Antiangiogenic Effect of Isomalyngamide A Riboside CY01 in Breast Cancer Cells via Inhibition of Migration, Tube Formation and pVEGFR2/pAKT Signals

Author(s): Ching-Ying Shih, Tzu-Ting Chang, Chia-Ling Chen, Wen-Shan Li*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: To block the metastatic and angiogenic pathways during the tumor progression arouses considerable pharmacological interests in the development of anticancer drugs.

Objective: To develop alternative antiangiogenic and antimetastic agents, we designed and prepared a series of nature inspired isomalyngamide A analogs containing ribose conjugate with 1,2-diaminoethane or 1,3- diaminopropane linkers (1-8).

Methods: The target glycosylated isomalyngamide A analogs 1-8 were constructed through condensation of the malonic acids 16-19 and the corresponding aminoethoxyl ribosides 20 and 21, using HBTU/DIPEA as the coupling agent. The cell growth inhibition assay, cell migration assay, transwell invasion assay, adhesion assay, tube formation assay and western blot analysis were used to validate the biological actions of compounds.

Results: The most effective compound, isomalyngamide A riboside 1 (CY01), possessing a D-ribose core structure and a 1,3-diaminopropane linker, showed significant suppression of MDA-MB-231 cell migration and inhibited tube formation of Human Umbilical Vascular Endothelial Cells (HUVECs) in a dose-dependent manner. Effect of the latter is comparable to that of sorafenib, an orally active multikinase inhibitor and an inhibitor of angiogenesis. CY01 also showed slight inhibition on collagen type IV- and laminin-mediated cell adhesion. These actions may be regulated through the blockade of the VEGF/VEGFR2 signaling pathway by inhibiting the VEGF induced phosphorylation of p-VEGFR2 and p-AKT.

Conclusion: In this effort, we have discovered synthetic and glycosylated marine metabolites which may serve as an alternative antiangiogenic and antimetastic agent during multitherapy.

Keywords: Antitumor activity, antiangiogenesis, isomalyngamide A riboside, marine metabolites, migration, signaling pathway, tube formation.

