The Antitumor Activity of a Novel Fluorobenzamidine against Dimethylhydrazine- Induced Colorectal Cancer in Rats

Author(s): Mohammed Abdel-Rasol, Nadia M. El-Beih, Shaymaa M.M. Yahya, Mohamed A. Ismail, Wael M. El-Sayed*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Colorectal cancer is among the leading causes of death worldwide. The incidence of deaths is expected to be 11.4 million in 2030.

Objective: We aimed to evaluate the in vitro and in vivo antioxidant and antitumor activities of a novel Bithiophene- Fluorobenzamidine (BFB) against DMH-induced colorectal cancer in rats.

Methods: The antiproliferative activity of BFB against HCT-116 colon cancer cells and apoptotic genes was assessed. In vivo study was also conducted in which 80 adult male rats were divided into 5 groups; control, BFB, and the other 3 groups were injected with DMH (20mg/kg, s.c., for 9 weeks). Group 4 was injected with 5 doses of cisplatin (2.5mg/kg, i.p over 21 weeks) and group 5 was injected with 3 doses/week of BFB (2.5mg/kg, i.p, for 21 weeks).

Results: BFB exhibited weak to moderate in vitro antioxidant activity. It had a strong antiproliferative activity with IC50 ~0.3µg/ml. BFB induced extrinsic apoptosis through the upregulation of FasL, TRAL, p53 and caspase-8, and intrinsic apoptosis through the downregulation of Bcl-2 and survivin. BFB decreased the tumor incidence, multiplicity and size and improved the decreased body weight. BFB also ameliorated the functions of kidney and liver and antioxidants deteriorated by DMH. BFB significantly improved the pathological changes caused by DMH in colon tissues.

Conclusion: BFB showed a very promising antitumor activity against colorectal cancer induced by DMH in rats without causing hepato- or nephrotoxicity.

Keywords: Colorectal cancer, bithiophene, cisplatin, apoptosis, antioxidants, nephrotoxicity, hepatotoxicity.

[1]
Hamiza, O.O.; Rehman, M.U.; Tahir, M.; Khan, R.; Khan, A.Q.; Lateef, A.; Ali, F.; Sultana, S. Amelioration of 1,2 Dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats. Asian Pac. J. Cancer Prev., 2012, 13(9), 4393-4402.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4393] [PMID: 23167349]
[2]
World Health Organization.. World Health Statistics 2008.Geneva: World Health Organization, 2008. Ten statistical highlights in global public health
[3]
Kim, H.J.; Kim, S.K.; Kim, B.S.; Lee, S.H.; Park, Y.S.; Park, B.K.; Kim, S.J.; Kim, J.; Choi, C.; Kim, J.S.; Cho, S.D.; Jung, J.W.; Roh, K.H.; Kang, K.S.; Jung, J.Y. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J. Agric. Food Chem., 2010, 58(15), 8643-8650.
[http://dx.doi.org/10.1021/jf101510z] [PMID: 20681654]
[4]
El-Khadragy, M.F.; Nabil, H.M.; Hassan, B.N.; Tohamy, A.A.; Waaer, H.F.; Yehia, H.M.; Alharbi, A.M.; Moneim, A.E.A. Bone marrow cell therapy on 1,2-Dimethylhydrazine (DMH)-induced colon cancer in rats. Cell. Physiol. Biochem., 2018, 45(3), 1072-1083.
[http://dx.doi.org/10.1159/000487349] [PMID: 29439258]
[5]
Ismail, M.A.; Arafa, R.K.; Youssef, M.M.; El-Sayed, W.M. Anticancer, antioxidant activities, and DNA affinity of novel monocationic bithiophenes and analogues. Drug Des. Devel. Ther., 2014, 8, 1659-1672.
[http://dx.doi.org/10.2147/DDDT.S68016] [PMID: 25302019]
[6]
Simone, R.; Balendra, R.; Moens, T.G.; Preza, E.; Wilson, K.M.; Heslegrave, A.; Woodling, N.S.; Niccoli, T.; Gilbert-Jaramillo, J.; Abdelkarim, S.; Clayton, E.L.; Clarke, M.; Konrad, M.T.; Nicoll, A.J.; Mitchell, J.S.; Calvo, A.; Chio, A.; Houlden, H.; Polke, J.M.; Ismail, M.A.; Stephens, C.E.; Vo, T.; Farahat, A.A.; Wilson, W.D.; Boykin, D.W.; Zetterberg, H.; Partridge, L.; Wray, S.; Parkinson, G.; Neidle, S.; Patani, R.; Fratta, P.; Isaacs, A.M. G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO Mol. Med., 2018, 10(1), 22-31.
