Cyclization Effect on pKa of the Side Chain of Aspartic Acid in Dipeptides: A DFT Study

Author(s): Mohsen Sargolzaei*, Majid Namayandeh Jorabchi

Journal Name: Letters in Organic Chemistry

Volume 17 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cyclic dipeptides are very important compounds that have a wide range of applications in pharmaceutical chemistry and life sciences. In the current work, the acidity of the side chain of aspartic acid was calculated for various linear and a cyclic dipeptide. pKa values were derived using the thermodynamics cycle and DFT/B3LYP approach. The obtained pKa values show strong acidity for cyclic with respect to linear dipeptides. We found an intramolecular hydrogen bond in cyclic dipeptide structure, which can be used to justify the increasing acidity of the side chain of Asp as compared to linear structures.

Keywords: Density functional theory, dipeptide, pKa, thermodynamics cycle, cyclic dipeptide, aspartic acid.

[1]
Wipf, P. Chem. Rev., 1995, 95, 2115-2134.
[http://dx.doi.org/10.1021/cr00038a013]
[2]
Dinsmore, C.; Beshore, C.; Recent, D. Tetrahedron, 2002, 58, 3297-3312.
[http://dx.doi.org/10.1016/S0040-4020(02)00239-9]
[3]
Martins-Teixeira, M.; Ivone, C. Tetrahedron, 2007, 63, 9923-9932.
[http://dx.doi.org/10.1016/j.tet.2007.04.105]
[4]
Borthwick, A.D. Chem. Rev., 2012, 112(7), 3641-3716.
[http://dx.doi.org/10.1021/cr200398y] [PMID: 22575049]
[5]
Kanoh, K.; Kohno, S.; Katada, J.; Takahashi, J.; Uno, I. J. Antibiot. (Tokyo), 1999, 52(2), 134-141.
[http://dx.doi.org/10.7164/antibiotics.52.134] [PMID: 10344567]
[6]
Nicholson, B.; Lloyd, G.K.; Miller, B.R.; Palladino, M.A.; Kiso, Y.; Hayashi, Y.; Neuteboom, S.T. Anticancer Drugs, 2006, 17(1), 25-31.
[http://dx.doi.org/10.1097/01.cad.0000182745.01612.8a] [PMID: 16317287]
[7]
van der Merwe, E.; Huang, D.; Peterson, D.; Kilian, G.; Milne, P.J.; Van de Venter, M.; Frost, C. Peptides, 2008, 29(8), 1305-1311.
[http://dx.doi.org/10.1016/j.peptides.2008.03.010] [PMID: 18436344]
[8]
Sinha, S.; Srivastava, R.; De Clercq, E.; Singh, R.K. Nucleosides Nucleotides Nucleic Acids, 2004, 23(12), 1815-1824.
[http://dx.doi.org/10.1081/NCN-200040614] [PMID: 15628741]
[9]
Houston, D.R.; Synstad, B.; Eijsink, V.G.H.; Stark, M.J.R.; Eggleston, I.M.; van Aalten, D.M.F. J. Med. Chem., 2004, 47(23), 5713-5720.
[http://dx.doi.org/10.1021/jm049940a] [PMID: 15509170]
[10]
Abraham, W.R. Drug Design Reviews., 2005, 2, 13-33.
[http://dx.doi.org/10.2174/1567269053390257]
[11]
Gaunitz, F.; Hipkiss, A.R. Amino Acids, 2012, 43(1), 135-142.
[http://dx.doi.org/10.1007/s00726-012-1271-5] [PMID: 22454085]
[12]
Lim, H.J.; Gallucci, J.C. RajanBabu, T.V. Org. Lett., 2010, 12(9), 2162-2165.
[http://dx.doi.org/10.1021/ol100663y] [PMID: 20387855]
[13]
Alfonso, I.; Burguete, M.I.; Luis, S.V. J. Org. Chem., 2006, 71(6), 2242-2250.
