Will Arsenic Trioxide Benefit Treatment of Solid Tumor by Nano- Encapsulation?

Author(s): Xin Fu, Yan-shu Li, Jun Zhao, Lu-lu Yu, Rong-guang Luo, Qing-rong Liang, Qun Tang*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Arsenic trioxide (ATO) has remarkably enhanced therapeutic efficacy in treating both newly diagnosed and relapsed patients suffering from Acute Promyelocytic Leukemia (APL). Unfortunately, whether as a single agent, component of combined chemotherapy, or as a chemosensitizer or radiosensitizer combined with interventional therapy/radiotherapy, it did not benefit treatment of solid tumor (liver cancer, bladder cancer, glioma, breast cancer, cervical cancer, colorectal cancer, lung cancer, and melanoma) as seen from the clinical trials reported from the published journals or FDA-approved trials in the past decades. The clinical outcome failed to live up to our expectations, which was attributed to severe systemic toxicity and inappropriate pharmacokinetic such as low delivery efficiency and rapid renal elimination. Nanomedicine is designed to fuel up pharmaceuticals and polish off adverse effects by the moderation of their absorption, distribution, metabolism, and excretion. Nevertheless, quite a few nanodrugs (such as Doxil, Abraxane) were approved to be used clinically, and “from bench to bedside” it seems to be no easy way for most of them, such as nano-ATO. Encapsulating ATO into several types of nano-vehicles (liposome, polymer micelle, porous silicon, etc.), nano-TO can improve pharmacokinetic and become a prominent candidate to penetrate into tumor tissue, but so far no nano- ATO clinical trials have been approved around the world. On summarizing the clinical trials of ATO on solid tumor and preclinical study of nano-ATO, it is believed there is still a chance for ATO to play a critical co-helper in a comprehensive therapy to fight with solid tumor.

Keywords: Arsenic trioxide, solid tumor, nanomedicine, drug delivery, pharmacokinetics, comprehensive therapy.

[1]
Emadi, A.; Gore, S.D. Arsenic trioxide - An old drug rediscovered. Blood Rev., 2010, 24(4-5), 191-199.
[http://dx.doi.org/10.1016/j.blre.2010.04.001] [PMID: 20471733]
[2]
Miller, W.H., Jr; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res., 2002, 62(14), 3893-3903.
[PMID: 12124315]
[3]
He, L.; Xu, Q.; Chen, L.; Chen, R. A meta-analysis of arsenic trioxide combined with transcatheter arterial chemoembolization for treatment of primary hepatic carcinoma. Evid. Based Complement. Alternat. Med., 2016, 20163428370
[http://dx.doi.org/10.1155/2016/3428370] [PMID: 27382405]
[4]
Lv, X.H.; Wang, C.H.; Xie, Y. Arsenic trioxide combined with transarterial chemoembolization for primary liver cancer: A meta-analysis. J. Gastroenterol. Hepatol., 2017, 32(9), 1540-1547.
[http://dx.doi.org/10.1111/jgh.13789] [PMID: 28299819]
[5]
Song, P.; Hai, Y.; Ma, W.; Zhao, L.; Wang, X.; Xie, Q.; Li, Y.; Wu, Z.; Li, Y.; Li, H. Arsenic trioxide combined with transarterial chemoembolization for unresectable primary hepatic carcinoma: A systematic review and meta-analysis. Medicine (Baltimore), 2018, 97(18)e0613
[http://dx.doi.org/10.1097/MD.0000000000010613] [PMID: 29718867]
[6]
Lu, W.; Yang, C.; Du, P.; Zhang, J.L.; Zhang, J.C. Effects of arsenic trioxide on the expression of ezrin in hepatocellular carcinoma. Medicine (Baltimore), 2017, 96(35)e7602
[http://dx.doi.org/10.1097/MD.0000000000007602] [PMID: 28858082]
[7]
Wang, H.; Liu, Y.; Wang, X.; Liu, D.; Sun, Z.; Wang, C.; Jin, G.; Zhang, B.; Yu, S. Randomized clinical control study of locoregional therapy combined with arsenic trioxide for the treatment of hepatocellular carcinoma. Cancer, 2015, 121(17), 2917-2925.
[http://dx.doi.org/10.1002/cncr.29456] [PMID: 26033499]
[8]
Liu, B.; Huang, J.W.; Li, Y.; Hu, B.S.; He, X.; Zhao, W.; Zheng, Y.B.; Lu, L.G. Single-agent versus combination doxorubicin-based transarterial chemoembolization in the treatment of hepatocellular carcinoma: A single-blind, randomized, phase II trial. Oncology, 2015, 89(1), 23-30.
