Discovering Therapeutic Protein Targets for Bladder Cancer Using Proteomic Data Analysis

Author(s): Samira Bahrami, Bahram Kazemi*, Hakimeh Zali, Peter C. Black, Abbas Basiri, Mojgan Bandehpour, Mehdi Hedayati, Amirhossein Sahebkar.

Journal Name: Current Molecular Pharmacology

Volume 13 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Bladder cancer accounts for almost 54% of urinary system cancer and is the second most frequent cause of death in genitourinary malignancies after prostate cancer. About 70% of bladder tumors are non-muscle-invasive, and the rest are muscle-invasive. Recurrence of the tumor is the common feature of bladder cancer. Chemotherapy is a conventional treatment for MIBC, but it cannot improve the survival rate of these patients sufficiently. Therefore, researchers must develop new therapies. Antibody-based therapy is one of the most important strategies for the treatment of solid tumors. Selecting a suitable target is the most critical step for this strategy.

Objective: The aim of this study is to detect therapeutic cell surface antigen targets in bladder cancer using data obtained by proteomic studies.

Methods: Isobaric tag for relative and absolute quantitation (iTRAQ) analysis had identified 131 overexpressed proteins in baldder cancer tissue and reverse-phase proteomic array (RPPA) analysis had been done for 343 tumor tissues and 208 antibodies. All identified proteins from two studies (131+208 proteins) were collected and duplicates were removed (331 unique proteins). Gene ontology study was performed using gene ontology (GO) and protein analysis through evolutionary relationships (PANTHER) databases. The Human Protein Atlas database was used to search the protein class and subcellular location of membrane proteins obtained from the PANTHER analysis.

Results: Membrane proteins that could be suitable therapeutic targets for bladder cancer were selected. These included: Epidermal growth factor receptor (EGFR), Her2, Kinase insert domain receptor (KDR), Heat shock protein 60 (HSP60), HSP90, Transferrin receptor (TFRC), Activin A Receptor Like Type 1 (ACVRL1), and cadherin 2 (CDH2). Monoclonal antibodies against these proteins or their inhibitors were used for the treatment of different cancers in preclinical and clinical trials.

Conclusion: These monoclonal antibodies and inhibitor molecules and also their combination can be used for the treatment of bladder cancer.

Keywords: Bladder cancer, targeted therapy, monoclonal antibodies, proteomics, DNA.

