A Green Process for Selective Hydrolysis of Cinnamaldehyde in Water to Natural Benzaldehyde by Using Ti and Zn Modified Hydrotalcites as Catalysts

Author(s): Amarsinh L. Jadhav, Ganapati D. Yadav*

Journal Name: Current Green Chemistry

Volume 6 , Issue 3 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Hydrolysis of Cinnamaldehyde (CNM) is one of the important processes for the production of industrially essential natural benzaldehyde. Benzaldehyde is a vital precursor in the production of perfumes, cosmetics, food, beverages, and pharmaceutical intermediates. As homogeneous base catalysts are polluting and difficult to separate, heterogeneous catalysts should be used. Hydrolysis of cinnamaldehyde to benzaldehyde was studied over modified hydrotalcite (HT) base catalysts wherein HT was activated with either zinc or titanium, by combustion synthesis using glycine or glycerol as fuel. Both the catalyst composition and combustion fuel affect the activity of modified HT catalysts. SEM, EDXS, BET surface area and porosimetry were used to characterize all catalysts. Zinc modified hydrotalcite using glycine as fuel (Zn-HT-Glycine) was the most active, selective, and reusable catalyst under mild reaction conditions, and it was used to study the influence of different process parameters on the reaction rate, conversion and selectivity. Reaction mechanism and kinetics were established. The reaction follows pseudo-first-order kinetics. At 1:92 mole ratio of cinnamaldehyde to water and 0.005 g/cm3 catalyst loading, the reaction gives 75.8 % conversion of cinnamaldehyde and 100 % selectivity to benzaldehyde at 130oC in 4 h. The apparent activation energy was 19.15 kcal/mol. The overall process is green and the catalyst reusable.

Keywords: Modified hydrotalcite, hydrolysis, cinnamaldehyde, natural benzaldehyde, green chemistry, pseudo-first-order kinetics.

