Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Carbon-Hydrogen Bond Functionalization in Aqueous Medium: A Brief Review

Author(s): Rajib Sarkar and Chhanda Mukhopadhyay*

Volume 6, Issue 3, 2019

Page: [184 - 197] Pages: 14

DOI: 10.2174/2213346106666191019120048

Abstract

In the last few decades, considerable research has led to the introduction of selective and efficient green as well as sustainable synthetic methods of functionalization of carbon-hydrogen bonds to form new carbon-carbon and carbon-heteroatom bonds. In this emerging field, significant development has been attained under various environmentally benign conditions including aqueous medium. In this review, we have summarized the current development of C-H functionalization carried out in an aqueous medium and its synthetic applications according to carbon-carbon and carbon-heteroatom bond formations under green conditions.

Keywords: C-H functionalization, aqueous medium, carbon-carbon bond formation, carbon-heteroatom bond formation, environmentally benign, green conditions.

Graphical Abstract
[1]
(a) Girard, S.A.; Knauber, T.; Li, C-J. The cross-dehydrogenative coupling of C(sp3)-H bonds: A versatile strategy for C-C bond formations. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 74-100.
[http://dx.doi.org/10.1002/anie.201304268] [PMID: 24214829]
(b) Guo, X-X.; Gu, D-W.; Wu, Z.; Zhang, W. Copper-catalyzed C-H functionalization reactions: efficient synthesis of heterocycles. Chem. Rev., 2015, 115(3), 1622-1651.
[http://dx.doi.org/10.1021/cr500410y] [PMID: 25531056]
(c) Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in Inert C-H Bond Functionalization. Chem. Rev., 2017, 117(13), 9433-9520.
[http://dx.doi.org/10.1021/acs.chemrev.6b00657] [PMID: 28697602]
[2]
Podgorsˇek. A.; Stavber, S.; Zupana, M.; Iskra, J. Bromination of Ketones with H2O2-HBr “on water”. Green Chem., 2007, 9, 1212-1218.
[http://dx.doi.org/10.1039/b707065a]
[3]
SaiPrathima. P.; Srinivas, K.; Rao, M. M. “On water” Catalysis: An expeditious approach for the synthesis of Quaternary Centered 3-hydroxy-3-(nitromethyl)indolin-2-one Derivatives. Green Chem., 2015, 17, 2339-2343.
[http://dx.doi.org/10.1039/C4GC02203C]
[4]
Deb, M.L.; Pegu, C.D.; Borpatra, P.J.; Saikia, P.J.; Baruah, K.P.K. Catalyst-free multi-component cascade C-H-functionalization in water using molecular oxygen: An approach to 1,3-oxazines. Green Chem., 2017, 19, 4036-4042.
[http://dx.doi.org/10.1039/C7GC01494E]
[5]
Zhu, S.; Chen, C.; Xiao, M.; Yu, L.; Wang, L.; Xiao, J. Construction of the tetrahydroquinoline spiro skeleton via cascade [1,5]-hydride transfer-involved C(sp3)-H functionalization “on water”. Green Chem., 2017, 19, 5653-5658.
[http://dx.doi.org/10.1039/C7GC02353G]
[6]
Botla, V.; Pilli, N.N.; Malapaka, C. Uncatalyzed, on water oxygenative cleavage of inert C-N bond with concomitant 8, 7-amino shift in 8-aminoquinoline derivatives. Green Chem., 2019, 21, 1735-1742.
[http://dx.doi.org/10.1039/C9GC00289H]
[7]
Saikia, G.; Iyer, P.K. Facile C-H alkylation in water: enabling defect-free materials for optoelectronic devices. J. Org. Chem., 2010, 75(8), 2714-2717.
[http://dx.doi.org/10.1021/jo100028d] [PMID: 20297790]
[8]
Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Synthesis of tert-butyl peresters from aldehydes by Bu4NI-catalyzed metal-free oxidation and its combination with the Kharasch-Sosnovsky reaction. Chem. Commun. (Camb.), 2011, 47(38), 10827-10829.
[http://dx.doi.org/10.1039/c1cc14602e] [PMID: 21863196]
[9]
Huang, J.; Li, L-T.; Li, H-Y.; Husan, E.; Wang, P.; Wang, B. Bu4NI-catalyzed benzylic acyloxylation of alkylarenes with aromatic aldehydes. Chem. Commun. (Camb.), 2012, 48(82), 10204-10206.
[http://dx.doi.org/10.1039/c2cc35450k] [PMID: 22968182]
[10]
Kumar, A.R.D. β-Cyclodextrin Catalysed C-C Bond Formation via C(sp3)-H Functionalization of 2-Methyl azaarenes with Diones in aqueous medium. Green Chem., 2015, 17, 848-851.
[http://dx.doi.org/10.1039/C4GC02287D]
[11]
Xia, D.; Miao, T.; Li, P.; Wang, L. Visible-Light Photoredox Catalysis: Direct Synthesis of Sulfonated Oxindoles from N-Arylacrylamides and Arylsulfinic Acids by Means of a Cascade C-S/C-C Formation Process. Chem. Asian J., 2015, 10(9), 1919-1925.
[http://dx.doi.org/10.1002/asia.201500498] [PMID: 26097076]
[12]
Li, H.; Liu, C.; Zhang, Y.; Sun, Y.; Wang, B.; Liu, W. Green method for the synthesis of chromeno[2,3-c]pyrazol-4(1H)-ones through ionic liquid promoted directed annulation of 5-(aryloxy)-1H-pyrazole-4-carbaldehydes in aqueous media. Org. Lett., 2015, 17(4), 932-935.
[http://dx.doi.org/10.1021/acs.orglett.5b00033] [PMID: 25647482]
[13]
Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G-J. Chemoselective Cross-Coupling Reaction of Sodium Sulfinates with Phenols under Aqueous Conditions. Green Chem., 2016, 18, 1538-1546.
[http://dx.doi.org/10.1039/C5GC02292D]
[14]
Lee, M.; Sanford, M.S. Remote C(sp3)-H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Org. Lett., 2017, 19(3), 572-575.
[http://dx.doi.org/10.1021/acs.orglett.6b03731] [PMID: 28094967]
[15]
Yao, X.; Weng, X.; Wang, K.; Xiang, H.; Zhou, X. Transition Metal Free Oxygenation of 8-Aminoquinoline Amides in Water. Green Chem., 2018, 20, 2472-2476.
[http://dx.doi.org/10.1039/C8GC00191J]
[16]
Sen, A.; Lin, M.; Kao, L-C.; Hutson, A.C. C-H Activation in Aqueous Medium. The Diverse Roles of Platinum(II) and Metallic Platinum in the Catalytic and Stoichiometric Oxidative Functionalization of Organic Substrates Including Alkanes. J. Am. Chem. Soc., 1992, 114, 6385-6392.
[http://dx.doi.org/10.1021/ja00042a014]
[17]
Candeias, N.R.; Gois, P.M.; Afonso, C.A. Rh(II)-catalyzed intramolecular C-H insertion of diazo substrates in water: scope and limitations. J. Org. Chem., 2006, 71(15), 5489-5497.
[http://dx.doi.org/10.1021/jo060397a] [PMID: 16839127]
[18]
Basle´, O.; Li, C-J. Copper catalyzed oxidative alkylation of sp3 C-H bond adjacent to a nitrogen atom using molecular oxygen in water. Green Chem., 2007, 9, 1047-1050.
[http://dx.doi.org/10.1039/b707745a]
[19]
Li, N.; Lim, R.K.V.; Edwardraja, S.; Lin, Q. Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells. J. Am. Chem. Soc., 2011, 133(39), 15316-15319.
[http://dx.doi.org/10.1021/ja2066913] [PMID: 21899368]
[20]
Yi, C-L.; Huang, Y-T.; Lee, C-F. Synthesis of thioesters through copper-catalyzed coupling of aldehydes with thiols in water. Green Chem., 2013, 15, 2476-2484.
[http://dx.doi.org/10.1039/c3gc40946e]
[21]
Arockiam, P.B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-catalyzed selective monoarylation in water and sequential functionalisations of C-H bonds. Green Chem., 2013, 15, 67-71.
[http://dx.doi.org/10.1039/C2GC36222H]
[22]
Kinzhalov, M.A.; Luzyanin, K.V.; Boyarskiy, V.P.; Haukka, M.; Kukushkin, V.Y. ADC-Based Palladium Catalysts for Aqueous Suzuki-Miyaura Cross-Coupling Exhibit Greater Activity than the Most Advantageous Catalytic Systems. Organometallics, 2013, 32, 5212-5223.
[http://dx.doi.org/10.1021/om4007592]
[23]
Shen, C-H.; Li, L.; Zhang, W.; Liu, S.; Shu, C.; Xie, Y-E.; Yu, Y-F.; Ye, L.W. Gold-catalyzed tandem cycloisomerization/functionalization of in situ generated α-oxo gold carbenes in water. J. Org. Chem., 2014, 79(19), 9313-9318.
[http://dx.doi.org/10.1021/jo501872h] [PMID: 25229883]
[24]
Zhong, J.J.; Meng, Q.Y.; Liu, B.; Li, X.B.; Gao, X.W.; Lei, T.; Wu, C.J.; Li, Z.J.; Tung, C.H.; Wu, L.Z. Cross-coupling hydrogen evolution reaction in homogeneous solution without noble metals. Org. Lett., 2014, 16(7), 1988-1991.
[http://dx.doi.org/10.1021/ol500534w] [PMID: 24628016]
[25]
Lee, M.; Sanford, M.S. Platinum-catalyzed, terminal-selective C(sp(3))-H oxidation of aliphatic amines. J. Am. Chem. Soc., 2015, 137(40), 12796-12799.
[http://dx.doi.org/10.1021/jacs.5b09099] [PMID: 26439251]
[26]
Daniels, M.H.; Armand, J.R.; Tan, K.L. Sequential regioselective C-H functionalization of thiophenes. Org. Lett., 2016, 18(14), 3310-3313.
[http://dx.doi.org/10.1021/acs.orglett.6b01205] [PMID: 27388746]
[27]
Kitanosono, T.; Miyo, M.; Kobayashi, S. Surfactant-aided chiral palladium(II) catalysis exerted exclusively in water for the C-H functionalization of indoles. ACS Sustain. Chem.& Eng., 2016, 4, 6101-6106.
[http://dx.doi.org/10.1021/acssuschemeng.6b01519]
[28]
Arumugam, V.; Kaminsky, W.; Nallasamy, D. Pd(II) pincer type complex catalyzed tandem C-H and N-H activation of acetanilide in aqueous media: A concise access to functionalized carbazoles in a single step. Green Chem., 2016, 18, 3295-3301.
[http://dx.doi.org/10.1039/C5GC02937F]
[29]
Fang, H.; Dou, Y.; Ge, J.; Chhabra, M.; Sun, H.; Zhang, P.; Zheng, Y.; Zhu, Q. Regioselective and direct azidation of anilines via Cu(II)-catalyzed C-H functionalization in water. J. Org. Chem., 2017, 82(20), 11212-11217.
[http://dx.doi.org/10.1021/acs.joc.7b01594] [PMID: 28922913]
[30]
Ping, Y.; Chen, Z.; Ding, Q.; Zheng, Q.; Lin, Y.; Peng, Y. Ru-catalyzed ortho-oxidative alkenylation of 2-arylbenzo[d]thiazoles in aqueous solution of anionic surfactant sodium dodecylbenzenesulfonate (SDBS). Tetrahedron, 2017, 73, 594-603.
[http://dx.doi.org/10.1016/j.tet.2016.12.050]
[31]
Gao, S.; Liu, H.; Wu, Z.; Yao, H.; Lin, A. Palladium-catalyzed allylic alkylation with internal alkynes to construct C-C and C-N bonds in water. Green Chem., 2017, 19, 1861-1865.
[http://dx.doi.org/10.1039/C7GC00666G]
[32]
Álvarez, M.; Gava, R.; Rodríguez, M.R.; Rull, S.G.; Pérez, P.J. Water as the reaction medium for intermolecular C-H alkane functionalization in micellar catalysis. ACS Catal., 2017, 7, 3707-3711.
[http://dx.doi.org/10.1021/acscatal.6b03669]
[33]
Mack, J.B.C.; Gipson, J.D.; Du Bois, J.; Sigman, M.S. Ruthenium-catalyzed C-H hydroxylation in aqueous acid enables selective functionalization of amine derivatives. J. Am. Chem. Soc., 2017, 139(28), 9503-9506.
[http://dx.doi.org/10.1021/jacs.7b05469] [PMID: 28660763]
[34]
Upadhyay, N.S.; Thorat, V.H.; Sato, R. Pratheepkumar; A.; -Ching, C. S.; Cheng, C. -H. Synthesis of isoquinolones via Rh-catalyzed C-H activation of substituted benzamides using air as the sole oxidant in water. Green Chem., 2017, 19, 3219-3224.
[http://dx.doi.org/10.1039/C7GC01221G]
[35]