[http://dx.doi.org/10.15252/emmm.201707850] [PMID: 29113975]
[7]
Ismail, M.A.; Negm, A.; Arafa, R.K.; Abdel-Latif, E.; El-Sayed, W.M. Anticancer activity, dual prooxidant/antioxidant effect and apoptosis induction profile of new bichalcophene-5-carboxamidines. Eur. J. Med. Chem., 2019, 169, 76-88.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.062] [PMID: 30856408]
[8]
Nhili, R.; Peixoto, P.; Depauw, S.; Flajollet, S.; Dezitter, X.; Munde, M.M.; Ismail, M.A.; Kumar, A.; Farahat, A.A.; Stephens, C.E.; Duterque-Coquillaud, M.; David Wilson, W.; Boykin, D.W.; David-Cordonnier, M.H. Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines. Nucleic Acids Res., 2013, 41(1), 125-138.
[http://dx.doi.org/10.1093/nar/gks971] [PMID: 23093599]
[9]
Campbell, P.I.; al-Nasser, I.A. Renal insufficiency induced by cisplatin in rats is ameliorated by cyclosporin A. Toxicology, 1996, 114(1), 11-17.
[http://dx.doi.org/10.1016/S0300-483X(96)03411-7] [PMID: 8931756]
[10]
Aisner, J.; Jacobs, M.; Sinabaldi, V.; Gray, W.; Eisenberger, M. Chemoradiotherapy for the treatment of regionally advanced head and neck cancers. Semin. Oncol., 1994, 21(5)(Suppl. 12), 35-44.
[PMID: 7992065]
[11]
Ali, B.H.; Al Moundhri, M.S. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: A review of some recent research. Food Chem. Toxicol., 2006, 44(8), 1173-1183.
[http://dx.doi.org/10.1016/j.fct.2006.01.013] [PMID: 16530908]
[12]
Hussin, W.A.; Ismail, M.A.; Alzahrani, A.M.; El-Sayed, W.M. Evaluation of the biological activity of novel monocationic fluoroaryl-2,2′-bichalcophenes and their analogues. Drug Des. Devel. Ther., 2014, 8, 963-972.
[PMID: 25114506]
[13]
Pal, T.K.; Bhattacharyya, S.; Dey, A. Evaluation of antioxidant activities of flower extract (fresh and dried) of Saraca indica grown in West Bengal. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(4), 251-259.
[14]
El-Sayed, W.M.; Hussin, W.A.; Mahmoud, A.A.; AlFredan, M.A. The Conyza triloba extracts with high chlorophyll content and free radical scavenging activity had anticancer activity in cell lines. BioMed Res. Int., 2013, 2013 945638
[http://dx.doi.org/10.1155/2013/945638] [PMID: 23781512]
[15]
Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc., 2008, 3(7), 1125-1131.
[http://dx.doi.org/10.1038/nprot.2008.75] [PMID: 18600217]
[16]
Thangaraj, K.; Natesan, K.; Palani, M.; Vaiyapuri, M. Orientin, a flavanoid, mitigates 1, 2 dimethylhydrazine-induced colorectal lesions in Wistar rats fed a high-fat diet. Toxicol. Rep., 2018, 5(1), 977-987.
[http://dx.doi.org/10.1016/j.toxrep.2018.09.004] [PMID: 30319939]
[17]
Alhoshani, A.R.; Hafez, M.M.; Husain, S.; Al-Sheikh, A.M.; Alotaibi, M.R.; Al Rejaie, S.S.; Alshammari, M.A.; Almutairi, M.M.; Al-Shabanah, O.A. Protective effect of rutin supplementation against cisplatin-induced Nephrotoxicity in rats. BMC Nephrol., 2017, 18(1), 194.
[http://dx.doi.org/10.1186/s12882-017-0601-y] [PMID: 28619064]
[18]
Patton, C.J.; Crouch, S.R. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal. Chem., 1977, 49(3), 464-469.