[9]
Sun, J. Nursing care of 38 cases of primary liver cancer treated by local injection of arsenic trioxide. Chinese. J. Pract. Nurs., 2004, 20(2), 32-32.
[10]
Han, G.Y. Efficacy of arsenic trioxide combined with chemotherapy in the treatment of advanced liver cancer. Med. Infant., 2017, 30(10), 94-95.
[11]
Yan, Q.Y.; Nan, Y.H.; Zhang, J.Y. Clinical study on the application of arsenic trioxide in primary liver cancer. Jilin Medical, 2009, 30(6), 491-492.
[12]
Fan, L.Z.; Zhang, Y.; Cong, P.S.; Jiang, Y.D.; Yan, X.J.; Wang, L.S. The clinical analysis of Arsenic Trioxide in the treatment of 30 cases of primary liver cancer. China J. Chin. Med., 2006, 29(17), 45-47.
[13]
Jiang, W.; Feng, J.F.; Pan, L.W.; Huang, X.G.; Chen, J. Clinical observation of arsenic trioxide injection in the treatment of advanced primary liver cancer. Tumor Basic Clin, 2006, 29(17), 45-47.
[14]
Chen, F.; Chen, X.G. Arsenic trioxide injection in the treatment of 15 cases of primary liver cancer. Modern Oncol. Med., 2005, 13(5), 665-666.
[15]
Xiang, Y.; Huang, F.M. Arsenic trioxide injection in the treatment of 16 cases of advanced primary liver cancer. J. Clin. Oncol., 2003, 8(1), 36-37.
[16]
Fu, J.; Shi, S.Z. Clinical study of arsenic trioxide in the treatment of advanced primary liver cancer. Chinese J. Clin. Oncol. Rehabilit., 2006, 13(3), 232.
[17]
Qian, J.; Qin, S.Z.; He, Z.M.; Wang, L.; Chen, Y.X.; Shao, Z.J.; Liu, X.F. Clinical study of arsenic trioxide injection in the treatment of advanced primary liver and gallbladder carcinoma. Chin. J. Cancer, 2001, 23(6), 487-489.
[PMID: 11859717]
[18]
Bael, T.E.; Peterson, B.L.; Gollob, J.A. Phase II trial of arsenic trioxide and ascorbic acid with temozolomide in patients with metastatic melanoma with or without central nervous system metastases. Melanoma Res., 2008, 18(2), 147-151.
[http://dx.doi.org/10.1097/CMR.0b013e3282f2a7ae] [PMID: 18337652]
[19]
Hu, H.T.; Yao, Q.J.; Meng, Y.L.; Li, H.L.; Zhang, H.; Luo, J.P.; Guo, C.Y.; Geng, X. Arsenic trioxide intravenous infusion combined with transcatheter arterial chemoembolization for the treatment of hepatocellular carcinoma with pulmonary metastasis: Long-term outcome analysis. J. Gastroenterol. Hepatol., 2017, 32(2), 295-300.
[http://dx.doi.org/10.1111/jgh.13529] [PMID: 27517972]
[20]
Liu, B.; Huang, J.W.; Li, Y.; Hu, B.S.; He, X.; Zhao, W.; Zheng, Y.B.; Lu, L.G. Arsenic trioxide transarterial chemoembolization with and without additional intravenous administration of arsenic trioxide in unresectable hepatocellular carcinoma with lung metastasis: a single-blind, randomized trial. J. Cancer Res. Clin. Oncol., 2015, 141(6), 1103-1108.
[http://dx.doi.org/10.1007/s00432-014-1866-1] [PMID: 25504506]
[21]
Hu, Qi.; Wei, Y.M.; Guan, R.; Wan, X.A.; Wang, Y.H.; Hu, J. Clinical study of TACE combined with arsenic trioxide in the treatment of primary liver cancer. Modern Oncol., 2014, 22(11), 2679-2681.
[22]
Wu, Y.B. Clinical study of hepatic artery chemotherapy embolization combined with arsenic trioxide continuous regional perfusion in the treatment of primary liver cancer. Guangzhou Medical University; Guangzhou Medical College, 2007.
[23]
Cui, S.Z.; Song, T.; Wang, L.K.; Tang, Y.Q.; Tang, R.J.; Wang, J.K.; Hong, J.; Wang, J. Symposium on Prevention and treatment of Hepatopathy and Special issue of New Progress course, 2005, pp. 89-91.
[24]
Tang, R.J.; Cui, S.Z.; Tan, Z.M.; Wang, J.; Tang, Y.Q.; Wang, J.K. Clinical study of chemoembolization combined with As2O3 in the treatment of liver cancer. Int. J. Med. Health, 2007, 13(18), 24-26.
[25]
Yu, X.; Li, G.; Gu, L.; Xie, P. Clinical study of transcatheter arterial chemoembolization combined with arsenic trioxide in the treatment of primary liver cancer. Clin. J. Prac. Hospital, 2017, 2, 75-78.
