ones. Indo Global J. Pharm. Sci., 2014, 4(1), 1-7.
[48]
Liu, J.J.; Sun, J.; Fang, Y.B.; Yang, Y.A.; Jiao, R.H.; Zhu, H.L. Synthesis, and antibacterial activity of novel 4,5-dihydro-1H-pyrazole derivatives as DNA gyrase inhibitors. Org. Biomol. Chem., 2014, 12(6), 998-1008.
[http://dx.doi.org/10.1039/c3ob41953c] [PMID: 24382549]
[49]
Ahn, M.; Gunasekaran, P.; Rajasekaran, G.; Kim, E.Y.; Lee, S.J.; Bang, G.; Cho, K.; Hyun, J.K.; Lee, H.J.; Jeon, Y.H.; Kim, N.H.; Ryu, E.K.; Shin, S.Y.; Bang, J.K. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur. J. Med. Chem., 2017, 125(125), 551-564.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.071] [PMID: 27718471]
[50]
Liu, H.; Ren, Z-L.; Wang, W.; Gong, J.X.; Chu, M.J.; Ma, Q.W.; Wang, J.C.; Lv, X.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. Eur. J. Med. Chem., 2018, 157, 81-87.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.059] [PMID: 30075404]
[51]
Kate, P.; Gaikwad, S.; Lokhande, T.; Shaikh, A.; Sonawane, B.; Choudhari, P.; Bachute, M. Synthesis of schiff base as DNA gyrase inhibi-tor, antibacterial, anti-inflammatory and antioxidant agents. Rev. J. Chem., 2018, 11(4), 1441-1450.
[52]
Zakeyah, A.A.; Whitt, J.; Duke, C.; Gilmore, D.F.; Meeker, D.G.; Smeltzer, M.S.; Alam, M.A. Synthesis and antimicrobial studies of hydrazone derivatives of 4-[3-(2,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid and 4-[3-(3,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid. Bioorg. Med. Chem. Lett., 2018, 28(17), 2914-2919.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.016] [PMID: 30017319]
[53]
Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur. J. Med. Chem., 2011, 46(8), 3531-3536.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.005] [PMID: 21620535]
[54]
Vijesh, A.M.; Isloor, A.M.; Shetty, P.; Sundershan, S.; Fun, H.K. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur. J. Med. Chem., 2013, 62, 410-415.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.057] [PMID: 23385092]
[55]
Bekhit, A.A.; Ashour, H.M.A.; Abdel Ghany, Y.S. Bekhit, Ael-D.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem., 2008, 43(3), 456-463.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.030] [PMID: 17532544]
[56]
Cetin, A.; Bildirici, I. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles. J. Saudi Chem. Soc., 2018, 22, 279-296.
[http://dx.doi.org/10.1016/j.jscs.2016.05.008]
[57]
Gadakh, A.V.; Pandit, C.; Rindhe, S.S.; Karale, B.K. Synthesis and antimicrobial activity of novel fluorine containing 4-(substituted-2-hydroxybenzoyl)-1H-pyrazoles and pyrazolyl benzo[d]oxazoles. Bioorg. Med. Chem. Lett., 2010, 20(18), 5572-5576.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.019] [PMID: 20724151]
[58]
Sharma, A.; Ghabbour, H.; Khan, S.T.; Torre, B.G.; Albericio, F.; El-Faham, A. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity. J. Mol. Struct., 2017, 1145, 244-253.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.040]
[59]
Solanki, A.; Mehul, H.S.; Kumar, S.B. Ternary complexes of copper (II) and cobalt (II) involving nitrite/pyrazole and tetradentate N4-coordinate ligand: Synthesis, characterization, structures and antimicrobial activity. J. Mol. Struct., 2015, 1101, 155-161.
[http://dx.doi.org/10.1016/j.molstruc.2015.08.018]
[60]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem., 2009, 17(24), 8168-8173.
[http://dx.doi.org/10.1016/j.bmc.2009.10.035] [PMID: 19896853]
[61]
Kendre, B.V.; Landge, M.G.; Bhusare, S.R. Synthesis and biological evaluation of some novel pyrazole, isoxazole, benzoxazepine, benzo-thiazepine and benzodiazepine derivatives bearing an aryl sulfonate moiety as antimicrobial and anti-inflammatory agents. Arab. J. Chem., 2019, 12(8), 2091-2097.
[62]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H-L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[63]
Sangani, C.B.; Mungra, D.C.; Patel, M.P.; Patel, R.G. Synthesis and in vitro antimicrobial screening of new pyrano[4,3-b]pyrane deriva-tives of 1H-pyrazole. Chin. Chem. Lett., 2012, 23, 57-60.