[http://dx.doi.org/10.1021/ac50011a034]
[19]
Bowers, L.D. Kinetic serum creatinine assays I. The role of various factors in determining specificity. Clin. Chem., 1980, 26(5), 551-554.
[PMID: 7261300]
[20]
Breuer, J. Report on the symposium “Drug effects in Clinical Chemistry Methods”. Eur. J. Clin. Chem. Clin. Biochem., 1996, 34(4), 385-386.
[PMID: 8704059]
[21]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126. [Academic Press].
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[22]
Nishikimi, M.; Appaji, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[23]
Goldberg, D.M.; Spooner, R.J. Assay of glutathione reductase.Methods of Enzymatic Analysis, 3rd ed; Bergmeyen, H.V., Ed.; , 1983, Vol. 3, pp. 258-265.
[24]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249(22), 7130-7139.
[PMID: 4436300]
[25]
van Doorn, R.; Leijdekkers, C.M.; Henderson, P.T. Synergistic effects of phorone on the hepatotoxicity of bromobenzene and paracetamol in mice. Toxicology, 1978, 11(3), 225-233.
[http://dx.doi.org/10.1016/S0300-483X(78)91389-6] [PMID: 569914]
[26]
Heerspink, W.; Hafkenscheid, J.C.; Siepel, H.; van der Ven-Jongekrÿg, J.; Dijt, C.C. Temperature-converting factors for enzymes: comparison of methods. Enzyme, 1980, 25(5), 333-341.
[http://dx.doi.org/10.1159/000459276] [PMID: 6108854]
[27]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[28]
Bancroft, J.; Stevens, A.; Turner, D. Theory and practice of histological techniques; Churchill Licingston: London, 1996.
[29]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[30]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[31]
Ismail, M.A.; Youssef, M.M.; Arafa, R.K.; Al-Shihry, S.S.; El-Sayed, W.M. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem., 2017, 126, 789-798.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.007] [PMID: 27951487]
[32]
Dimagno, S.G.; Sun, H. The strength of weak interactions: aromatic fluorine in drug design. Curr. Top. Med. Chem., 2006, 6(14), 1473-1482.
[http://dx.doi.org/10.2174/156802606777951127] [PMID: 16918463]
[33]
Ismail, M.A.; Brun, R.; Easterbrook, J.D.; Tanious, F.A.; Wilson, W.D.; Boykin, D.W. Synthesis and antiprotozoal activity of aza-analogues of furamidine. J. Med. Chem., 2003, 46(22), 4761-4769.
[http://dx.doi.org/10.1021/jm0302602] [PMID: 14561095]
[34]
Marles, R.J.; Hudson, J.B.; Graham, E.A.; Soucy-Breau, C.; Morand, P.; Compadre, R.L.; Compadre, C.M.; Towers, G.H.; Arnason, J.T. Structure-activity studies of photoactivated antiviral and cytotoxic tricyclic thiophenes. Photochem. Photobiol., 1992, 56(4), 479-487.
[http://dx.doi.org/10.1111/j.1751-1097.1992.tb02191.x] [PMID: 1333615]
[35]
Mancin, F.; Scrimin, P.; Tecilla, P.; Tonellato, U. Artificial metallonucleases. Chem. Commun. (Camb.), 2005, 20, 2540-2548.
[36]
He, J.; Sun, J.; Mao, Z.W.; Ji, L.N.; Sun, H. Phosphodiester hydrolysis and specific DNA binding and cleavage promoted by guanidinium-functionalized zinc complexes. J. Inorg. Biochem., 2009, 103(5), 851-858.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.02.010] [PMID: 19344953]
[37]
Youssef, M.M.; Al-Omair, M.A.; Ismail, M.A. Synthesis, DNA affinity, and antimicrobial activity of 4-substituted phenyl-2-2′-bichalcophenes and azo-analogus. Med. Chem. Res., 2012, 21(12), 4074-4082.
[http://dx.doi.org/10.1007/s00044-011-9964-y]
[38]
Vondálová Blanárová, O.; Jelínková, I.; Szöor, A.; Skender, B.; Souček, K.; Horváth, V.; Vaculová, A.; Andera, L.; Sova, P.; Szöllosi, J.; Hofmanová, J.; Vereb, G.; Kozubík, A. Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis, 2011, 32(1), 42-51.