[26]
Gao, X.S. Clinical study of all-trans Retinic Acid combined with arsenic trioxide in the treatment of Primary Hepatocellular carcinoma by Intrahepatic Arterial catheterization and Embolization. Chin. J. Integrated Trad. Chin. West. Med., 2009, 6, 361-363.
[27]
Zha, G.H.; Long, J.; Mei, L.H.; Zheng, Q.; Li, Y.F.; Rao, X.J.; Rao, Z.G. Clinical study of arsenic trioxide combined with TACE in the treatment of advanced primary liver cancer. Jiangxi Med., 2010, 45(6), 534-536.
[28]
Hu, H.T.; Chen, C.S.; Li, H.L.; Guo, C.Y.; Meng, Y.L.; Yao, Q.J.; Yu, X.; Zhao, H.; Jiang, L. Arsenic trioxide combined with Solafinil and hepatic artery chemoembolism in the treatment of lung metastasis of refractory hepatocellular carcinoma. Chin. J. Oncol., 2015, 37(12), 942-943.
[PMID: 26887626]
[29]
Yang, B.J.; Li, M. The effect of arsenic trioxide on the growth and metastasis of liver cancer. China Pharmaceut., 2015, 24(21), 109-110.
[30]
Ardalan, B.; Subbarayan, P.R.; Ramos, Y.; Gonzalez, M.; Fernandez, A.; Mezentsev, D.; Reis, I.; Duncan, R.; Podolsky, L.; Lee, K.; Lima, M.; Ganjei-Azar, P. A phase I study of 5-fluorouracil/leucovorin and arsenic trioxide for patients with refractory/relapsed colorectal carcinoma. Clin. Cancer Res., 2010, 16(11), 3019-3027.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2590] [PMID: 20501625]
[31]
Subbarayan, P.R.; Lima, M.; Ardalan, B. Arsenic trioxide/ascorbic acid therapy in patients with refractory metastatic colorectal carcinoma: a clinical experience. Acta Oncol., 2007, 46(4), 557-561.
[http://dx.doi.org/10.1080/02841860601042456] [PMID: 17497326]
[32]
Beer, T.M.; Tangen, C.M.; Nichols, C.R.; Margolin, K.A.; Dreicer, R.; Stephenson, W.T.; Quinn, D.I.; Raghavan, D.; Crawford, E.D. Southwest Oncology Group phase II study of arsenic trioxide in patients with refractory germ cell malignancies. Cancer, 2006, 106(12), 2624-2629.
[http://dx.doi.org/10.1002/cncr.21925] [PMID: 16688776]
[33]
Kindler, H.L.; Aklilu, M.; Nattam, S.; Vokes, E.E. Arsenic trioxide in patients with adenocarcinoma of the pancreas refractory to gemcitabine: a phase II trial of the University of Chicago Phase II Consortium. Am. J. Clin. Oncol., 2008, 31(6), 553-556.
[http://dx.doi.org/10.1097/COC.0b013e318178e4cd] [PMID: 19060586]
[34]
Bael, T.E.; Peterson, B.L.; Gollob, J.A. Phase II trial of arsenic trioxide and ascorbic acid with temozolomide in patients with metastatic melanoma with or without central nervous system metastases. Melanoma Res., 2008, 18(2), 147-151.
[http://dx.doi.org/10.1097/CMR.0b013e3282f2a7ae] [PMID: 18337652]
[35]
Kim, K.B.; Bedikian, A.Y.; Camacho, L.H.; Papadopoulos, N.E.; McCullough, C. A phase II trial of arsenic trioxide in patients with metastatic melanoma. Cancer, 2005, 104(8), 1687-1692.
[http://dx.doi.org/10.1002/cncr.21386] [PMID: 16130126]
[36]
Tarhini, A.A.; Kirkwood, J.M.; Tawbi, H.; Gooding, W.E.; Islam, M.F.; Agarwala, S.S. Safety and efficacy of arsenic trioxide for patients with advanced metastatic melanoma. Cancer, 2008, 112(5), 1131-1138.
[http://dx.doi.org/10.1002/cncr.23284] [PMID: 18286511]
[37]
Zhang, Y.J.; Qiu, J.G.; Wong, Y.Q. Efficacy of arsenite combined chemotherapy in the treatment of metastatic liver cancer. International General Surgical Forum and National Symposium on General basic and Clinical Progress, 2009.
[38]
Xie, W.; Guo, W.; Yang, Y.; Ji, T.; Li, X.; Xu, W. The effect of first-line chemotherapy combined with arsenic trioxide on the metastatic osteosarcoma of the limbs. Chin. Tumor Clin., 2017, 44(10), 502-207.
