Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Novel Computational Approaches to Developing Potential STAT4 Silencing siRNAs for Immunomodulation of Atherosclerosis

Author(s): Sakineh Poorhosein Fookolaee, Samad Karkhah, Mahdiye Saadi, Subho Majumdar and Ahmad Karkhah*

Volume 16, Issue 5, 2020

Page: [599 - 604] Pages: 6

DOI: 10.2174/1573409915666191018125653

Price: $65

Abstract

Background: Small interfering RNAs (siRNAs) are known as commonly used targeting mRNAs tools for suppressing gene expression. Since Signal Transducer and Activator of Transcription 4 (STAT4) is considered as a significant transcription factor for generation and differentiation of Th1 cells during vascular dysfunction and atherosclerosis, suppressing STAT4 could represent novel immunomodulatory therapies against atherosclerosis.

Objective: Therefore, the current study was conducted to design efficient siRNAs specific for STAT4 and to evaluate different criteria affecting their functionality.

Methods: In the present study, all related sequences of STAT4 gene were retrieved from Gen Bank database. Multiple sequence alignment was carried out to recognize Open Reading Frame (ORF) and conserved region. Then, siDirect 2.0 server was applied for the development of candidate siRNA molecules and confirmation of predicted molecules was performed using Dharma siRNA technology and GeneScript siRNA targetfinder. In addition, BLAST tool was used against whole Genebank databases to identify potential off-target genes. DNA/RNA GC content calculator and mfold server were used to calculate GC content and secondary structure prediction of designed siRNA, respectively. Finally, IntaRNA program was used to study the thermodynamics of interaction between predicted siRNA and target gene.

Results: Based on the obtained results, three efficient siRNA molecules were designed and validated for STAT4 gene silencing using computational methods, which may result in suppressing STAT4 gene expression.

Conclusion: According to our results, this study shows that siRNA targeting STAT4 can be considered as a therapeutic agent in many Th1-mediated pathologic conditions specially atherosclerosis.

Keywords: Atherosclerosis, T helper1, STAT4, siRNA, immunomodulation, gene silencing.