[http://dx.doi.org/10.1093/carcin/bgq220] [PMID: 21037225]
[39]
Peng, Z.H.; Xing, T.H.; Qiu, G.Q.; Tang, H.M. Relationship between Fas/FasL expression and apoptosis of colon adenocarcinoma cell lines. World J. Gastroenterol., 2001, 7(1), 88-92.
[http://dx.doi.org/10.3748/wjg.v7.i1.88] [PMID: 11819739]
[40]
Ikeguchi, M.; Nakamura, S.; Kaibara, N. Quantitative analysis of expression levels of bax, bcl-2, and survivin in cancer cells during cisplatin treatment. Oncol. Rep., 2002, 9(5), 1121-1126.
[http://dx.doi.org/10.3892/or.9.5.1121]
[41]
Matsuhashi, N.; Matsuo, A.; Kawaguchi, Y.; Sugiyama, Y.; Saji, S. [Relation between p53 expression of human colon cancer cell lines and induction of apoptosis by anticancer drugs]. Gan To Kagaku Ryoho, 2003, 30(11), 1855-1858.
[PMID: 14619538]
[42]
Gonzalvez, F.; Ashkenazi, A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene, 2010, 29(34), 4752-4765.
[http://dx.doi.org/10.1038/onc.2010.221] [PMID: 20531300]
[43]
Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell death. N. Engl. J. Med., 2009, 361(16), 1570-1583.
[http://dx.doi.org/10.1056/NEJMra0901217] [PMID: 19828534]
[44]
Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 1999, 6(2), 99-104.
[http://dx.doi.org/10.1038/sj.cdd.4400476] [PMID: 10200555]
[45]
Szliszka, E.; Mazur, B.; Zydowicz, G.; Czuba, Z.P.; Król, W. TRAIL-induced apoptosis and expression of death receptor TRAIL-R1 and TRAIL-R2 in bladder cancer cells. Folia Histochem. Cytobiol., 2009, 47(4), 579-585.
[PMID: 20430723]
[46]
Altieri, D.C. New wirings in the survivin networks. Oncogene, 2008, 27(48), 6276-6284.
[http://dx.doi.org/10.1038/onc.2008.303]
[47]
Ghatage, D.D.; Gosavi, S.R.; Ganvir, S.M.; Hazarey, V.K. Apoptosis: Molecular mechanism. J. Orofac. Sci., 2012, 4(2), 103.
[http://dx.doi.org/10.4103/0975-8844.106199]
[48]
Eisenberg-Lerner, A.; Bialik, S.; Simon, H.U.; Kimchi, A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ., 2009, 16(7), 966-975.
[http://dx.doi.org/10.1038/cdd.2009.33] [PMID: 19325568]
[49]
Brady, C.A.; Attardi, L.D. p53 at a glance. J. Cell Sci., 2010, 123(Pt 15), 2527-2532.
[http://dx.doi.org/10.1242/jcs.064501] [PMID: 20940128]
[50]
Hyun, H.B.; Lee, W.S.; Go, S.I.; Nagappan, A.; Park, C.; Han, M.H.; Hong, S.H. The flavonoid morin from Moraceae induces apoptosis by modulation of Bcl-2 family members and Fas receptor in HCT 116 cells. Int. J. Oncol., 2015, 46(6), 2670-2678.
[http://dx.doi.org/10.3892/ijo.2015.2967]
[51]
Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Yamada, N.; Ohta, S.; Ichihara, K.; Akao, Y. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression. Phytomedicine, 2014, 21(8-9), 1070-1077.
[http://dx.doi.org/10.1016/j.phymed.2014.04.006] [PMID: 24854570]
[52]
Elmegeed, G.A.; Yahya, S.M.; Abd-Elhalim, M.M.; Mohamed, M.S.; Mohareb, R.M.; Elsayed, G.H. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells. Steroids, 2016, 115, 80-89.
[http://dx.doi.org/10.1016/j.steroids.2016.08.014] [PMID: 27553725]
[53]
Yahya, S.M.M.; Abdelhamid, A.O.; Abd-Elhalim, M.M.; Elsayed, G.H.; Eskander, E.F. The effect of newly synthesized progesterone derivatives on apoptotic and angiogenic pathway in MCF-7 breast cancer cells. Steroids, 2017, 126, 15-23.