[39]
Modak, S.; Zanzonico, P.; Carrasquillo, J.A.; Kushner, B.H.; Kramer, K.; Cheung, N-K.; Larson, S.M.; Pandit-Taskar, N. Arsenic Trioxide as a Radiation Sensitizer for 131I-Metaiodobenzylguanidine THERAPY: Results of a Phase II Study. J. Nucl. Med., 2016, 57(2), 231-237.
[http://dx.doi.org/10.2967/jnumed.115.161752] [PMID: 26742708]
[40]
Lai, Y.L.; Chang, H.H.; Huang, M.J.; Chang, K.H.; Su, W.H.; Chen, H.W.; Chung, C.H.; Wang, W.Y.; Lin, L.H.; Chen, Y.J. Combined effect of topical arsenic trioxide and radiation therapy on skin-infiltrating lesions of breast cancer-a pilot study. Anticancer Drugs, 2003, 14(10), 825-828.
[http://dx.doi.org/10.1097/00001813-200311000-00008] [PMID: 14597877]
[41]
Wang, X.D.; Cao, G.W.; Ning, H.F.; Cui, X.J.; Xing, H. Short-term efficacy of arsenic trioxide combined with 125i particles in the treatment of primary liver cancer during perioperative period of TACE. J. Med. Imaging (Bellingham), 2013, 23(5), 799-802.
[42]
Chen, C.Z.; Li, D.R.; Lin, Y.C.; Chen, Z.J.; Zhou, M.Z.; Guo, L.J.; Guo, W.; Xie, L.X. Clinical study of arsenic trioxide on radiosensitization of nasopharyngeal carcinoma. Chin. J. Radiol. Protect., 2007, 27(2), 149-152.
[43]
Xie, L.X.; Li, D.R.; Lin, K.; Chen, Y.Y.; Hong, C.Q. Synergistic therapeutic effect of arsenic trioxide and radiotherapy in BALB/C nude mice bearing nasopharyngeal carcinoma xenografts. Exp. Oncol., 2005, 25(1), 49-52.
[PMID: 17431388]
[44]
Park, S.G.; Jung, J.J.; Won, H.J.; Kang, M.S.; Seo, S.K.; Choi, I.W.; Eun, C.K.; Ahn, K.J.; Park, C.W.; Lee, S.W.; Lew, Y.S.; Bae, I.J.; Choi, I.H. Tetra-arsenic oxide (Tetras) enhances radiation sensitivity of solid tumors by anti-vascular effect. Cancer Lett., 2009, 277(2), 212-217.
[http://dx.doi.org/10.1016/j.canlet.2008.12.012] [PMID: 19155124]
[45]
Kim, J.H.; Lew, Y.S.; Kolozsvary, A.; Ryu, S.; Brown, S.L. Arsenic trioxide enhances radiation response of 9L glioma in the rat brain. Radiat. Res., 2003, 160(6), 662-666.
[http://dx.doi.org/10.1667/RR3069] [PMID: 14689968]
[46]
Ning, S.; Knox, S.J. Increased cure rate of glioblastoma using concurrent therapy with radiotherapy and arsenic trioxide. Int. J. Radiat. Oncol. Biol. Phys., 2004, 60(1), 197-203.
[http://dx.doi.org/10.1016/j.ijrobp.2004.02.013] [PMID: 15337556]
[47]
Chiu, H.W.; Chen, Y.A.; Ho, S.Y.; Wang, Y.J. Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells. PLoS One, 2012, 7(2)e31579
[http://dx.doi.org/10.1371/journal.pone.0031579] [PMID: 22363680]
[48]
Chun, Y.J.; Park, I.C.; Park, M.J.; Woo, S.H.; Hong, S.I.; Chung, H.Y.; Kim, T.H.; Lee, Y.S.; Rhee, C.H.; Lee, S.J. Enhancement of radiation response in human cervical cancer cells in vitro and in vivo by arsenic trioxide (As2O3). FEBS Lett., 2002, 519(1-3), 195-200.
[http://dx.doi.org/10.1016/S0014-5793(02)02765-5] [PMID: 12023044]
[49]
Wei, L.H.; Lai, K.P.; Chen, C.A.; Cheng, C.H.; Huang, Y.J.; Chou, C.H.; Kuo, M.L.; Hsieh, C.Y. Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene, 2005, 24(3), 390-398.
[http://dx.doi.org/10.1038/sj.onc.1208192] [PMID: 15531921]
[50]
Lew, Y.S.; Kolozsvary, A.; Brown, S.L.; Kim, J.H. Synergistic interaction with arsenic trioxide and fractionated radiation in locally advanced murine tumor. Cancer Res., 2002, 62(15), 4202-4205.