Graphical Abstract
[1]
Galkina, E.; Ley, K. Immune and inflammatory mechanisms of atherosclerosis. (*) Annu. Rev. Immunol., 2009, 27, 165-197.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132620] [PMID: 19302038]
[2]
Karkhah, A.; Zabihi, E.; Ebrahimtabar, F. Can allergic disorders decrease the risk of thromboembolic events in atherosclerosis? an evidence-based review 2016, 2(3), 91-97.
[3]
Karkhah, A.; Amani, J. A potent multivalent vaccine for modulation of immune system in atherosclerosis: An in silico approach; , 2016; 5, pp. (1)50-9.
[http://dx.doi.org/110.7774/cevr.2016.5.1.50]
[4]
Tourani, M.; Karkhah, A.; Najafi, A. Development of an epitopebased vaccine inhibiting immune cells rolling and migration against atherosclerosis using in silico approaches. Comput. Biol. Chem., 2017, 70, 156-163.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.08.016] [PMID: 28886485]
[5]
Hansson, G.K.; Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol., 2006, 6(7), 508-519.
[http://dx.doi.org/10.1038/nri1882] [PMID: 16778830]
[6]
Moore, K.J.; Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell, 2011, 145(3), 341-355.
[http://dx.doi.org/10.1016/j.cell.2011.04.005] [PMID: 21529710]
[7]
Lichtman, A.H.; Binder, C.J.; Tsimikas, S.; Witztum, J.L. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J. Clin. Invest., 2013, 123(1), 27-36.
[http://dx.doi.org/10.1172/JCI63108] [PMID: 23281407]
[8]
Yamane, H.; Paul, W.E. Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets. Immunol. Rev., 2013, 252(1), 12-23.
[http://dx.doi.org/10.1111/imr.12032] [PMID: 23405892]
[9]
Karkhah, A.; Saadi, M.; Nouri, H.R. In silico analyses of heat shock protein 60 and calreticulin to designing a novel vaccine shifting immune response toward T helper 2 in atherosclerosis. Comput. Biol. Chem., 2017, 67, 244-254.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.01.011] [PMID: 28189968]
[10]
Kaplan, M.H. STAT4: a critical regulator of inflammation in vivo. Immunol. Res., 2005, 31(3), 231-242.
[http://dx.doi.org/10.1385/IR:31:3:231] [PMID: 15888914]
[11]
Lazarevic, V.; Glimcher, L.H. T-bet in disease. Nat. Immunol., 2011, 12(7), 597-606.
[http://dx.doi.org/10.1038/ni.2059] [PMID: 21685955]
[12]
Thieu, V.T.; Yu, Q.; Chang, H-C.; Yeh, N.; Nguyen, E.T.; Sehra, S.; Kaplan, M.H. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity, 2008, 29(5), 679-690.
[http://dx.doi.org/10.1016/j.immuni.2008.08.017] [PMID: 18993086]
[13]
Buono, C.; Binder, C.J.; Stavrakis, G.; Witztum, J.L.; Glimcher, L.H.; Lichtman, A.H. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl. Acad. Sci. USA, 2005, 102(5), 1596-1601.
[http://dx.doi.org/10.1073/pnas.0409015102] [PMID: 15665085]
[14]
Mo, C.; Chearwae, W.; O’Malley, J.T.; Adams, S.M.; Kanakasabai, S.; Walline, C.C.; Stritesky, G.L.; Good, S.R.; Perumal, N.B.; Kaplan, M.H.; Bright, J.J. Stat4 isoforms differentially regulate inflammation and demyelination in experimental allergic encephalomyelitis. J. Immunol., 2008, 181(8), 5681-5690.
[http://dx.doi.org/10.4049/jimmunol.181.8.5681] [PMID: 18832727]
[15]
Yang, Z.; Chen, M.; Ellett, J.D.; Fialkow, L.B.; Carter, J.D.; McDuffie, M.; Nadler, J.L. Autoimmune diabetes is blocked in Stat4-deficient mice. J. Autoimmun., 2004, 22(3), 191-200.
[http://dx.doi.org/10.1016/j.jaut.2003.08.006] [PMID: 15041039]
[16]
Lv, L.; Meng, Q.; Ye, M.; Wang, P.; Xue, G. STAT4 deficiency protects against neointima formation following arterial injury in mice. J. Mol. Cell. Cardiol., 2014, 74, 284-294.
[http://dx.doi.org/10.1016/j.yjmcc.2014.06.001] [PMID: 24933129]
[17]
Taghavie-Moghadam, P.L.; Gjurich, B.N.; Jabeen, R.; Krishnamurthy, P.; Kaplan, M.H.; Dobrian, A.D.; Nadler, J.L.; Galkina, E.V. STAT4 deficiency reduces the development of atherosclerosis in mice. Atherosclerosis, 2015, 243(1), 169-178.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.045] [PMID: 26386214]
[18]
Ramaswamy, G.; Slack, F.J. siRNA. A guide for RNA silencing. Chem. Biol., 2002, 9(10), 1053-1055.
[http://dx.doi.org/10.1016/S1074-5521(02)00249-1] [PMID: 12401489]
[19]
Ambesajir, A.; Kaushik, A.; Kaushik, J.J.; Petros, S.T. RNA interference: A futuristic tool and its therapeutic applications. Saudi J. Biol. Sci., 2012, 19(4), 395-403.
[http://dx.doi.org/10.1016/j.sjbs.2012.08.001] [PMID: 23961202]
[20]
Nur, S.M.; Al Amin, M.; Alam, R.; Hasan, M.A.; Hossain, M.A.; Mannan, A. An in silico approach to design potential siRNA molecules for ICP22 (US1) gene silencing of different strains of human herpes simplex 1. J. Young Pharm., 2013, 5(2), 46-49.
[http://dx.doi.org/10.1016/j.jyp.2013.05.001] [PMID: 24023453]
[21]
Liu, Q.; Zhou, H.; Zhang, K.; Shi, X.; Fan, W.; Zhu, R.; Yu, P.S.; Cao, Z. In silico target-specific siRNA design based on domain transfer in heterogeneous data. PLoS One, 2012, 7(12)e50697
[http://dx.doi.org/10.1371/journal.pone.0050697] [PMID: 23284642]
[22]
Taxman, D.J.; Livingstone, L.R.; Zhang, J.; Conti, B.J.; Iocca, H.A.; Williams, K.L.; Lich, J.D.; Ting, J.P.; Reed, W. Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol., 2006, 6(1), 7.
[http://dx.doi.org/10.1186/1472-6750-6-7] [PMID: 16433925]
[23]
Chan, C.Y.; Carmack, C.S.; Long, D.D.; Maliyekkel, A.; Shao, Y.; Roninson, I.B.; Ding, Y. A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics, 2009, 10(Suppl. 1), S33.
[http://dx.doi.org/10.1186/1471-2105-10-S1-S33] [PMID: 19208134]
[24]
Motavaf, M.; Safari, S.; Alavian, S.M. Therapeutic potential of RNA interference: a new molecular approach to antiviral treatment for hepatitis C. J. Viral Hepat., 2012, 19(11), 757-765.
[http://dx.doi.org/10.1111/jvh.12006] [PMID: 23043382]
[25]
Boudreau, R.L.; Davidson, B.L. RNAi therapeutics for CNS disorders. Brain Res., 2010, 1338, 112-121.
[http://dx.doi.org/10.1016/j.brainres.2010.03.038] [PMID: 20307511]
[26]
Czech, M.P.; Aouadi, M.; Tesz, G.J. RNAi-based therapeutic strategies for metabolic disease. Nat. Rev. Endocrinol., 2011, 7(8), 473-484.
[http://dx.doi.org/10.1038/nrendo.2011.57] [PMID: 21502982]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy