Functionalization of Silver Nanoparticles Loaded with Paclitaxel-induced A549 Cells Apoptosis Through ROS-Mediated Signaling Pathways

Author(s): Jianjun Zou, Bing Zhu, Yinghua Li*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Paclitaxel (PTX) is one of the most important and effective anticancer drugs for the treatment of human cancer. However, its low solubility and severe adverse effects limited clinical use. To overcome this limitation, nanotechnology has been used to overcome tumors due to its excellent antimicrobial activity.

Objective: This study was to demonstrate the anticancer properties of functionalization silver nanoparticles loaded with paclitaxel (Ag@PTX) induced A549 cells apoptosis through ROS-mediated signaling pathways.

Methods: The Ag@PTX nanoparticles were charged with a zeta potential of about -17 mv and characterized around 2 nm with a narrow size distribution.

Results: Ag@PTX significantly decreased the viability of A549 cells and possessed selectivity between cancer and normal cells. Ag@PTX induced A549 cells apoptosis was confirmed by nuclear condensation, DNA fragmentation, and activation of caspase-3. Furthermore, Ag@PTX enhanced the anti-cancer activity of A549 cells through ROS-mediated p53 and AKT signalling pathways. Finally, in a xenograft nude mice model, Ag@PTX suppressed the growth of tumors.

Conclusion: Our findings suggest that Ag@PTX may be a candidate as a chemopreventive agent and could be a highly efficient way to achieve anticancer synergism for human cancers.

Keywords: Silver nanoparticles, Paclitaxel, Reactive Oxygen Species, Apoptosis, Cancer, Therapeutic Techniques.