[http://dx.doi.org/10.1021/jo051974i] [PMID: 16526769]
[14]
Billing, J.F.; Nilsson, U.J. J. Org. Chem., 2005, 70(12), 4847-4850.
[http://dx.doi.org/10.1021/jo050585l] [PMID: 15932327]
[15]
Punna, S.; Kuzelka, J.; Wang, Q.; Finn, M.G. Angew. Chem. Int. Ed. Engl., 2005, 44(15), 2215-2220.
[http://dx.doi.org/10.1002/anie.200461656] [PMID: 15693048]
[16]
Fernandez-Lopez, S.; Kim, H-S.; Choi, E.C.; Delgado, M.; Granja, J.R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D.A.; Wilcoxen, K.M.; Ghadiri, M.R. Nature, 2001, 412(6845), 452-455.
[http://dx.doi.org/10.1038/35086601] [PMID: 11473322]
[17]
Singh, Y.; Stoermer, M.J.; Lucke, A.J.; Guthrie, T.; Fairlie, D.P. J. Am. Chem. Soc., 2005, 127(18), 6563-6572.
[http://dx.doi.org/10.1021/ja0455300] [PMID: 15869277]
[18]
Heinrichs, G.; Kubik, S.; Lacour, J.; Vial, L. J. Org. Chem., 2005, 70(11), 4498-4501.
[http://dx.doi.org/10.1021/jo050215x] [PMID: 15903331]
[19]
Thajudeen, H.; Park, K.; Moon, S-S.; Hong, I.S. Tetrahedron Lett., 2010, 51, 1303-1305.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.134]
[20]
Tullberg, M.; Grøtli, M.; Luthman, K. Tetrahedron, 2006, 62, 7484-7491.
[http://dx.doi.org/10.1016/j.tet.2006.05.010]
[21]
Wang, G.; Li, C.; Li, J.; Jia, X. Tetrahedron Lett., 2009, 50, 1438-1440.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.056]
[22]
Zhu, Y.; Tang, M.; Shi, X.; Zhao, Y. Int. J. Quantum Chem., 2007, 107, 745-753.
[http://dx.doi.org/10.1002/qua.20985]
[23]
Li, Y.; Li, F.; Zhu, Y.; Li, X.; Zhou, Z.; Liu, C.; Zhang, W.; Tang, M. Struct. Chem., 2016, 27, 1165-1173.
[http://dx.doi.org/10.1007/s11224-016-0740-y]
[24]
Frisch, M.J. Gaussian 16 Revision A 03; Gaussian Inc.: Wallingford, CT, 2016.
[25]
Becke, A.D. J. Chem. Phys., 1993, 27, 1165-1173.
[http://dx.doi.org/10.1063/1.464913]
[26]
Miertuš, S.; Scrocco, E. J. Chem. Phys., 1981, 55, 117-129.
[27]
Casasnovas, R.; Ortega-Castro, J.; Frau, J.; Donoso, J.; Muñoz, F. Int. J. Quantum Chem., 2014, 114, 1350-1363.
[http://dx.doi.org/10.1002/qua.24699]
[28]
Bader, R.F.W. Atoms in Molecules: A. Quantum Theory; Oxford University; Oxford University Press: Oxford, UK, 1990.
[29]
Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, USA, 1994.
[30]
Bader, R.F.W. A quantum theory of molecular-structure and its applications. Chem. Rev., 1991, 91, 893-928.
[http://dx.doi.org/10.1021/cr00005a013]
[31]
Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res., 1985, 18, 9-15.
[http://dx.doi.org/10.1021/ar00109a003]
[32]
Perrin, D.D. Dissociation Constants of Organic Bases in Aqueous Solution (compiled for IUPAC); Butterworths: London, 1965.
[33]
Jenkins, S.; Morrison, I. Chem. Phys. Lett., 2000, 317, 97-102.
[http://dx.doi.org/10.1016/S0009-2614(99)01306-8]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2020
Page: [381 - 387]
Pages: 7
DOI: 10.2174/1570178616666191019124709
Price: $65

Article Metrics

PDF: 13
HTML: 1