3-Benzylbenzothiazolylidene Carbene Catalyzed Isomerization of Dimethyl Maleate to Dimethyl Fumarate: Experimental and Theoretical Results

Author(s): Minita Ojha, Shweta Choudhary, Raj K. Bansal*

Journal Name: Current Organocatalysis

Volume 7 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: N-Heterocyclic Carbenes (NHCs) have emerged as ubiquitous species having applications in a broad range of fields, including organocatalysis and organometallic chemistry. Since Arduengo and co-workers first isolated a bottlable NHC, namely imidazol-2-ylidene derivative, these nucleophilic species have attained a prominent place in synthetic organic chemistry. The NHC-induced non-asymmetric catalysis has turned out to be a really fruitful area of research in recent years.

Methods and Results: The quantitative aspects of the experimental and theoretical investigation of isomerization of dimethyl maleate to dimethyl fumarate catalyzed by an N-heterocyclic carbene (NHC), namely 3-benzylbenzothiazolylidene are being reported for the first time. Dimethyl maleate on treating with 3-benzylbenzothiazolylidene carbene (10 mol%), generated in situ from the reaction of 3- benzylbenzothiazolium bromide with triethylamine in diethyl ether at room temperature under nitrogen atmosphere isomerizes quantitatively to dimethyl fumarate. Theoretical investigation of a model reaction scheme at the wB97XD/6-31+G(d) level reveals that initial attack of the carbene, which is the ratedetermining step, is followed by rotation about the C-C bond in preference to a higher activation free energy path involving proton abstraction. The species so formed splits off the carbene to yield dimethyl fumarate. Eyring equation has been used to rationalize the effect of temperature on the isomerization rate.

Conclusions and Perspective: 3-Benzylbenzothiazolylidene carbene catalyzes the isomerization of dimethyl maleate to its trans-isomer. This carbene can be used in other catalytic reactions, such as acyloin condensation and Stetter reaction.

Keywords: Nitrogen heterocyclic carbene, organocatalysis, isomerization, dimethyl maleate, DFT calculations, dispersion correction, Eyring equation.

Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev., 2007, 107(12), 5606-5655.
[http://dx.doi.org/10.1021/cr068372z] [PMID: 17956132]
Díez-González, S.; Marion, N.; Nolan, S.P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev., 2009, 109(8), 3612-3676.
[http://dx.doi.org/10.1021/cr900074m] [PMID: 19588961]
Arduengo, A.J., III; Harlow, R.L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc., 1991, 113, 361-363.
Arduengo, A.J., III Looking for stable carbenes: The difficulty in starting a new. Acc. Chem. Res., 1999, 32, 913-921.
Ren, Q.; Li, M.; Yuan, L.; Wang, J. Recent advances in N-heterocyclic carbene catalyzed achiral synthesis. Org. Biomol. Chem., 2017, 15(22), 4731-4749.
[http://dx.doi.org/10.1039/C7OB00568G] [PMID: 28540374]
Bergbreiter, D.E.; Su, H.; Koizumi, H.; Tian, J. Polyisobutylene-supported N-heterocyclic carbene palladium catalysts. J. Organomet. Chem., 2011, 696, 1272-1279.
Taige, M.A.; Zeller, A.; Ahrens, S.; Goutal, S.; Herdtweck, E.; Strassner, T. New Pd-NHC- complexes for the Mozoroki-Heck reaction. J. Organomet. Chem., 2007, 692, 1519-1529.
Gottumukkala, A.L.; de Vries, J.G.; Minnaard, A.J. Pd-NHC catalyzed conjugate addition versus the Mizoroki-Heck reaction. Chemistry, 2011, 17(11), 3091-3095.
[http://dx.doi.org/10.1002/chem.201003643] [PMID: 21305628]
Tsubomura, T.; Chiba, M.; Nagai, S.; Ishihira, M.; Matsumoto, K.; Tsukuda, T. Dinuclear macrocyclic palladium complexes having pincer coordinating groups and their catalytic properties in Mozoroki-Heck reactions. J. Organomet. Chem., 2011, 696, 3657-3661.
Hadei, N.; Kantchev, E.A.B.; O’Brien, C.J.; Organ, M.G. Electronic nature of N-heterocyclic carbene ligands: effect on the Suzuki reaction. Org. Lett., 2005, 7(10), 1991-1994.
[http://dx.doi.org/10.1021/ol050471w] [PMID: 15876037]
Lebel, H.; Janes, M.K.; Charette, A.B.; Nolan, S.P. Structure and reactivity of “unusual” N-heterocyclic carbene (NHC) palladium complexes synthesized from imidazolium salts. J. Am. Chem. Soc., 2004, 126(16), 5046-5047.
[http://dx.doi.org/10.1021/ja049759r] [PMID: 15099069]
Sreenivasulu, M.; Kumar, K.S.; Kumar, P.R.; Chandrasekhar, K.B.; Pal, M. N-heterocyclic carbene-mediated hydroacylation-Sonogashira/Heck/Suzuki coupling in a single pot: a new cascade reaction. Org. Biomol. Chem., 2012, 10(8), 1670-1679.
[http://dx.doi.org/10.1039/c2ob06950d] [PMID: 22246347]
Sreenivasulu, M.; Kumar, K.A.; Reddy, K.S.; Kumar, K.S.; Kumar, P.R.; Chandrasekhar, K.B.; Pal, M. 1,3-Bis(2,4,6-trimethylphenyl) imidazolium chloride in combination with triethylamine: an improved catalytic system for hydroacylation/reduction of activated ketones. Tetrahedron Lett., 2011, 52, 727-732.
Ugai, T.; Tanaka, S.; Dokawa, T. A new catalyst for acyloin condensation. J. Pharm. Soc. Jpn., 1943, 63, 296-300.
Breslow, R. On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Am. Chem. Soc., 1958, 80, 3719-3726.
Castells, J.; Domingo, L.; López-Calahorra, F.; Marti, J. New evidence supporting bis(thiazolin-2-ylidene)s as the actual catalytic species in the benzoin condensation. Tetrahedron Lett., 1993, 34, 517-520.
Breslow, R.; Kim, R. The thiazolium catalyzed benzoin condensation with mild base does not involve a “dimer” intermediate. Tetrahedron Lett., 1994, 35, 699-702.
Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J.H.; Melder, J.; Ebel, K.; Brode, S. Preparation, structure, and reactivity of 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a new stable carbene. Angew. Chem. Int. Ed. Engl., 1995, 34, 1021-1023.
Enders, D.; Breuer, K.; Runsink, J.; Teles, J.H. Chemical reactions of the stable carbene 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene. Liebigs Ann., 1996, 1996, 2019-2028.
Clemo, G.R.; Graham, S.B. The cis-trans ethenoid transformation. J. Chem. Soc., 1930, 213-215.
Nozaki, K. cis-trans Isomerizations. II. The mechanism of the amine catalyzed isomerization of diethyl maleate. J. Am. Chem. Soc., 1941, 63, 2681-2683.
Davies, M.; Evans, F.P. The kinetics of some cis-trans isomerization reactions in solutions. Trans. Faraday Soc., 1955, 51, 1506-1517.
Rappoport, Z.; Degani, C.; Patai, S. Amine-catalysed cis–trans-isomerisation of ethyl α-cyano-β-O-methoxyphenylacrylate through a zwitterionic carbanion in benzene. J. Chem. Soc., 1963, 4513-4521.
Cook, A.G.; Voges, A.B.; Kammrath, A.E. Aminal-catalyzed isomerization of and addition to dimethyl maleate. Tetrahedron Lett., 2001, 42, 7349-7352.
Kodomari, M.; Sakamoto, T.; Yoshitomi, S. Stereoselective bromination of acetylenes with bromine in the presence of graphite. Bull. Chem. Soc. Jpn., 1989, 62, 4053-4054.
Baag, M.M.; Kar, A.; Argade, N.P. N-Bromosuccinimide-dibenzoyl peroxide/azabisiso- butyronitrile: a reagent for Z- to E-alkene isomerization. Tetrahedron, 2003, 59, 6489-6492.
Janus, E.; Lozynski, M.; Pernak, J. Protic, imidazolium ionic liquids as media for (Z)- to (E)-alkene isomerization. Chem. Lett., 2006, 35, 210-211.
Hartzler, H.D. Nucleophilic 1,3-dithiolium carbenes. J. Am. Chem. Soc., 1970, 92, 1412-1413.
Nakai, T.; Okawara, M. Formation of α-dimethylamino-α-methylt-hio-carbene. Carbene-induced isomerization of dimethyl maleate. Chem. Commun., 1970, 907-908.
Karaman, R. Exploring the mechanism for the amine-catalyzed isomerization of dimethyl maleate. A computational study. Tetrahedron Lett., 2011, 52, 6288-6294.
National Library of Medicine. National Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/Triethylammonium-bromide (Accessed August 25, 2019).
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16 Revision B01. Gaussian, Inc.: Wallingford, CT, 2016.
Grimme, S. Density functional theory with London dispersion corrections. Advanced Review, 2011, 1, 211-228.
Kristyàn, S.; Pulay, P. Can (semi) local density functional theory account for the London dispersion forces? Chem. Phys. Lett., 1994, 229, 175-180.
Burns, L.A.; Vázquez-Mayagoitia, A.; Sumpter, B.G.; Sherrill, C.D. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J. Chem. Phys., 2011, 134(8) 084107
[http://dx.doi.org/10.1063/1.3545971] [PMID: 21361527]
Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys., 2008, 10(44), 6615-6620.
[http://dx.doi.org/10.1039/b810189b] [PMID: 18989472]
Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys., 1989, 90, 2154-2168.
Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem., 1990, 94, 5523-5527.
Glendening, E.D.; Reed, E.D.; Carpenter, J.E.; Weinhold, F. NBO version 3.1, TCI; University of Wisconsin: Madison, 1998.
E. Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys., 1997, 107, 3032-3041.
Eyring, H. The activated complex in chemical reaction. J. Chem. Phys., 1935, 3, 107-115.
Evans, M.G.; Polanyi, M. some applications of transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc., 1935, 31, 875-894.
Keusch, P. Eyring equation, http://depa.fquim.unam.mx/amyd/archivero/Ecuacion_Eyring_7482.pdf (Accessed August 28, 2019).

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 01 July, 2020
Page: [108 - 117]
Pages: 10
DOI: 10.2174/2213337206666191018111354

Article Metrics

PDF: 21