[1]
Xia, H.; Zhao, Y.N.; Yu, C.H.; Zhao, Y.L.; Liu, Y. Inhibition of metabotropic glutamate receptor 1 suppresses tumor growth and angiogenesis in experimental non-small cell lung cancer. Eur. J. Pharmacol., 2016, 783, 103-111.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.053] [PMID: 27132814]
[2]
Yuan, D.; Xu, J.; Wang, J.; Pan, Y.; Fu, J.; Bai, Y.; Zhang, J.; Shao, C. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget, 2016, 7(22), 32707-32722.
[http://dx.doi.org/10.18632/oncotarget.9017] [PMID: 27129166]
[3]
Créquit, P.; Ruppert, A.M.; Rozensztajn, N.; Gounant, V.; Vieira, T.; Poulot, V.; Antoine, M.; Chouaid, C.; Wislez, M.; Cadranel, J.; Lavole, A. EGFR and KRAS mutation status in non-small-cell lung cancer occurring in HIV-infected patients. Lung Cancer, 2016, 96, 74-77.
[http://dx.doi.org/10.1016/j.lungcan.2015.11.021] [PMID: 27133754]
[4]
Epstein Shochet, G.; Israeli-Shani, L.; Koslow, M.; Shitrit, D. Nintedanib (BIBF 1120) blocks the tumor promoting signals of lung fibroblast soluble microenvironment. Lung Cancer, 2016, 96, 7-14.
[http://dx.doi.org/10.1016/j.lungcan.2016.03.013] [PMID: 27133742]
[5]
Hashemian, Z.; Khayamian, T.; Saraji, M.; Shirani, M.P. Aptasensor based on fluorescence resonance energy transfer for the analysis of adenosine in urine samples of lung cancer patients. Biosens. Bioelectron., 2016, 79, 334-340.
[http://dx.doi.org/10.1016/j.bios.2015.12.028] [PMID: 26722763]
[6]
Fujita, Y.; Yoshioka, Y.; Ochiya, T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci., 2016, 107(4), 385-390.
[http://dx.doi.org/10.1111/cas.12896] [PMID: 26797692]
[7]
Ganta, S.; Singh, A.; Rawal, Y.; Cacaccio, J.; Patel, N.R.; Kulkarni, P.; Ferris, C.F.; Amiji, M.M.; Coleman, T.P. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Deliv., 2016, 23(3), 968-980.
[http://dx.doi.org/10.3109/10717544.2014.923068] [PMID: 24901206]
[8]
Litviakov, N.V.; Cherdyntseva, N.V.; Tsyganov, M.M.; Slonimskaya, E.M.; Ibragimova, M.K.; Kazantseva, P.V.; Kzhyshkowska, J.; Choinzonov, E.L. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget, 2016, 7(7), 7829-7841.
[http://dx.doi.org/10.18632/oncotarget.6953] [PMID: 26799285]
[9]
André, E.M.; Passirani, C.; Seijo, B.; Sanchez, A.; Montero-Menei, C.N. Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington’s disease. Biomaterials, 2016, 83, 347-362.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.008] [PMID: 26802487]
[10]
Zhao, X.; Wang, J.; Tao, S.; Ye, T.; Kong, X.; Ren, L. In vivo bio-distribution and efficient tumor targeting of gelatin/silica nanoparticles for gene delivery. Nanoscale Res. Lett., 2016, 11(1), 195.
[http://dx.doi.org/10.1186/s11671-016-1409-6] [PMID: 27071682]
[11]
Li, Y.; Li, X.; Wong, Y.S.; Chen, T.; Zhang, H.; Liu, C.; Zheng, W. The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials, 2011, 32(34), 9068-9076.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.001] [PMID: 21864903]
[12]
Blackburn, G.; Scott, T.G.; Bayer, I.S.; Ghosh, A.; Biris, A.S.; Biswas, A. Bionanomaterials for bone tumor engineering and tumor destruction. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(11), 1519-1534.
[http://dx.doi.org/10.1039/c3tb00536d]
[13]
Li, Y.H.; Li, X.L.; Zheng, W.J.; Fan, C.D.; Zhang, Y.B.; Chen, T.F. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(46), 6365-6372.
[http://dx.doi.org/10.1039/c3tb21168a]
[14]
Yang, C.; Wang, J.; Chen, D.; Chen, J.; Xiong, F.; Zhang, H.; Zhang, Y.; Gu, N.; Dou, J. Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138(-) CD34(-) tumor stem-like cells in multiple myeloma-bearing mice. Int. J. Nanomedicine, 2013, 8, 1439-1449.
[http://dx.doi.org/ 10.2147/IJN.S38447 ] [PMID: 23610522]
[15]
Baek, J.S.; Kim, J.H.; Park, J.S.; Cho, C.W. Modification of paclitaxel-loaded solid lipid nanoparticles with 2-hydroxypropyl-β-cyclodextrin enhances absorption and reduces nephrotoxicity associated with intravenous injection. Int. J. Nanomedicine, 2015, 10, 5397-5405.
[http://dx.doi.org/ 10.2147/IJN.S86474 ] [PMID: 26347363]
[16]
Zhao, D.; Zhao, X.; Zu, Y.; Li, J.; Zhang, Y.; Jiang, R.; Zhang, Z. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int. J. Nanomedicine, 2010, 5, 669-677.
[PMID: 20957218]
[17]
He, Z.; Wan, X.; Schulz, A.; Bludau, H.; Dobrovolskaia, M.A.; Stern, S.T.; Montgomery, S.A.; Yuan, H.; Li, Z.; Alakhova, D.; Sokolsky, M.; Darr, D.B.; Perou, C.M.; Jordan, R.; Luxenhofer, R.; Kabanov, A.V. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials, 2016, 101, 296-309.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.002] [PMID: 27315213]
