The Mechanical Alloying of Magnetite Concentrate with Biochar

Author(s): Elif Aranci Öztürk, Mustafa Boyrazli*, Mehmet Deniz Turan, Murat Erdemoğlu

Journal Name: Current Physical Chemistry

Volume 10 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Aim: In this work, the effect of milling time on the mechanical alloying of the mixture containing the magnetite concentrate and biomass waste was investigated.

Materials and Methods: The ore’s grade consisting of hematite and magnetite minerals was increased from 49.87% Fe to 67.29% Fe using the low intensity wet magnetic separator. Biomass waste which was supplied from ÇAYKUR black tea facilities, used as a carbon source was subjected to carbonization processes at 800°C for 1440 min. After the carbonization process, the carbon and sulphur contents of the biomass were measured as 94.68% and 0.03%, respectively. For the mechanical alloying process, a mixture consisting of magnetite concentrate with a grain size of -45 μm and biomass which was added two times the amount of carbon required for the reduction of magnetite to metallic iron was used.

Result: After the mechanical alloying process which was carried out at different times, it was observed in the particle size analysis that the particle size of 90% of the mixture was reduced to about 4 μm. In SEM (Scanning Electron Microscopy) images, cube-like particles along with the spherical particles were observed depending on the mechanical alloying times. After 45 minutes of alloying, it was observed that the carbonized product milled together with magnetite concentrate was partially integrated into the crystal structure.

Conclusion: The carbonized tea plant waste milled together with magnetite concentrate was partially integrated into the crystal structure. And the mechanical alloying provide to increase in the specific surface area in parallel with the grain size decrease in the study. Thus, in the later stage of the study, the milled powder acquired more ability to react.

Keywords: Biochar, biomass, carbonization process, magnetite ore, mechanical alloying, tea plant waste.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [116 - 125]
Pages: 10
DOI: 10.2174/1877946809666191021153252

Article Metrics

PDF: 13