[http://dx.doi.org/10.1016/j.cclet.2011.09.012]
[64]
Sowmya, D.V.; Lakshmi Teja, G.; Padmaja, A.; Kamala Prasad, V.; Padmavathi, V. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem., 2018, 143, 891-898.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.093] [PMID: 29227929]
[65]
Boschi, D.; Guglielmo, S.; Aiello, S.; Morace, G.; Borghi, E.; Fruttero, R. Synthesis and in vitro antimicrobial activities of new (cyano-NNO-azoxy)pyrazole derivatives. Bioorg. Med. Chem. Lett., 2011, 21(11), 3431-3434.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.101] [PMID: 21530247]
[66]
Sayed, G.H.; Azab, M.E.; Anwer, K.E.; Raouf, M.A.; Negm, N.A. Pyrazole, pyrazolone and enaminonitrile pyrazole derivatives: Synthesis, characterization and potential in corrosion inhibition and antimicrobial applications. J. Mol. Liq., 2018, 252, 329-338.
[http://dx.doi.org/10.1016/j.molliq.2017.12.156]
[67]
Reddy, G.M.; Garcia, J.R.; Zyryanov, G.V.; Sravya, G.; Reddy, N.B. Pyranopyrazoles as efficient antimicrobial agents: Green, one pot and multicomponent approach. Bioorg. Chem., 2019, 82, 324-331.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.035] [PMID: 30415166]
[68]
Rizk, H.F.; Ibrahim, S.A.; El-Borai, M.A. Synthesis, fastness properties, color assessment and antimicrobial activity of some azo reactive dyes having pyrazole moiety. Dyes Pigments, 2015, 112, 86-92.
[http://dx.doi.org/10.1016/j.dyepig.2014.06.026]
[69]
Padmaja, A.; Payani, T.; Reddy, G.D.; Padmavathi, V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem., 2009, 44(11), 4557-4566.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.024] [PMID: 19631423]
[70]
Brahmbhatt, H.; Molnar, M.; Pavi, V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. Karbala Int. J. Mod. Sci., 2018, 4, 200-206.
[http://dx.doi.org/10.1016/j.kijoms.2018.01.006]
[71]
Hafez, H.N.; El-Gazzar, A.B.A.; Al-Hussain, S.A. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(10), 2428-2433.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.117] [PMID: 27080187]
[72]
Damljanović, I.; Vukićević, M.; Radulović, N.; Palić, R.; Ellmerer, E.; Ratković, Z.; Joksović, M.D.; Vukićević, R.D. Synthesis and antimicrobial activity of some new pyrazole derivatives containing a ferrocene unit. Bioorg. Med. Chem. Lett., 2009, 19(4), 1093-1096.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.006] [PMID: 19167220]
[73]
Malladi, S.; Isloor, A.M.; Isloor, S.; Akhila, D.S.; Fun, H.K. Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases. Arab. J. Chem., 2013, 6, 335-340.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.009]
[74]
Williamson, G.M.; Morrison, J.K.; Stevens, K.J. A new synthetic penicillin PA-248. Lancet, 1961, 1(7182), 847-850.
[http://dx.doi.org/10.1016/S0140-6736(61)90174-X] [PMID: 13785541]
[75]
Parker, M.T.; Hewitt, J.H. Methicillin resistance in Staphylococcus aureus. Lancet, 1970, 1(7651), 800-804.
[http://dx.doi.org/10.1016/S0140-6736(70)92408-6] [PMID: 4191434]
[76]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[77]
Neumann, H. Fungicidal composition comprising a salicylate and a pyra-zole, U.S. Patent 3,072,525 1963, January 08.
[78]
Verge, J.P.; Neville, M.C.; Friedman, H. H. 3-(5-Nitro-2-imidazolyl) pyrazoles, U.S. Patent 3,947,467, March 30, 1976.
[79]
Carl, R. Antimicrobial quaternary pyrazole dervatives, U.S. Patent 4,207,326, June 10, 1980.
[80]
Carl, R. Quaternary pyrazole derivatives, process for their preparation and their use as fungicides and bactericides, EP. Patent 0,020,077 A1, December 10, 1980.
[81]
Hoehn, H. Imidazolylethoxymethyl derivatives of pyrazole, U.S. Patent 4,248,881, 1981, February 03..