[18]
Arany, I.; Clark, J.S.; Reed, D.; Szabó, I.; Ember, I.; Juncos, L.A. The role of p66shc in taxol- and dichloroacetic acid-dependent renal toxicity. Anticancer Res., 2013, 33(8), 3119-3122.
[PMID: 23898068]
[19]
Yoncheva, K.; Calleja, P.; Agüeros, M.; Petrov, P.; Miladinova, I.; Tsvetanov, C.; Irache, J.M. Stabilized micelles as delivery vehicles for paclitaxel. Int. J. Pharm., 2012, 436(1-2), 258-264.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.030] [PMID: 22721848]
[20]
Huo, L.; Chen, R.; Zhao, L.; Shi, X.; Bai, R.; Long, D.; Chen, F.; Zhao, Y.; Chang, Y.Z.; Chen, C. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials, 2015, 61, 307-315.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.029] [PMID: 26024651]
[21]
Jena, P.; Mohanty, S.; Mallick, R.; Jacob, B.; Sonawane, A. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int. J. Nanomedicine, 2012, 7, 1805-1818.
[PMID: 22619529]
[22]
Tian, Y.; Qi, J.; Zhang, W.; Cai, Q.; Jiang, X. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6(15), 12038-12045.
[http://dx.doi.org/10.1021/am5026424] [PMID: 25050635]
[23]
Han, E.; Wu, D.; Qi, S.; Tian, G.; Niu, H.; Shang, G.; Yan, X.; Yang, X. Incorporation of silver nanoparticles into the bulk of the electrospun ultrafine polyimide nanofibers via a direct ion exchange self-metallization process. ACS Appl. Mater. Interfaces, 2012, 4(5), 2583-2590.
[http://dx.doi.org/10.1021/am300248c] [PMID: 22519411]
[24]
Chernousova, S.; Epple, M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl., 2013, 52(6), 1636-1653.
[http://dx.doi.org/10.1002/anie.201205923] [PMID: 23255416]
[25]
Mitrano, D.M.; Rimmele, E.; Wichser, A.; Erni, R.; Height, M.; Nowack, B. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano, 2014, 8(7), 7208-7219.
[http://dx.doi.org/10.1021/nn502228w] [PMID: 24941455]
[26]
Gurunathan, S.; Lee, K.J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009, 30(31), 6341-6350.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008] [PMID: 19698986]
[27]
Anthony, K.J.P.; Murugan, M.; Gurunathan, S. Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity. J. Ind. Eng. Chem., 2014, 20(4), 1505-1510.
[http://dx.doi.org/10.1016/j.jiec.2013.07.039]
[28]
Walser, T.; Demou, E.; Lang, D.J.; Hellweg, S. Prospective environmental life cycle assessment of nanosilver T-shirts. Environ. Sci. Technol., 2011, 45(10), 4570-4578.
[http://dx.doi.org/10.1021/es2001248] [PMID: 21506582]
[29]
Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J. Agric. Food Chem., 2014, 62(6), 1403-1411.
[http://dx.doi.org/10.1021/jf404038y] [PMID: 24450547]
[30]
Vasanth, K.; Ilango, K. MohanKumar, R.; Agrawal, A.; Dubey, G. P., Anticancer activity of Moringa olezfera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B Biointerfaces, 2014, 117, 354-359.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.052] [PMID: 24681047]
[31]
Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces, 2012, 98, 112-119.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[32]
Wang, R.; Chen, C.; Yang, W.; Shi, S.; Wang, C.; Chen, J. Enhancement effect of cytotoxicity response of silver nanoparticles combined with thermotherapy on C6 rat glioma cells. J. Nanosci. Nanotechnol., 2013, 13(6), 3851-3854.
[http://dx.doi.org/10.1166/jnn.2013.7156] [PMID: 23862417]
[33]
Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Xia, H.; Wang, H.; Zhu, B. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. Int. J. Nanomedicine, 2016, 11, 3065-3076.
[http://dx.doi.org/10.2147/IJN.S109822] [PMID: 27462151]
[34]
Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Hua, L.; Wang, H.; Xia, H.; Zhu, B. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl. Mater. Interfaces, 2016, 8(37), 24385-24393.
[http://dx.doi.org/10.1021/acsami.6b06613] [PMID: 27588566]
[35]
Guo, M.; Li, Y.H.; Lin, Z.F.; Zhao, M.Q.; Xiao, M.S.; Wang, C.B.; Xu, T.T.; Xia, Y.; Zhu, B. Surface decoration of selenium nanoparticles with curcumin induced HepG2 cell apoptosis through ROS mediated p53 and AKT signaling pathways. RSC Advances, 2017, 7(83), 52456-52464.
[http://dx.doi.org/10.1039/C7RA08796A]
[36]
Li, Y.; Lin, Z.; Guo, M.; Zhao, M.; Xia, Y.; Wang, C.; Xu, T.; Zhu, B. Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int. J. Nanomedicine, 2018, 13, 2005-2016.
[http://dx.doi.org/10.2147/IJN.S155994] [PMID: 29662313]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Published on: 19 February, 2020
Page: [89 - 98]
Pages: 10
DOI: 10.2174/1568026619666191019102219
Price: $65

Article Metrics

PDF: 45
HTML: 5