Zhang, H.; Yang, Z.; Ma, Q.; Liu, J.; Zheng, Y.; Guanb, M.; Wua, Y. Controlled mono-olefination versus diolefination of arenes via C-H activation in water: A key role of catalysts. Green Chem., 2018, 20, 3140-3146.
[http://dx.doi.org/10.1039/C8GC00790J]
[36]
Nareddy, P.; Jordan, F.; Szostak, M. Ruthenium(II)-Catalyzed Direct C-H Arylation of Indoles with Arylsilanes in Water. Org. Lett., 2018, 20(2), 341-344.
[http://dx.doi.org/10.1021/acs.orglett.7b03567] [PMID: 29283265]
[37]
Hikawa, H.; Ichinose, R.; Kikkawa, S.; Azumaya, I. Palladium-catalyzed dehydrative N-benzylation/C-H benzylation cascade of 2-morpholinoanilines on water. Green Chem., 2018, 20, 1297-1305.
[http://dx.doi.org/10.1039/C7GC03780E]
[38]
Lu, X.; Shi, Y.; Zhong, F. Rhodium-catalyzed intermolecular C(sp3)-H amination in a purely aqueous system. Green Chem., 2018, 20, 113-117.
[http://dx.doi.org/10.1039/C7GC03149A]
[39]
Pálvölgyi, A.M.; Bitai, J.; Zeindlhofer, V.; Schröder, C.; Bica, K. Ion-tagged chiral ligands for asymmetric transfer hydrogenations in aqueous medium. ACS Sustain. Chem.& Eng., 2019, 7, 3414-3423.
[http://dx.doi.org/10.1021/acssuschemeng.8b05613]
[40]
Li, B.; Li, X.; Han, B.; Chen, Z.; Zhang, X.; He, G.; Chen, G. Construction of natural-product-like cyclophane-braced peptide macrocycles via sp3 C-H arylation. J. Am. Chem. Soc., 2019, 141(23), 9401-9407.
[http://dx.doi.org/10.1021/jacs.9b04221] [PMID: 31117666]
[41]
Zou, L.; Li, P.; Wang, B.; Wang, L. Visible-light-induced radical cyclization of N-allylbenzamide with CF3SO2Na to trifluoromethylated dihydroisoquinolinones in water at room temperature. Green Chem., 2019, 21, 3362-3369.
[http://dx.doi.org/10.1039/C9GC00938H]
[42]
Hara, T.; Kanai, S.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Highly efficient C-C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework. J. Org. Chem., 2006, 71(19), 7455-7462.
[http://dx.doi.org/10.1021/jo0614745] [PMID: 16958542]
[43]
Baig, R.B.N.; Varma, R.S. A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1,3-dipolar cycloadditions. Green Chem., 2012, 14, 625-632.
[http://dx.doi.org/10.1039/c2gc16301b]
[44]
Malmgren, J.; Nagendiran, A.; Tai, C-W.; Bäckvall, J-E.; Olofsson, B. C-2 selective arylation of indoles with heterogeneous nanopalladium and diaryliodonium salts. Chemistry, 2014, 20(42), 13531-13535.
[http://dx.doi.org/10.1002/chem.201404017] [PMID: 25169833]
[45]
Mnasri, N.; Nyalosaso, J.L.; Colacino, E.; Gaelle, D.; Lamaty, F.; Martinez, J.; Zajac, J.; Charnay, C. Copper-containing rod-shaped nano-sized silica particles for microwave assisted synthesis of triazoles in aqueous solutions. ACS Sustain. Chem.& Eng., 2015, 3, 2516-2525.
[http://dx.doi.org/10.1021/acssuschemeng.5b00661]
[46]
Mohammadinezhada, A.; Akhlaghinia, B. CoII immobilized on aminated Fe3O4@Boehmite nanoparticles(Fe3O4@Boehmite-NH2-CoII NPs): a novel, inexpensive and highly efficient heterogeneous magnetic nanocatalyst for Suzuki-Miyaura and Heck-Mizoroki cross-coupling reactions in green Media. Green Chem., 2017, 19, 5625-5641.
[http://dx.doi.org/10.1039/C7GC02647A]
[47]
Mehta, A.; Saha, B.; Koohang, A.A.; Chorghade, M.S. Arene Ruthenium Catalyst MCAT-53 for the Synthesis of Heterobiaryl Compounds in Water through Aromatic C-H Bond Activation. Org. Process Res. Dev., 2018, 22, 1119-1130.
[http://dx.doi.org/10.1021/acs.oprd.8b00141]

© 2024 Bentham Science Publishers | Privacy Policy