[PMID: 12154019]
[51]
Ren, Q.; Tey, J.; Li, X.; Wu, Y.; Deng, H.; Han, L. Radiosensitization of cervical cancer xenografts by arsenic trioxide and the role of VEGF and Ku70. J. Radiat. Oncol., 2012, 1(3), 299-304.
[http://dx.doi.org/10.1007/s13566-012-0004-4]
[52]
Ning, S.; Knox, S.J. Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma. Int. J. Radiat. Oncol. Biol. Phys., 2006, 65(2), 493-498.
[http://dx.doi.org/10.1016/j.ijrobp.2005.12.015]
[53]
Kumar, P.; Gao, Q.; Ning, Y.; Wang, Z.; Krebsbach, P.H.; Polverini, P.J. Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol. Cancer Ther., 2008, 7(7), 2060-2069.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0287] [PMID: 18645016]
[54]
Hines-Peralta, A.; Sukhatme, V.; Regan, M.; Signoretti, S.; Liu, Z.J.; Goldberg, S.N. Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models. Radiology, 2006, 240(1), 82-89.
[http://dx.doi.org/10.1148/radiol.2401050788] [PMID: 16720872]
[55]
Subbarayan, P.R.; Ardalan, B. In the war against solid tumors arsenic trioxide needs partners. J. Gastrointest. Cancer, 2014, 45(3), 363-371.
[http://dx.doi.org/10.1007/s12029-014-9617-8] [PMID: 24825822]
[56]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[57]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 653-664.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[58]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[59]
Gregoriadis, G.; Wills, E.J.; Swain, C.P.; Tavill, A.S. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet, 1974, 1(7870), 1313-1316.
[http://dx.doi.org/10.1016/S0140-6736(74)90682-5] [PMID: 4134296]
[60]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[61]
Wimmer, N.; Robinson, J.A.; Gopisetty-Venkatta, N.; Roberts-Thomson, S.J.; Monteith, G.R.; Toth, I. Novel Glyco-lipid-arsenicals (III) with Anti-proliferative effects on MCF-7 human breast cancer cells. Understanding Biol. Using Pept., 2006, 9(7), 365-366.
[http://dx.doi.org/10.1007/978-0-387-26575-9_148] [PMID: 16787358]
[62]
Chen, H.; MacDonald, R.C.; Li, S.; Krett, N.L.; Rosen, S.T.; O’Halloran, T.V. Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release. J. Am. Chem. Soc., 2006, 128(41), 13348-13349.
[http://dx.doi.org/10.1021/ja064864h] [PMID: 17031934]
[63]
Gortzi, O.; Papadimitriou, E.; Kontoyannis, C.G.; Antimisiaris, S.G.; Ioannou, P.V. Arsonoliposomes, a novel class of arsenic-containing liposomes: effect of palmitoyl-arsonolipid-containing liposomes on the viability of cancer and normal cells in culture. Pharm. Res., 2002, 19(1), 79-86.
[http://dx.doi.org/10.1023/A:1013771700948] [PMID: 11837704]
[64]
Gortzi, O.; Antimisiaris, S.G.; Klepetsanis, P.; Papadimitriou, E.; Ioannou, P.V. Arsonoliposomes: effect of arsonolipid acyl chain length and vesicle composition on their toxicity towards cancer and normal cells in culture. Eur. J. Pharm. Sci., 2003, 18(2), 175-183.
[http://dx.doi.org/10.1016/S0928-0987(02)00259-2] [PMID: 12594011]
[65]
Kallinteri, P.; Fatouros, D.; Klepetsanis, P.; Antimisiaris, S.G. Arsenic trioxide liposomes: encapsulation efficiency and in vitro stability. J. Liposome Res., 2004, 14(1-2), 27-38.
[http://dx.doi.org/10.1081/LPR-120039661] [PMID: 15461930]
[66]
Dhubhghaill, O.M.N.; Sadler, P.J. The structure and reactivity of arsenic compounds: Biological activity and drug design. Bioinorg. Chem., 1991, 78, 129-190.
[67]
Ahn, R.W.; Chen, F.; Chen, H.; Stern, S.T.; Clogston, J.D.; Patri, A.K.; Raja, M.R.; Swindell, E.P.; Parimi, V.; Cryns, V.L.; O’Halloran, T.V. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin. Cancer Res., 2010, 16(14), 3607-3617.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0068] [PMID: 20519360]
[68]
Ahn, R.W.; Barrett, S.L.; Raja, M.R.; Jozefik, J.K.; Spaho, L.; Chen, H.; Bally, M.B.; Mazar, A.P.; Avram, M.J.; Winter, J.N.; Gordon, L.I.; Shea, L.D.; O’Halloran, T.V.; Woodruff, T.K. Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo. PLoS One, 2013, 8(3)e58491
[http://dx.doi.org/10.1371/journal.pone.0058491] [PMID: 23526987]
[69]
Zhang, Y.; Kenny, H.A.; Swindell, E.P.; Mitra, A.K.; Hankins, P.L.; Ahn, R.W.; Gwin, K.; Mazar, A.P.; O’Halloran, T.V.; Lengyel, E. Urokinase plasminogen activator system-targeted delivery of nanobins as a novel ovarian cancer therapy. Mol. Cancer Ther., 2013, 12(12), 2628-2639.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0204] [PMID: 24061648]
[70]
Chen, H.; Ahn, R.; Van den Bossche, J.; Thompson, D.H.; O’Halloran, T.V. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol. Cancer Ther., 2009, 8(7), 1955-1963.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0045] [PMID: 19567824]
[71]
Chen, H.; Pazicni, S.; Krett, N.L.; Ahn, R.W.; Penner-Hahn, J.E.; Rosen, S.T.; O’Halloran, T.V. Coencapsulation of arsenic- and platinum-based drugs for targeted cancer treatment. Angew. Chem. Int. Ed. Engl., 2009, 48(49), 9295-9299.
[http://dx.doi.org/10.1002/anie.200903655] [PMID: 19894238]
[72]
Winter, N.D.; Murphy, R.K.; O’Halloran, T.V.; Schatz, G.C. Development and modeling of arsenic-trioxide-loaded thermosensitive liposomes for anticancer drug delivery. J. Liposome Res., 2011, 21(2), 106-115.
[http://dx.doi.org/10.3109/08982104.2010.483597] [PMID: 20486887]
[73]
Griffin, R.J.; Monzen, H.; Williams, B.W.; Park, H.; Lee, S.H.; Song, C.W. Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours. Int. J. Hyperthermia, 2003, 19(6), 575-589.
[http://dx.doi.org/10.1080/0265673031000124316] [PMID: 14756449]
[74]
Ponce, A.; Wright, A.; Dewhirst, M.; Needham, D. Targeted bioavailability of drugs by triggered release from liposomes. Future Lipidol., 2006, 1(1), 25-34.
[http://dx.doi.org/10.2217/17460875.1.1.25]
[75]
Vicent, M.J.; Ringsdorf, H.; Duncan, R. Polymer therapeutics: clinical applications and challenges for development. Adv. Drug Deliv. Rev., 2009, 61(13), 1117-1120.
[http://dx.doi.org/10.1016/j.addr.2009.08.001] [PMID: 19682516]
[76]
Gryparis, E.C.; Hatziapostolou, M.; Papadimitriou, E.; Avgoustakis, K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur. J. Pharm. Biopharm., 2007, 67(1), 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.017] [PMID: 17303395]
[77]
Wang, Z.Q.; Liu, W.; Xu, H.B.; Yang, X.L. Preparation and in vitro studies of stealth PEGylated PLGA nanoparticles as carriers for arsenic trioxide. Chin. J. Chem. Eng., 2007, 15(6), 795-801.
[http://dx.doi.org/10.1016/S1004-9541(08)60005-1]
[78]
Zeng, L.; Li, J.; Wang, Y.; Qian, C.; Chen, Y.; Zhang, Q.; Wu, W.; Lin, Z.; Liang, J.; Shuai, X.; Huang, K. Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer. Nanomedicine (Lond.), 2014, 10(2), 463-472.
[http://dx.doi.org/10.1016/j.nano.2013.08.007] [PMID: 24028894]
[79]
Xiangbao, Y.; Linquan, W.; Mingwen, H.; Fan, Z.; Kai, W.; Xin, Y.; Kaiyang, W.; Huaqun, F. Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity. Biomed. Pharmacother., 2014, 68(5), 597-602.
[http://dx.doi.org/10.1016/j.biopha.2014.04.006] [PMID: 24855034]
[80]
Qian, C.; Wang, Y.; Chen, Y.; Zeng, L.; Zhang, Q.; Shuai, X.; Huang, K. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles. Biomaterials, 2013, 34(26), 6175-6184.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.056] [PMID: 23721794]
[81]
Zhang, Q.; Vakili, M.R.; Li, X.F.; Lavasanifar, A.; Le, X.C. Polymeric micelles for GSH-triggered delivery of arsenic species to cancer cells. Biomaterials, 2014, 35(25), 7088-7100.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.072] [PMID: 24840615]
[82]
Trewyn, B.G.; Giri, S.; Slowing, I.I.; Lin, V.S.Y. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem. Commun. (Camb.), 2007, 31(31), 3236-3245.
[http://dx.doi.org/10.1039/b701744h] [PMID: 17668088]
[83]
Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig., 2015, 5(3), 124-133.