[http://dx.doi.org/10.1016/j.steroids.2017.08.002] [PMID: 28797724]
[54]
Manju, V.; Nalini, N. Chemopreventive efficacy of ginger, a naturally occurring anticarcinogen during the initiation, post-initiation stages of 1,2 dimethylhydrazine-induced colon cancer. Clin. Chim. Acta, 2005, 358(1-2), 60-67.
[http://dx.doi.org/10.1016/j.cccn.2005.02.018] [PMID: 16018877]
[55]
Bindhu, T.; Jagadeeshwar, K.; Goverdhan, P. Pharmacological evaluation of Sesbania grandiflora for anticolon cancer activity in 1,2-dimethylhydrazine induced colon cancer. J. Glob. Trends Pharm. Sci., 2017, 8(1), 3727-3741.
[56]
Mariyappan, P.; Kalaiyarasu, T.; Manju, V. Effect of eriodictyol on preneoplastic lesions, oxidative stress and bacterial enzymes in 1,2-dimethyl hydrazine-induced colon carcinogenesis. Toxicol. Res. (Camb.), 2017, 6(5), 678-692.
[http://dx.doi.org/10.1039/C7TX00074J] [PMID: 30090535]
[57]
Sivaranjani, A.; Sivagami, G.; Nalini, N. Chemopreventive effect of carvacrol on 1,2-dimethylhydrazine induced experimental colon carcinogenesis. J. Cancer Res. Ther., 2016, 12(2), 755-762.
[http://dx.doi.org/10.4103/0973-1482.154925] [PMID: 27461646]
[58]
Vinothkumar, R.; Vinothkumar, R.; Sudha, M.; Nalini, N. Chemopreventive effect of zingerone against colon carcinogenesis induced by 1,2-dimethylhydrazine in rats. Eur. J. Cancer Prev., 2014, 23(5), 361-371.
[http://dx.doi.org/10.1097/CEJ.0b013e32836473ac] [PMID: 23903760]
[59]
Malik, R.; Kamath, N. Anorectal mucinous adenocarcinoma in child: a case report. Eur. J. Pediatr., 2011, 170(11), 1461-1463.
[http://dx.doi.org/10.1007/s00431-011-1527-1] [PMID: 21743985]
[60]
Manju, V.; Nalini, N. Effect of ginger on lipid peroxidation and antioxidant status in 1,2- dimethyl hydrazine induced experimental colon carcinogenesis. J. Biochem. Technol., 2010, 2(2), 161-167.
[61]
Prasad, V.G.; Kawade, S.; Jayashree, B.S.; Reddy, N.D.; Francis, A.; Nayak, P.G.; Kishore, A.; Nandakumar, K.; Rao, C.M.; Shenoy, R.R. Iminoflavones combat 1,2-dimethyl hydrazine-induced aberrant crypt foci development in colon cancer. BioMed Res. Int., 2014, 2014 569130
[http://dx.doi.org/10.1155/2014/569130] [PMID: 24995310]
[62]
Bekusova, V.V.; Patsanovskii, V.M.; Nozdrachev, A.D.; Trashkov, A.P.; Artemenko, M.R.; Anisimov, V.N. Metformin prevents hormonal and metabolic disturbances and 1,2-dimethylhydrazine-induced colon carcinogenesis in non-diabetic rats. Cancer Biol. Med., 2017, 14(1), 100-107.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0088] [PMID: 28443209]
[63]
Kamaleeswari, M.; Deeptha, K.; Sengottuvelan, M.; Nalini, N. Effect of dietary caraway (Carum carvi L.) on aberrant crypt foci development, fecal steroids, and intestinal alkaline phosphatase activities in 1,2-dimethylhydrazine-induced colon carcinogenesis. Toxicol. Appl. Pharmacol., 2006, 214(3), 290-296.
[64]
Liu, X.; Jakubowski, M.; Hunt, J.L. KRAS gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis. Am. J. Clin. Pathol., 2011, 135(2), 245-252.
[http://dx.doi.org/10.1309/AJCP7FO2VAXIVSTP] [PMID: 21228365]
[65]
Ng, J.M.; Yu, J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int. J. Mol. Sci., 2015, 16(2), 2472-2496.