Xu, S.; Tao, D.J.; Chen, F.F.; Zhou, Y.; Zhao, X.; Yu, L.L.; Chen, X.S.; Huang, K. Remarkably efficient hydrolysis of cinnamaldehyde to natural benzaldehyde in amino acid ionic liquids. Korean J. Chem. Eng., 2016, 33(12), 3374-3380.
Wolken, W.A.M.; Tramper, J.; van der Werf, M.J. Amino Acid-Catalysed Retroaldol Condensation: The Production of Natural Benzaldehyde and Other Flavour Compounds. Flavour Fragrance J., 2004, 19(2), 115-120.
Berger, R.G. Flavours and Fragrances, 1st ed; Springer Berlin Heidelberg, 2007.
Yi, F.P.; Li, W.G.; Liu, X.M.; Lan, T.C.; Zhou, Y.H. Preparation of Benzaldehyde by Ozonization Reaction from Natural Cinnamon Oils. Fine Chem, 1996, 13(6), 32-34.
Gao, F.; Lu, X-Y. A Novel Process for Synthesis of Benzaldehyde in Near-Critical Water. J. Chem. Eng. Chinese Univ., 2006, 20(4), 2018.
Dalgarno, S.J.; Power, N.P.; Atwood, J.L. Metallo-Supramolecular Capsules. Coord. Chem. Rev., 2008, 252(8-9), 825-841.
Koblenz, T.S.; Wassenaar, J.; Reek, J.N.H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev., 2008, 37(2), 247-262.
[http://dx.doi.org/10.1039/B614961H] [PMID: 18197342]
Oshovsky, G.V.; Reinhoudt, D.N.; Verboom, W. Supramolecular chemistry in water. Angew. Chem. Int. Ed. Engl., 2007, 46(14), 2366-2393.
[http://dx.doi.org/10.1002/anie.200602815] [PMID: 17370285]
Ji, H.B.; Huang, L.Q.; Shi, D.P.Z.X.T. β-Cyclodextrin as Supramolecular Catalyst in Liquid-Phase Organic Synthesis. Youji Huaxue, 2008, 28(12), 2072-2080.
Chan, W.K.; Yu, W.Y.; Che, C.M.; Wong, M.K. A Cyclodextrin-modified Ketoester for Stereoselective Epoxidation of Alkenes. J. Org. Chem., 2003, 68(17), 6576-6582.
[http://dx.doi.org/10.1021/jo034296d] [PMID: 12919018]
Reddy, M.A.; Bhanumathi, N.; Rao, K.R. Asymmetric Synthesis of 2-Azido-1-arylethanols from Azido Aryl Ketone-β-cyclodextrin Complexes and Sodium Borohydride in Water. Chem. Commun. (Camb.), 2001, 1(19), 1974-1975.
[http://dx.doi.org/10.1039/b106736m] [PMID: 12240246]
Surendra, K.; Krishnaveni, N.S.; Nageswar, Y.V.D.; Rao, K.R. Highly Regioselective Ring Opening of Oxiranes with Phenoxides in the Presence of β-Cyclodextrin in Water. J. Org. Chem., 2003, 68(12), 4994-4995.
[http://dx.doi.org/10.1021/jo034194n] [PMID: 12790620]
Fernandez, M.A.; De Rossi, R.H. PH dependent effect of β-cyclodextrin on the hydrolysis rate of trifluoroacetate esters. J. Org. Chem., 1997, 62(22), 7554-7559.
Chen, H.H.J. Alkaline Hydrolysis of Cinnamaldehyde to Benzaldehyde in the Presence of β-Cyclodextrin. AIChE, 2010, 56(2), 466-476.
Hattori, H.; Guinet, M.; Barrault, J.; Bouchoul, C.; Duprez, D.; Montassier, C.; Heterogeneous Catalysis, G. P. Heterogeneous Catalysis and Fine Chemicals III,
Hattori, H. Heterogeneous Basic Catalysis., 1995, 95, 537-558.
James, J. Catalysis by Solid Bases.Catalysis; Brown, J.R., Ed.; RSC: London, 2000, 15, pp. 40-72.
Yadav, G.D.; Aduri, P. Aldol Condensation of Benzaldehyde with Heptanal to Jasminaldehyde over Novel Mg-Al Mixed Oxide on Hexagonal Mesoporous Silica. J. Mol. Catal. Chem., 2012, 355, 142-154.
Klaus Weissermel, H-J.A. Ndustrial Organic Chemistry; Wiley: New York, 1997.
Tanabe, K.; Hölderich, W.F. Industrial application of solid acid-base catalysts. Appl. Catal. A Gen., 1999, 181(2), 399-434.
Kelly, G.J.; King, F.; Kett, M. Waste elimination in condensation reactions of industrial importance. Green Chem., 2002, 4(4), 392-399.
Zhang, C.Z. Manual Natural Spices; 109Beijing; Light Industry Press, 1989.
Montouillout, V.; Massiot, D.; Douy, A.; Coutures, J.P. Characterization of MgAl2O4 precursor powders prepared by aqueous route. J. Am. Ceram. Soc., 1999, 82(12), 3299-3304.
Rao, C.N.R. Chemical approaches to the synthesis of inorganic materials; Wiley Eastern Limited: New Delhi, 1994.
Merzhanov, A.G. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem., 2004, 14, 1779-1786.
Patil, K.C.; Aruna, S.T.; Sambandan, E. Combustion synthesis. Curr. Opin. Solid State Mater. Sci., 1997, 2, 158-165.
Deshpande, K.; Mukasyan, A.; Varma, A. Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. Chem. Mater., 2004, 16(24), 4896-4904.
Patil, K.C.; Hegde, M.S.; Tanu Rattan, S.T.A. Chemistry of Nanocrystalline Oxide Materials; World Scientific Publishing Co. Pvt. Ltd, 2008.
Patil, K. Combustion synthesis. Curr. Opin. Solid State Mater. Sci., 1997, 2(2), 158-165.
Cavani, F.; Trifiro, F. Hydrotalcite-type anlonlc clays, A.V. preparation, properties and applications. Catal. Today, 1991, 11, 173-301.
Hernández, W.Y.; Aliç, F.; Verberckmoes, A.; van der Voort, P. Tuning the acidic-basic properties by Zn-substitution in Mg–Al hydrotalcites as optimal catalysts for the aldol condensation reaction. J. Mater. Sci., 2017, 52(1), 628-642.
Cabrera Munguia, D.A.; Tzompantzi, F.; Gutiérrez-Alejandre, A.; Rico, J.L.; González, H. ZnAl-Zr hydrotalcite-like compounds activated at low temperature as solid base catalyst for the transesterification of vegetable oils. Energy Procedia, 2017, 142, 582-589.
Bukhtiyarova, M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem., 2018, 2019(269), 494-506.
Khanh, H.; Nguyen, D.; Van Nguyen, H.; Nguyen, V.A. Effect of synthetic conditions on the structure of mesoporous Mg-Al- Co hydrotalcite. J. Mol. Struct., 2018, 1171, 25-32.
Ono, Y. Solid base catalysts for the synthesis of fine chemicals. J. Catal., 2003, 216(1), 406-415.
Da, V.; Bulbulian, S.; Bosch, P. Mixed Mg ( Al ) O oxides synthesized by the combustion method and their recrystallization to hydrotalcites. 2008, 107, 240-246.
Patil, K.C.; Aruna, S.T.; Mimani, T. Combustion synthesis: An Update. Curr. Opin. Solid State Mater. Sci., 2002, 6(6), 507-512.
Chen, H.; Ji, H.; Zhou, X.; Wang, L. Green synthesis of natural benzaldehyde from cinnamon oil catalyzed by hydroxypropyl-β-cyclodextrin. Tetrahedron, 2010, 66(52), 9888-9893.
Yadav, G.D.; Fernandes, G.P. Selective synthesis of natural benzaldehyde by hydrolysis of cinnamaldehyde using novel hydrotalcite. Catalyst. Catal. Today, 2013, 207, 162-169.
Yang, Z.; Ji, H. 2-hydroxypropyl-β-cyclodextrin polymer as a mimetic enzyme for mediated synthesis of benzaldehyde in water. ACS Sustain. Chem.& Eng., 2013, 1(9), 1172-1179.
Fernandes, G.P.; Yadav, G.D. Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst. Catal. Today, 2018, 309, 153-160.
Jadhav, A.L.; Yadav, G.D. Clean synthesis of benzylidenemalononitrile by knoevenagel condensation of benzaldehyde and malononitrile: Effect of combustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts. J. Chem. Sci., 2019, 131, 79.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 18 December, 2019
Page: [242 - 254]
Pages: 13
DOI: 10.2174/2213346106666191021105244

Article Metrics

PDF: 31