[82]
Gauss, W.; Kabbe, H.J.; Paulus, W.; Rosslenbroich, H.J.; Brandes, W. Antimicrobial agents containing 2-(1H-pyrazol-1-yl)-4-(3H)- quinazolinones, EP. Patent 0,161,418 A1, November 21, 1985.
[83]
King, V.M.; Zhou, X. Synergistic antimicrobial compositions containing 1-hydroxymethylpyrazole and a preservative. AU., Patent 7,256,28,B2, October 19, 2000.
[84]
Charifson, P.; Bellon, S.; Stamos, D.; Badia, M.; Grillot, A.L.; Ronkin, S.; Murcko, M.; Trudeau, M. Gyrase inhibitors and uses thereof. WIPO, WO, 2001, 2001/052846, A1.
[85]
Pimenova, E.V.; Khamatgalleev, R.A.; Voronona, E.V.; Solodnikov, S.J.; Anikina, L.V. 5(3)-Phenyl-4-phenylazo-3(5)-pyrazole carboxylic acid elicit-ing antibacterial activity. RU, Patent 2,198,168 C2, February 10, 2003.
[86]
Li, L.; Chen, X.; Cutler, T.S. Pyrazole antimicrobial agents, U.S. Patent 6,673,923 B2, Jan-uary 06, 2004.
[87]
Butler, M.M. Antibacterial pyrazole carboxylic acid hydrazides, WO. Patent 2004/094370 A2, November 04, 2004.
[88]
Ljduvig, K.E.; Astrid, M.M.; Klaus, S.; Khajnts, K.; Tomas, J.; Martin, J. Pyrazole carboxanilides and agents for control of microorgan- ism and fungus based on thereof, RU. Patent 2, 240,314,C2, 2004, November 20.
[89]
Charifson, P.; Stamos, D.; Badia, M.; Gryo, A.L.; Ronkin, S.; Trudeau, M. Gyrase inhibitors and uses thereof for treating bacterial infec-tions., Eurasian Patent EA005680B1, April 28, 2005.
[90]
Boulle, C.; Rozoy, R. Hair treatment composition containing a styryl-pyrazole compound, EP. Patent 1,558,203,B1, May 05, 2007..
[91]
Hogenkamp, D.J.; Nguyen, P.; Upasani, R. Aryl substituted pyrazoles, imidazoles, oxazoles, thiazoles and pyrroles, and the use thereof, EP. Patent 1,173,169,B1, May 12, 2010.
[92]
Allison, B.D.; Gomez, L.; Grice, C.A.; Hack, M.D.; Morrow, B.J.; Motley, T.; Santillan, A.; Shaw, K.J.; Schwarz, K.L.; Liu, Y.; Tang, L.Y.; Venkatesan, H.; Wiener, J.J.M. Bicyclic pyrazole compounds as antibacteral agents., U.S. Pa-tent 8,232,391 B2, July 31, 2012..
[93]
Brown, M.F.; Chen, J.M.; Melnick, M.J.; Montgomery, J.I.; Reilly, U. Imidazole, pyrazole, and triazole derivatives useful as antibacterial agents, U.S. Patent 8,809,333 B2, August 19, 2014.
[94]
Keith, L.J.; Francis, B.J. Fungicidal 4-methylanilinopyrazoles, EP. Patent 2,864,293 B1., April 27, 2016.
[95]
Bartels, G.; Becker, A.; Benting, J.; Braun, C.A.; Dahmen, P.; Desbordes, P.; Gary, S.; Gorgens, U.; Hadano, H.; Hartmann, B.; Knobloch, T.; Kosten, M.; Lui, N.; Meissner, R.; Pazenok, S.; Rama, R.; Voerste, A.; Neumann, U.W. Fungicide pyrazole carboxamides derivatives, U.S. Patent 0,297,766 A1, October 13, 2016.
[96]
Long, J.K.; Gregory, V.; Gutteridge, S.; Taggi, A.E.; Bereznak, J.F. Fungicidal pyrazoles and their mixtures, U.S. Patent 2017/0150719 A1, June 01, 2017.
[97]
Alam, M.A. Antimicrobial agents and the method of synthesizing the an-timicrobial agents, U.S. Patent 0,340,609 A1, November 30, 2017.
[98]
Lifeng, X. Preparing method for and uses of 3,5-disubstituted methylpy-razolo[1,5-a] pyrimidin-7-phenolate analogues and deriva- tives, W.O. Patent 1,772,18 A1, 2018.


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 3
Year: 2020
Published on: 11 September, 2020
Page: [207 - 223]
Pages: 17
DOI: 10.2174/2211352517666191022103831

Article Metrics

PDF: 19
HTML: 1