[1]
Jiang, W.; Zhou, W.; Othman, R.; Uchida, H.; Watanabe, R.; Suzuki, T.; Sakamoto, B.; Nagai, H. A new malyngamide from the marine cyanobacterium Moorea producens. Nat. Prod. Res., 2018, 32(1), 97-104.
[http://dx.doi.org/10.1080/14786419.2017.1338282] [PMID: 28595450]
[2]
Sueyoshi, K.; Yamano, A.; Ozaki, K.; Sumimoto, S.; Iwasaki, A.; Suenaga, K.; Teruya, T. Three new malyngamides from the marine cyanobacterium Moorea producens. Mar. Drugs, 2017, 15(12), 367.
[http://dx.doi.org/10.3390/md15120367] [PMID: 29186048]
[3]
Shaala, L.A.; Youssef, D.T.A.; McPhail, K.L.; Elbandy, M. Malyngamide 4, a new lipopeptide from the Red Sea marine cyanobacterium Moorea producens (formerly Lyngbya majuscula). Phytochem. Lett., 2013, 6(2), 183-188.
[http://dx.doi.org/10.1016/j.phytol.2013.01.002]
[4]
Gunasekera, S.P.; Owle, C.S.; Montaser, R.; Luesch, H.; Paul, V.J. Malyngamide 3 and cocosamides A and B from the marine cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam. J. Nat. Prod., 2011, 74(4), 871-876.
[http://dx.doi.org/10.1021/np1008015] [PMID: 21341718]
[5]
Kan, Y.; Sakamoto, B.; Fujita, T.; Nagai, H. New malyngamides from the Hawaiian cyanobacterium Lyngbya majuscula. J. Nat. Prod., 2000, 63(12), 1599-1602.
[http://dx.doi.org/10.1021/np000250t] [PMID: 11141095]
[6]
Cardellina, J.H., II; Marner, F.J.; Moore, R.E. Malyngamide A, a novel chlorinated metabolite of the marine cyanophyte Lyngbya majuscule. J. Am. Chem. Soc., 1979, 101(1), 240-242.
[http://dx.doi.org/10.1021/ja00495a051]
[7]
Moss, N.A.; Leão, T.; Rankin, M.R.; McCullough, T.M.; Qu, P.; Korobeynikov, A.; Smith, J.L.; Gerwick, L.; Gerwick, W.H. Ketoreductase domain dysfunction expands chemodiversity: Malyngamide biosynthesis in the cyanobacterium Okeania hirsute. ACS Chem. Biol., 2018, 13(12), 3385-3395.
[http://dx.doi.org/10.1021/acschembio.8b00910] [PMID: 30444349]
[8]
Reddy, G.V.; Kumar, T.V.; Siva, B.; Babu, K.S.; Srinivas, P.V.; Sehar, I.; Saxena, A.K.; Rao, J.M. Novel malyngamide structural analogs: synthesis and biological evaluation. Med. Chem. Res., 2013, 22(10), 4581-4591.
[http://dx.doi.org/10.1007/s00044-013-0466-y]
[9]
Feng, J-P.; Shi, Z-F.; Li, Y.Z.; Qi, X-L.; Chen, J.; Cao, X-P. An improved asymmetric synthesis of malyngamide U and tts 2′-epimer. J. Org. Chem., 2008, 73(17), 6873-6876.
[http://dx.doi.org/10.1021/jo800876u] [PMID: 18656980]
[10]
Chen, J.; Shi, Z-F.; Zhou, L.; Xie, A-L.; Cao, X-P. Total synthesis of malyngamide M and isomalyngamide M. Tetrahedron, 2010, 66(19), 3499-3507.
[http://dx.doi.org/10.1016/j.tet.2010.03.004]
[11]
Qi, X-L.; Zhang, J-T.; Feng, J-P.; Cao, X-P. Total synthesis and absolute configuration of malyngamide W. Org. Biomol. Chem., 2011, 9(10), 3817-3824.
[http://dx.doi.org/10.1039/c0ob01118e] [PMID: 21445440]
[12]
Zhang, J-T.; Qi, X-L.; Chen, J.; Li, B-S.; Zhou, Y-B.; Cao, X-P. Total synthesis of malyngamides K, L, and 5′'-epi-C and absolute configuration of malyngamide L. J. Org. Chem., 2011, 76(10), 3946-3959.
[http://dx.doi.org/10.1021/jo2003852] [PMID: 21495715]
[13]
Sabry, O.M.; Goeger, D.E.; Gerwick, W.H. Biologically active new metabolites from a Florida collection of Moorea producens. Nat. Prod. Res., 2017, 31(5), 555-561.
[http://dx.doi.org/10.1080/14786419.2016.1207074] [PMID: 27426414]
[14]
Rigano, D.; Formisano, C.; Taglialatela-Scafati, O. Marine metabolites modulating CB receptors and TRP channels. Planta Med., 2016, 82(9-10), 761-766.
[http://dx.doi.org/10.1055/s-0042-101352] [PMID: 27002390]
[15]
Dussault, D.; Vu, K.D.; Vansach, T.; Horgen, F.D.; Lacroix, M. Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chem., 2016, 199, 114-118.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.119] [PMID: 26775951]
[16]
Mioso, R.; Marante, F.J.; Toledo, B.L.; Irma, H.; Bessonart, M. Natural products chemistry applied to aquaculture: an interdisciplinary review. Quim. Nova, 2014, 37(3), 513-520.
[http://dx.doi.org/10.5935/0100-4042.20140084]
[17]
Kyadari, M.; Fatma, T.; Velpandian, T.; Malliga, P.; Bharat, N.; Fareha, B. Antiangiogenic and antiproliferative assessment of cyanobacteria. Indian J. Exp. Biol., 2014, 52(8), 835-842.
[PMID: 25141548]
[18]
Montaser, R.; Paul, V.J.; Luesch, H. Marine cyanobacterial fatty acid amides acting on cannabinoid receptors. ChemBioChem, 2012, 13(18), 2676-2681.
[http://dx.doi.org/10.1002/cbic.201200502] [PMID: 23143757]
[19]
Villa, F.A.; Lieske, K.; Gerwick, L. Selective MyD88-dependent pathway inhibition by the cyanobacterial natural product malyngamide F acetate. Eur. J. Pharmacol., 2010, 629(1-3), 140-146.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.002] [PMID: 20006962]