[http://dx.doi.org/10.3390/ijms16022472] [PMID: 25622259]
[66]
Abd-Elmoneim, M.A.; Bakar, A.A.; Awad, I.M.; Mohamed, E.M.; Moharib, S.A. Anticarcinogenic effect of Raphanus sativus on 1,2-Dimethylhydrazine (DMH)-induced colon cancer in rats. Egy. J. Hos. Med., 2013, 51, 473-486.
[http://dx.doi.org/10.12816/0000862]
[67]
Ragunath, M.; Prabu, T.; Nadanasabapathy, S.; Revathi, R.; Manju, V. Synergistic and individual effects of umbelliferone with 5-flurouracil on the status of lipid peroxidation and antioxidant defense against 1,2-dimethylhydrazine induced rat colon carcinogenesis. Biomed. Prev. Nutr, 2013, 3(1), 74-82.
[http://dx.doi.org/10.1016/j.bionut.2012.10.011]
[68]
Khan, M.A.; Tania, M.; Zhang, D.Z.; Chen, H. Antioxidant enzymes and cancers. Chin. J. Cancer Res., 2010, 22(2), 87-92.
[http://dx.doi.org/10.1007/s11670-010-0087-7]
[69]
Selvaraju, M.; Nirmala, P.; Kumar, A. Role of Chlorella pyrenoidosa in 1,2-Dimethylhydrazine (DMH)-induced colorectal carcinoma in male Wistar rats. Int. J. Curr. Med. Sci., 2018, 8(2), 397-402.
[70]
Sreedharan, V.; Venkatachalam, K.K.; Namasivayam, N. Effect of morin on tissue lipid peroxidation and antioxidant status in 1, 2-dimethylhydrazine induced experimental colon carcinogenesis. Invest. New Drugs, 2009, 27(1), 21-30.
[http://dx.doi.org/10.1007/s10637-008-9136-1] [PMID: 18496650]
[71]
Padmavathi, R.; Senthilnathan, P.; Sakthisekaran, D. Therapeutic effect of propolis and paclitaxel on hepatic phase I and II enzymes and marker enzymes in dimethylbenz(a)anthracene-induced breast cancer in female rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 143(3), 349-354.
[http://dx.doi.org/10.1016/j.cbpc.2006.03.009] [PMID: 16720105]
[72]
Balaji, C.; Muthukumaran, J.; Nalini, N. Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Hum. Exp. Toxicol., 2014, 33(12), 1253-1268.
[http://dx.doi.org/10.1177/0960327114522501] [PMID: 24532707]
[73]
Sultana, S.; Verma, K.; Khan, R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J. Pharm. Pharmacol., 2012, 64(6), 872-881.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01470.x] [PMID: 22571266]
[74]
Li, Q.C.; Liang, Y.; Hu, G.R.; Tian, Y. Enhanced therapeutic efficacy and amelioration of cisplatin-induced nephrotoxicity by quercetin in 1,2-dimethyl hydrazine-induced colon cancer in rats. Indian J. Pharmacol., 2016, 48(2), 168-171.
[http://dx.doi.org/10.4103/0253-7613.178834] [PMID: 27127319]
[75]
Ansil, P.N.; Prabha, S.P.; Nitha, A.; Latha, M.S. Chemopreventive effect of Amorphophallus campanulatus (Roxb.) blume tuber against aberrant crypt foci and cell proliferation in 1, 2-dimethylhydrazine induced colon carcinogenesis. Asian Pac. J. Cancer Prev., 2013, 14(9), 5331-5339.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5331] [PMID: 24175821]
[76]
Dadkhah, A.; Fatemi, F.; Malayeri, M.; Jahanbani, A.; Batebi, F.; Ghorbanpour, Z. The chemopreventive effect of Nigella sativa on 1,2-dimethylhydrazine-induced colon tumor. Ind. J. Pharma Edu. Res., 2014, 48(1), 39-48.
[http://dx.doi.org/10.5530/ijper.48.1.7]
[77]
Zaafar, D.K.; Zaitone, S.A.; Moustafa, Y.M. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS One, 2014, 9(6) e100562
[http://dx.doi.org/10.1371/journal.pone.0100562] [PMID: 24971882]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2020
Published on: 21 October, 2019
Page: [450 - 463]
Pages: 14
DOI: 10.2174/1871520619666191021162411
Price: $65

Article Metrics

PDF: 21
HTML: 6
EPUB: 1
PRC: 1