Design of Experiment, Preparation, and in vitro Biological Assessment of Human Amniotic Membrane Extract Loaded Nanoparticles

Author(s): Avishan Shabani, Fatemeh Atyabi, Mohammad R. Khoshayand, Reza Mahbod, Reza A. Cohan, Iman Akbarzadeh, Haleh Bakhshandeh*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Human amniotic membrane grafting could be potentially useful in ocular surface complications due to tissue similarity and the presence of factors that reduce inflammation, vascularization, and scarring. However, considerations like donor-derived infectious risk and the requirement of an invasive surgery limit the clinical application of such treatments. Moreover, the quick depletion of bioactive factors after grafting reduces the efficacy of treatments. Therefore, in the current study, the possibility of nano delivery of the bioactive factors extracted from the human amniotic membrane to the ocular surface was investigated.

Materials and Methods: Nanoparticles were prepared using polyelectrolyte complexation from chitosan and dextran sulfate. The effect of polymer ratio, pH, and the amount of extract on particle size and encapsulation efficacy were studied using Box-Behnken response surface methodology.

Results: The optimum condition was obtained as follows: 4.9:1 ratio of dextran sulfate to chitosan, 600 µL amniotic membrane extract, and pH of 6. The prepared nanoparticles had an average size of 213 nm with 77% encapsulation efficacy. In the release test, after 10 days, approximately 50% of entrapped bioactive proteins were released from the nanocarriers in a controlled manner. Biological activity assessment on endothelial cells revealed amniotic membrane extract loaded nanoparticles had a longer and significant increase in anti-angiogenic effect when compared to the control.

Conclusion: Our data elucidate the ability of nanotechnology in ocular targeted nano delivery of bioactive compounds.

Keywords: Amniotic membrane extract, ocular disease, nanodelivery, dextran sulfate, chitosan, nanocarriers.

[1]
Mohan, R.R.; Tovey, J.C.; Sharma, A.; Tandon, A. Gene therapy in the cornea: 2005-present. Prog. Retin. Eye Res., 2012, 31(1), 43-64.
[http://dx.doi.org/10.1016/j.preteyeres.2011.09.001] [PMID: 21967960]
[2]
Ghinelli, E. Use of a human amniotic membrane composition for prophylaxis and treatment of diseases and conditions of the eye and skin. WO Patent 0,262,44A3 2004.
[3]
Tseng, S.C.; Prabhasawat, P.; Lee, S.H. Amniotic membrane transplantation for conjunctival surface reconstruction. Am. J. Ophthalmol., 1997, 124(6), 765-774.
[http://dx.doi.org/10.1016/S0002-9394(14)71693-9] [PMID: 9402822]
[4]
Noolandi, J.; Ta, C.; Huie, P., Jr; Smith, A.J.; Waymouth, R.; Blumenkranz, M. Artificial cornea. U.S. Patent No. 6,976,997B2, 2005.
[5]
Crawford, G.J.; Hicks, C.R.; Lou, X.; Vijayasekaran, S.; Tan, D.; Mulholland, B.; Chirila, T.V.; Constable, I.J. The chirila keratoprosthesis: Phase I human clinical trial. Ophthalmology, 2002, 109(5), 883-889.
[http://dx.doi.org/10.1016/S0161-6420(02)00958-2] [PMID: 11986092]
[6]
Darougar, S; Darougar, D. Artificial cornea. U.S. Patent,0,168,025, 2007.
[7]
Chen, H.J.; Pires, R.T.F.; Tseng, S.C.G. Amniotic membrane transplantation for severe neurotrophic corneal ulcers. Br. J. Ophthalmol., 2000, 84(8), 826-833.
[http://dx.doi.org/10.1136/bjo.84.8.826] [PMID: 10906085]
[8]
Burman, S.; Tejwani, S.; Vemuganti, G.K.; Gopinathan, U.; Sangwan, V.S. Ophthalmic applications of preserved human amniotic membrane: A review of current indications. Cell Tissue Bank., 2004, 5(3), 161-175.
[http://dx.doi.org/10.1023/B:CATB.0000046067.25057.0a] [PMID: 15509905]
[9]
Dua, H.S.; Gomes, J.A.P.; King, A.J.; Maharajan, V.S. The amniotic membrane in ophthalmology. Surv. Ophthalmol., 2004, 49(1), 51-77.
[http://dx.doi.org/10.1016/j.survophthal.2003.10.004] [PMID: 14711440]
[10]
Riau, A.K.; Beuerman, R.W.; Lim, L.S.; Mehta, J.S. Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials, 2010, 31(2), 216-225.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.034] [PMID: 19781769]
[11]
Chirila, T.V. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001, 22(24), 3311-3317.
[http://dx.doi.org/10.1016/S0142-9612(01)00168-5] [PMID: 11700803]
[12]
De Rotth, A. Plastic repair of conjunctival defects with fetal membranes. Arch. Ophthalmol., 1940, 23(3), 522-525.
[http://dx.doi.org/10.1001/archopht.1940.00860130586006]
[13]
Kim, J.C.; Tseng, S.C. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea, 1995, 14(5), 473-484.
[http://dx.doi.org/10.1097/00003226-199509000-00006] [PMID: 8536460]
[14]
Koizumi, N.; Inatomi, T.; Suzuki, T.; Sotozono, C.; Kinoshita, S. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology, 2001, 108(9), 1569-1574.
[http://dx.doi.org/10.1016/S0161-6420(01)00694-7] [PMID: 11535452]
[15]
Seo, J.H.; Kim, Y.H.; Kim, J.S. Properties of the amniotic membrane may be applicable in cancer therapy. Med. Hypotheses, 2008, 70(4), 812-814.
[http://dx.doi.org/10.1016/j.mehy.2007.08.008] [PMID: 17904762]
[16]
Choi, J.A.; Jin, H.J.; Jung, S.; Yang, E.; Choi, J.S.; Chung, S.H.; Joo, C.K. Effects of amniotic membrane suspension in human corneal wound healing in vitro. Mol. Vis., 2009, 15, 2230-2238.
[PMID: 19907665]
[17]
Muralidharan, S.; Gu, J.; Laub, G.W.; Cichon, R.; Daloisio, C.; McGrath, L.B. A new biological membrane for pericardial closure. J. Biomed. Mater. Res., 1991, 25(10), 1201-1209.
[http://dx.doi.org/10.1002/jbm.820251003] [PMID: 1812116]
[18]
Tseng, S.P.; He, H.; Li, W. Purified amniotic membrane compositions and methods of use. U.S. Patent 8,153,162 B2 2013.
[19]
Tseng, S.P.; He, H.; Li, W. Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition.U.S. Patent 8,182,840 B2, 2012.
[20]
Tseng, S.P.; He, H.; Li, W. Amniotic membrane preparations and purified compositions and anti-inflammation methods. U.S. Patent8,182,841, 2013.
[21]
Chen, Y.; Mohanraj, V.J.; Parkin, J.E. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Int. J. Pept. Res. Ther., 2003, 10(5), 621-629.
[http://dx.doi.org/10.1007/s10989-004-2433-4]
[22]
Tiyaboonchai, W.; Woiszwillo, J.; Sims, R.C.; Middaugh, C.R. Insulin containing polyethylenimine-dextran sulfate nanoparticles. Int. J. Pharm., 2003, 255(1-2), 139-151.
[http://dx.doi.org/10.1016/S0378-5173(03)00055-3] [PMID: 12672610]
[23]
Zhang, Q.; Shen, Z.; Nagai, T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int. J. Pharm., 2001, 218(1-2), 75-80.
[http://dx.doi.org/10.1016/S0378-5173(01)00614-7] [PMID: 11337151]
[24]
Avadi, M.R.; Sadeghi, A.M.M.; Mohammadpour, N.; Abedin, S.; Atyabi, F.; Dinarvand, R.; Rafiee-Tehrani, M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine (Lond.), 2010, 6(1), 58-63.
[http://dx.doi.org/10.1016/j.nano.2009.04.007] [PMID: 19447202]
[25]
Drogoz, A.; David, L.; Rochas, C.; Domard, A.; Delair, T. Polyelectrolyte complexes from polysaccharides: Formation and stoichiometry monitoring. Langmuir, 2007, 23(22), 10950-10958.https://pubs.acs.org/doi/10.1021/la7008545
[PMID: 17880248]
[26]
Tiyaboonchai, W.; Woiszwillo, J.; Middaugh, C.R. Formulation and characterization of DNA-polyethylenimine-dextran sulfate nanoparticles. Eur. J. Pharm. Sci., 2003, 19(4), 191-202.
[http://dx.doi.org/10.1016/S0928-0987(03)00102-7] [PMID: 12885383]
[27]
Siyawamwaya, M.; Choonara, Y.E.; Bijukumar, D.; Kumar, P.; Du Toit, L.C.; Pillay, V. A review: Overview of novel polyelectrolyte complexes as prospective drug bioavailability enhancers. Int. J. Polym. Mats. Polym. Biomat., 2015, 64(18), 955-968.
[http://dx.doi.org/10.1080/00914037.2015.1038816]
[28]
Delair, T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur. J. Pharm. Biopharm., 2011, 78(1), 10-18.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.001] [PMID: 21138767]
[29]
Raj, S.; Kumar Sharma, P.; Malviya, R. Pharmaceutical and tissue engineering applications of polyelectrolyte complexes. Curr. Smart Mater., 2018, 3(1), 21-31.
[http://dx.doi.org/10.2174/2405465803666180409130241]
[30]
Drogoz, A.; David, L.; Rochas, C.; Domard, A.; Delair, T. Polyelectrolyte complexes from polysaccharides: Formation and stoichiometry monitoring. Langmuir, 2007, 23(22), 10950-10958.
[http://dx.doi.org/10.1021/la7008545] [PMID: 17880248]
[31]
Buriuli, M.; Verma, D. Polyelectrolyte Complexes (PECs) for Biomedical Applications. In: Advances in Biomaterials for Biomedical Applications.;; Springer,. , 2017; pp. 45-93.
[32]
Moghaddam, F.A.; Atyabi, F.; Dinarvand, R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. Nanomedicine, (Lond.),, 2009, 5(2), 208-215.
[http://dx.doi.org/10.1016/j.nano.2008.09.006] [PMID: 19186220]]
[33]
Akhlaghi, S.P.; Saremi, S.; Ostad, S.N.; Dinarvand, R.; Atyabi, F. Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomedicine, (Lond.),, 2010, 6(5), 689-697.
[http://dx.doi.org/10.1016/j.nano.2010.01.011] [PMID: 20172052]
[34]
Chen, Y.; Mohanraj, V.J.; Parkin, J.E. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Lett. Pept. Sci., 2003, 10(5-6), 621-629.
[http://dx.doi.org/10.1007/BF02442596]
[35]
Chen, Y.; Mohanraj, V.J.; Wang, F.; Benson, H.A. Designing chitosan-dextran sulfate nanoparticles using charge ratios. AAPS PharmSciTech, 2007, 8(4)E98
[http://dx.doi.org/10.1208/pt0804098] [PMID: 18181558]
[36]
Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. J. Ocul. Pharmacol. Ther., 2013, 29(2), 200-207.https://www.liebertpub.com/doi/10.1089/jop.2012.0193
[37]
Tiyaboonchai, W.; Limpeanchob, N. Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int. J. Pharm., 2007, 329(1-2), 142-149.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.013] [PMID: 17000065]
[38]
Huang, M.; Berkland, C. Controlled release of repifermin from polyelectrolyte complexes stimulates endothelial cell proliferation. J. Pharm. Sci., 2009, 98(1), 268-280.
[http://dx.doi.org/10.1002/jps.21412] [PMID: 18425807]
[39]
Huang, M.; Vitharana, S.N.; Peek, L.J.; Coop, T.; Berkland, C. Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules, 2007, 8(5), 1607-1614.
[http://dx.doi.org/10.1021/bm061211k] [PMID: 17428030]
[40]
Sabnis, S.; Block, L.H. Chitosan as an enabling excipient for drug delivery systems. I. Molecular modifications. Int. J. Biol. Macromol., 2000, 27(3), 181-186.
[http://dx.doi.org/10.1016/S0141-8130(00)00118-5] [PMID: 10828363]
[41]
Mao, S.; Shuai, X.; Unger, F.; Simon, M.; Bi, D.; Kissel, T. The depolymerization of chitosan: Effects on physicochemical and biological properties. Int. J. Pharm., 2004, 281(1-2), 45-54.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.019] [PMID: 15288342]
[42]
Lee, H.N.; Bernardo, R.; Han, G.Y.; Kim, G.Y.; Kim, J.S.; Jung, W.Y.; Kim, K.N.; Kim, J.C.; Kim, C.W. Human amniotic membrane extracts have anti-inflammatory effects on damaged human corneal epithelial cells in vitro. J. Hard Tissue Biol., 2016, 25(3), 282-287. [https://www.jstage.jst.go.jp/article/jhtb/25/3/25_282/_article
[43]
Zamproni, L.N.; Teixeira, D.; Alliegro, A.A.; Maugéri, I.L.; des Rieux, A.; Porcionatto, M.A. Decreased viability and neurite length in neural cells treated with chitosan-dextran sulfate nanocomplexes. Neurotoxicology, 2020, 76, 33-43. [https://linkinghub.elsevier.com/retrieve/pii/S0161813X19301081
[PMID: 31605718]
[44]
van de Weert, M.; Hennink, W.E.; Jiskoot, W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res., 2000, 17(10), 1159-1167.
[http://dx.doi.org/10.1023/A:1026498209874] [PMID: 11145219]
[45]
Sarmento, B.; Martins, S.; Ribeiro, A.; Veiga, F.; Neufeld, R.; Ferreira, D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int. J. Pept. Res. Ther., 2006, 12(2), 131-138.
[http://dx.doi.org/10.1007/s10989-005-9010-3]
[46]
Jiang, A.; Li, C.; Gao, Y.; Zhang, M.; Hu, J.; Kuang, W.; Hao, S.; Yang, W.; Xu, C.; Gao, G.; Wang, Z.; Liu, Z. In vivo and in vitro inhibitory effect of amniotic extraction on neovascularization. Cornea, 2006, 25(10)(Suppl. 1), S36-S40.
[http://dx.doi.org/10.1097/01.ico.0000247211.78391.af] [PMID: 17001191]
[47]
Bharti, B.; Meissner, J.; Findenegg, G.H. Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir, 2011, 27(16), 9823-9833.
[http://dx.doi.org/10.1021/la201898v] [PMID: 21728288]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 3
Year: 2020
Published on: 16 March, 2020
Page: [256 - 267]
Pages: 12
DOI: 10.2174/1389201020666191019122130
Price: $65

Article Metrics

PDF: 18
HTML: 3