[20]
Tan, L.T.; Okino, T.; Gerwick, W.H. Hermitamides A and B, toxic malyngamide-type natural products from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod., 2000, 63(7), 952-955.
[http://dx.doi.org/10.1021/np000037x] [PMID: 10924172]
[21]
Chen, J.; Fu, X.G.; Zhou, L.; Zhang, J.T.; Qi, X.L.; Cao, X.P. A convergent route for the total synthesis of malyngamides O, P, Q, and R. J. Org. Chem., 2009, 74(11), 4149-4157.
[http://dx.doi.org/10.1021/jo9003103] [PMID: 19391614]
[22]
Li, Y.; Feng, J.P.; Wang, W.H.; Chen, J.; Cao, X.P. Total synthesis and correct absolute configuration of malyngamide U. J. Org. Chem., 2007, 72(7), 2344-2350.
[http://dx.doi.org/10.1021/jo061456n] [PMID: 17346080]
[23]
Chang, T.T.; More, S.V.; Lu, I-H.; Hsu, J-C.; Chen, T-J.; Jen, Y.C.; Lu, C-K.; Li, W-S.; Isomalyngamide, A. A-1 and their analogs suppress cancer cell migration in vitro. Eur. J. Med. Chem., 2011, 46(9), 3810-3819.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.049] [PMID: 21676505]
[24]
Gandalovičová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Čermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno, V.; Brábek, J. Migrastatics-anti-metastatic and anti-invasion drugs: Promises and challenges. Trends Cancer, 2017, 3(6), 391-406.
[http://dx.doi.org/10.1016/j.trecan.2017.04.008] [PMID: 28670628]
[25]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl.), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[26]
More, S.V.; Chang, T.T.; Chiao, Y.P.; Jao, S-C.; Lu, C-K.; Li, W-S. Glycosylation enhances the anti-migratory activities of isomalyngamide A analogs. Eur. J. Med. Chem., 2013, 64, 169-178.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.044] [PMID: 23644200]
[27]
Kren, V.; Martínková, L. Glycosides in medicine: “The role of glycosidic residue in biological activity. Curr. Med. Chem., 2001, 8(11), 1303-1328.
[http://dx.doi.org/10.2174/0929867013372193] [PMID: 11562268]
[28]
Thorson, J.S.; Hosted, T.J., Jr; Jiang, J.; Biggins, J.B.; Ahlert, J. Natures carbohydrate chemists the enzymatic glycosylation of bioactive bacterial metabolites. Curr. Org. Chem., 2001, 5(2), 139-167.
[http://dx.doi.org/10.2174/1385272013375706]
[29]
Chanvorachote, P.; Chamni, S.; Ninsontia, C.; Phiboonchaiyanan, P.P. Potential anti-metastasis natural compounds for lung cancer. Anticancer Res., 2016, 36(11), 5707-5717.
[http://dx.doi.org/10.21873/anticanres.11154] [PMID: 27793892]
[30]
Wan, L.; Pantel, K.; Kang, Y. Tumor metastasis: Moving new biological insights into the clinic. Nat. Med., 2013, 19(11), 1450-1464.
[http://dx.doi.org/10.1038/nm.3391] [PMID: 24202397]
[31]
Borghi, N.; Lowndes, M.; Maruthamuthu, V.; Gardel, M.L.; Nelson, W.J. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13324-13329.
[http://dx.doi.org/10.1073/pnas.1002662107] [PMID: 20566866]
[32]
Guo, W.; Giancotti, F.G. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol., 2004, 5(10), 816-826.
[http://dx.doi.org/10.1038/nrm1490] [PMID: 15459662]
[33]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[http://dx.doi.org/10.1038/nm.2537] [PMID: 22064426]
[34]
van der Meel, R.; Symons, M.H.; Kudernatsch, R.; Kok, R.J.; Schiffelers, R.M.; Storm, G.; Gallagher, W.M.; Byrne, A.T. The VEGF/Rho GTPase signalling pathway: A promising target for anti-angiogenic/anti-invasion therapy. Drug Discov. Today, 2011, 16(5-6), 219-228.
[http://dx.doi.org/10.1016/j.drudis.2011.01.005] [PMID: 21262381]
[35]
Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer, 2011, 2(12), 1097-1105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[36]
Norton, K.A.; Han, Z.; Popel, A.S.; Pandey, N.B. Antiangiogenic cancer drug sunitinib exhibits unexpected proangiogenic effects on endothelial cells. OncoTargets Ther., 2014, 7, 1571-1582.
[http://dx.doi.org/10.2147/OTT.S65055] [PMID: 25228815]
[37]
Zhang, S.; Cao, Z.; Tian, H.; Shen, G.; Ma, Y.; Xie, H.; Liu, Y.; Zhao, C.; Deng, S.; Yang, Y.; Zheng, R.; Li, W.; Zhang, N.; Liu, S.; Wang, W.; Dai, L.; Shi, S.; Cheng, L.; Pan, Y.; Feng, S.; Zhao, X.; Deng, H.; Yang, S.; Wei, Y. SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin. Cancer Res., 2011, 17(13), 4439-4450.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3109] [PMID: 21622720]
[38]
Rini, B.I.; Atkins, M.B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol., 2009, 10(10), 992-1000.
[http://dx.doi.org/10.1016/S1470-2045(09)70240-2] [PMID: 19796751]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 3
Year: 2020
Published on: 24 April, 2020
Page: [386 - 399]
Pages: 14
DOI: 10.2174/1871520619666191019123244
Price: $65

Article Metrics

PDF: 19
HTML: 7