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[84]
Lu, J.; Liong, M.; Li, Z.; Zink, J.I.; Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 2010, 6(16), 1794-1805.
[http://dx.doi.org/10.1002/smll.201000538] [PMID: 20623530]
[85]
He, Q.; Shi, J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater., 2014, 26(3), 391-411.
[http://dx.doi.org/10.1002/adma.201303123] [PMID: 24142549]
[86]
Soto, R.J.; Yang, L.; Schoenfisch, M.H. Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release. ACS Appl. Mater. Interfaces, 2016, 8(3), 2220-2231.
[http://dx.doi.org/10.1021/acsami.5b10942] [PMID: 26717238]
[87]
Xiao, X.; Liu, Y.; Guo, M.; Fei, W.; Zheng, H.; Zhang, R.; Zhang, Y.; Wei, Y.; Zheng, G.; Li, F. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. J. Biomater. Appl., 2016, 31(1), 23-35.
[http://dx.doi.org/10.1177/0885328216637211] [PMID: 27059495]
[88]
Wu, X.; Han, Z.; Schur, R.M.; Lu, Z.R. Targeted mesoporous silica nanoparticles delivering arsenic trioxide with environment sensitive drug release for effective treatment of triple negative breast cancer. ACS Biomater. Sci. Eng., 2016, 2(4), 501-507.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00398]
[89]
Zhao, Z.; Wang, X.; Zhang, Z.; Zhang, H.; Liu, H.; Zhu, X.; Li, H.; Chi, X.; Yin, Z.; Gao, J. Real-time monitoring of arsenic trioxide release and delivery by activatable T(1) imaging. ACS Nano, 2015, 9(3), 2749-2759.
[http://dx.doi.org/10.1021/nn506640h] [PMID: 25688714]
[90]
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970.
[http://dx.doi.org/10.1039/c2cs15355f] [PMID: 22388295]
[91]
Jalvandi, J.; White, M.; Truong, Y.B.; Gao, Y.; Padhye, R.; Kyratzis, I.L. Release and antimicrobial activity of levofloxacin from composite mats of poly (ɛ-caprolactone) and mesoporous silica nanoparticles fabricated by core–shell electrospinning. J. Mater. Sci., 2015, 50(24), 7967-7974.
[http://dx.doi.org/10.1007/s10853-015-9361-x]
[92]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Padilla, D.; Durfee, P.N.; Brown, P.A.; Hanna, T.N.; Liu, J.; Phillips, B.; Carter, M.B.; Carroll, N.J.; Jiang, X.; Dunphy, D.R.; Willman, C.L.; Petsev, D.N.; Evans, D.G.; Parikh, A.N.; Chackerian, B.; Wharton, W.; Peabody, D.S.; Brinker, C.J. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater., 2011, 10(5), 389-397.
[http://dx.doi.org/10.1038/nmat2992] [PMID: 21499315]
[93]
Bhuvana, M.; Narayanan, J.S.; Dharuman, V.; Teng, W.; Hahn, J.H.; Jayakumar, K. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing. Biosens. Bioelectron., 2013, 41, 802-808.
[http://dx.doi.org/10.1016/j.bios.2012.10.017] [PMID: 23141707]
[94]
Fei, W.; Zhang, Y.; Han, S.; Tao, J.; Zheng, H.; Wei, Y.; Zhu, J.; Li, F.; Wang, X. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Int. J. Pharm., 2017, 519(1-2), 250-262.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.031] [PMID: 28109899]
[95]
Yang, G.F.; Li, X.H.; Zhao, Z.; Wang, W.B. Preparation, characterization, in vivo and in vitro studies of arsenic trioxide Mg-Fe ferrite magnetic nanoparticles. Acta Pharmacol. Sin., 2009, 30(12), 1688-1693.
[http://dx.doi.org/10.1038/aps.2009.158] [PMID: 19960013]
[96]
Wang, Z.Y.; Song, J.; Zhang, D.S. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World J. Gastroenterol., 2009, 15(24), 2995-3002.
[http://dx.doi.org/10.3748/wjg.15.2995] [PMID: 19554652]
[97]
Song, X.; You, J.; Wang, J.; Zhu, A.; Ji, L.; Guo, R. Preparation and investigation of arsenic trioxide-loaded polylactic acid/magnetic hybrid nanoparticles. Chem. Res. Chin. Univ., 2014, 30(2), 326-332.
[http://dx.doi.org/10.1007/s40242-014-3306-9]
[98]
Du, Y.; Zhang, D.; Liu, H.; Lai, R. Thermochemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9. BMC Biotechnol., 2009, 9(1), 84-95.
[http://dx.doi.org/10.1186/1472-6750-9-84] [PMID: 19804631]
[99]
Wang, Z.Y.; Wang, L.; Zhang, J.; Li, Y.T.; Zhang, D.S. A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors. Int. J. Nanomedicine, 2011, 6, 871-875.
[PMID: 21720500]
[100]
Yang, Z.; Yang, M.; Peng, J. Evaluation of arsenic trioxide-loaded albumin nanoparticles as carriers: preparation and antitumor efficacy. Drug Dev. Ind. Pharm., 2008, 34(8), 834-839.
[http://dx.doi.org/10.1080/03639040801926733] [PMID: 18622876]
[101]
Peng, Y.; Zhao, Z.; Liu, T.; Li, X.; Hu, X.; Wei, X.; Zhang, X.; Tan, W. Smart human-serum-albumin-As2O3 nanodrug with self-amplified folate receptor-targeting ability for chronic myeloid leukemia treatment. Angew. Chem. Int. Ed. Engl., 2017, 56(36), 10845-10849.
[http://dx.doi.org/10.1002/anie.201701366] [PMID: 28686804]
[102]
Zhou, J.; Wang, Q.H.; Liu, J.H.; Wan, Y.B. Effects of Tat peptide on intracellular delivery of arsenic trioxide albumin microspheres. Anticancer Drugs, 2012, 23(3), 303-312.
[http://dx.doi.org/10.1097/CAD.0b013e32834e75c1] [PMID: 22123336]
[103]
Ho, Y.P.; Leong, K.W. Quantum dot-based theranostics. Nanoscale, 2010, 2(1), 60-68.
[http://dx.doi.org/10.1039/B9NR00178F] [PMID: 20648364]
[104]
Reshma, V.G.; Mohanan, P.V. Quantum dots: Applications and safety consequences. J. Lumin., 2018, 205, 287-298.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.015]
[105]
Wang, J.; Lin, M.; Zhang, T.; Yan, Y.; Ho, P.C.; Xu, Q.H.; Loh, K.P. Arsenic(II) sulfide quantum dots prepared by a wet process from its bulk. J. Am. Chem. Soc., 2008, 130(35), 11596-11597.
[http://dx.doi.org/10.1021/ja804436w] [PMID: 18693730]
[106]
Chen, F.Y.; Yi, J.W.; Gu, Z.J.; Tang, B.B.; Li, J.Q.; Li, L.; Kulkarni, P.; Liu, L.; Mason, R.P.; Tang, Q. Inorganic phosphate-triggered release of anti-cancer arsenic trioxide from a self-delivery system: an in vitro and in vivo study. Nanoscale, 2016, 8(11), 6094-6100.
[http://dx.doi.org/10.1039/C6NR00536E] [PMID: 26932298]
[107]
Chen, F.Y.; Zhang, Y.; Chen, X.; Li, J.Q.; Xiao, X.P.; Yu, L.L.; Tang, Q. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer. J. Nanopart. Res., 2017, 19(4), 155-164.
[http://dx.doi.org/10.1007/s11051-017-3848-0]
[108]
Fu, X.; Liang, Q.R.; Li, Y.S.; Xiao, X.P.; Yu, L.L.; Shan, W.Z.; Fan, G.Q.; Tang, Q. An arsenic trioxide nanoparticle prodrug (ATONP) potentiates a therapeutic effect on an aggressive hepatocellular carcinoma model via enhancement of intratumoral arsenic accumulation and disturbance of the tumor microenvironment. J. Mater. Chem. B , 2019, 7(19), 3088-3099.
[http://dx.doi.org/10.1039/C9TB00349E]
[109]
Fu, X.; Zhang, H.Q.; Zhao, J.; Yu, L.L.; Liang, Q.R.; Zhang, Y.; Yi, X.G.; Li, Y.X.; Hu, J.L.; He, Y.Q.; Tang, Q. Development of colloidal rare earth arsenites as arsenic trioxide nanoparticle prodrug (ATONP) for chemotherapy on a patient-derived xenograft model of colorectal cancer. New J. Chem., 2019, 43(44), 17408-17415.
[http://dx.doi.org/10.1039/C9NJ02990G]
[110]
Fu, X.; Luo, R.G.; Qiu, W.; Ouyang, L.; Fan, G.Q.; Liang, Q.R.; Tang, Q. Sustained release of arsenic trioxide benefits interventional therapy on rabbit VX2 liver tumor. Nanomed. Nanotech. Biol. Med., 2020, 24, 102118-102127.
[http://dx.doi.org/doi.org/10.1016/j.nano.2019.102118] [PMID: 31678180]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 3
Year: 2020
Page: [239 - 251]
Pages: 13
DOI: 10.2174/1389557519666191018155426
Price: $65

Article Metrics

PDF: 22
HTML: 4
EPUB: 1
PRC: 1