[1]
Nielsen, M.E.; Smith, A.B.; Meyer, A.M.; Kuo, T.M.; Tyree, S.; Kim, W.Y.; Milowsky, M.I.; Pruthi, R.S.; Millikan, R.C. Trends in stage-specific incidence rates for urothelial carcinoma of the bladder in the United States: 1988 to 2006. Cancer, 2014, 120(1), 86-95.
[http://dx.doi.org/10.1002/cncr.28397] [PMID: 24122346]
[2]
Brincks, E.L.; Risk, M.C.; Griffith, T.S. PMN and anti-tumor immunity--the case of bladder cancer immunotherapy. Semin. Cancer Biol., 2013, 23(3), 183-189.
[http://dx.doi.org/10.1016/j.semcancer.2013.02.002] [PMID: 23410637]
[3]
Kato, M.; Wei, M.; Yamano, S.; Kakehashi, A.; Tamada, S.; Nakatani, T.; Wanibuchi, H. DDX39 acts as a suppressor of invasion for bladder cancer ed.^eds. Cancer science., 2012, p. 1363-1369.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02298.x]
[4]
Yang, X.; Flaig, T.W. Novel targeted agents for the treatment of bladder cancer: translating laboratory advances into clinical application. Int. Braz J Urol, 2010, 36(3), 273-282.
[http://dx.doi.org/10.1590/S1677-55382010000300003] [PMID: 20602819]
[5]
Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder cancer. Lancet, 2009, 374(9685), 239-249.
[http://dx.doi.org/10.1016/S0140-6736(09)60491-8] [PMID: 19520422]
[6]
Wallerand, H.; Bernhard, J-C.; Culine, S.; Ballanger, P.; Robert, G.; Reiter, R.E.; Ferrière, J-M.; Ravaud, A. Targeted therapies in non-muscle-invasive bladder cancer according to the signaling pathways. Urol. Oncol., 2011, 29(1), 4-11.
[http://dx.doi.org/10.1016/j.urolonc.2009.07.025] [PMID: 19914099]
[7]
Stein, J.P.; Lieskovsky, G.; Cote, R.; Groshen, S.; Feng, A-C.; Boyd, S.; Skinner, E.; Bochner, B.; Thangathurai, D.; Mikhail, M.; Raghavan, D.; Skinner, D.G. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol., 2001, 19(3), 666-675.
[http://dx.doi.org/10.1200/JCO.2001.19.3.666] [PMID: 11157016]
[8]
Kopsiaftis, S.; Phoenix, K.N.; Sullivan, K.L.; Hegde, P.; Taylor, J.A.; Claffey, K.P. Role of AMPKalpha isoforms in bladder tumorigenesis. Cancer Res., 2013, 73, 310.
[9]
Mitra, A.P.; Datar, R.H.; Cote, R.J. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J. Clin. Oncol., 2006, 24(35), 5552-5564.
[http://dx.doi.org/10.1200/JCO.2006.08.2073] [PMID: 17158541]
[10]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[11]
Ravetch, J. In vivo veritas: the surprising roles of Fc receptors in immunity. Nat. Immunol., 2010, 11(3), 183-185.
[http://dx.doi.org/10.1038/ni0310-183] [PMID: 20157296]
[12]
Mackay, I.R.; Rose, N.R.; Ledford, D.K.; Lockey, R.F. Encyclopedia of Medical Immunology: Allergic Diseases; Springer New York, 2014.
[13]
Chen, C-L.; Chung, T.; Wu, C-C.; Ng, K-F.; Yu, J-S.; Tsai, C-H.; Chang, Y-S.; Liang, Y.; Tsui, K-H.; Chen, Y-T. Comparative tissue proteomics of microdissected specimens reveals novel candidate biomarkers of bladder cancer. Mol. Cell. Proteomics, 2015, 14(9), 2466-2478.
[http://dx.doi.org/10.1074/mcp.M115.051524] [PMID: 26081836]
[14]
Robertson, AG; Kim, J; Al-Ahmadie, H; Bellmunt, J; Guo, G; Cherniack, AD; Hinoue, T; Laird, PW; Hoadley, KA; Akbani, R Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell, 2017, 171, 540-556.
[http://dx.doi.org/10.1016/j.cell.2017.09.007]
[15]
Bellmunt, J.; Hussain, M.; Dinney, C.P. Novel approaches with targeted therapies in bladder cancer. Therapy of bladder cancer by blockade of the epidermal growth factor receptor family. Crit. Rev. Oncol. Hematol., 2003, 46(Suppl.), S85-S104.
[http://dx.doi.org/10.1016/S1040-8428(03)00067-2] [PMID: 12850530]
[16]
Carpenter, G.; Cohen, S. Epidermal growth factor. Annu. Rev. Biochem., 1979, 48, 193-216.
[http://dx.doi.org/10.1146/annurev.bi.48.070179.001205] [PMID: 382984]
[17]
Chow, N-H.; Chan, S-H.; Tzai, T-S.; Ho, C-L.; Liu, H-S. Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clin. Cancer Res., 2001, 7(7), 1957-1962.
[PMID: 11448910]
[18]
Olapade-Olaopa, E.O.; Moscatello, D.K.; MacKay, E.H.; Horsburgh, T.; Sandhu, D.P.; Terry, T.R.; Wong, A.J.; Habib, F.K. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br. J. Cancer, 2000, 82(1), 186-194.
[http://dx.doi.org/10.1054/bjoc.1999.0898] [PMID: 10638988]
[19]
Wikstrand, C.J.; McLendon, R.E.; Friedman, A.H.; Bigner, D.D. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res., 1997, 57(18), 4130-4140.
[PMID: 9307304]
[20]
Chu, C.T.; Everiss, K.D.; Wikstrand, C.J.; Batra, S.K.; Kung, H.J.; Bigner, D.D. Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem. J., 1997, 324(Pt 3), 855-861.
[http://dx.doi.org/10.1042/bj3240855] [PMID: 9210410]
[21]
Herbst, R.S.; Shin, D.M. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer, 2002, 94(5), 1593-1611.
[http://dx.doi.org/10.1002/cncr.10372] [PMID: 11920518]
[22]
Lee, J-S.; Leem, S-H.; Lee, S-Y.; Kim, S-C.; Park, E-S.; Kim, S-B.; Kim, S-K.; Kim, Y-J.; Kim, W-J.; Chu, I-S. Expression signature of E2F1 and its associated genes predict superficial to invasive progression of bladder tumors. J. Clin. Oncol., 2010, 28(16), 2660-2667.
[http://dx.doi.org/10.1200/JCO.2009.25.0977] [PMID: 20421545]
[23]
Modlich, O.; Prisack, H-B.; Pitschke, G.; Ramp, U.; Ackermann, R.; Bojar, H.; Vögeli, T.A.; Grimm, M-O. Identifying superficial, muscle-invasive, and metastasizing transitional cell carcinoma of the bladder: use of cDNA array analysis of gene expression profiles. Clin. Cancer Res., 2004, 10(10), 3410-3421.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0134] [PMID: 15161696]
[24]
Mooso, B.A.; Vinall, R.L.; Mudryj, M.; Yap, S.A.; deVere White, R.W.; Ghosh, P.M. The role of EGFR family inhibitors in muscle invasive bladder cancer: a review of clinical data and molecular evidence. J. Urol., 2015, 193(1), 19-29.
[http://dx.doi.org/10.1016/j.juro.2014.07.121] [PMID: 25158272]
[25]
Flaig, T.W.; Su, L.J.; McCoach, C.; Li, Y.; Raben, D.; Varella-Garcia, M.; Bemis, L.T. Dual epidermal growth factor receptor and vascular endothelial growth factor receptor inhibition with vandetanib sensitizes bladder cancer cells to cisplatin in a dose- and sequence-dependent manner. BJU Int., 2009, 103(12), 1729-1737.
[http://dx.doi.org/10.1111/j.1464-410X.2009.08367.x] [PMID: 19220256]
[26]
Hovey, R.M.; Chu, L.; Balazs, M.; DeVries, S.; Moore, D.; Sauter, G.; Carroll, P.R.; Waldman, F.M. Genetic alterations in primary bladder cancers and their metastases. Cancer Res., 1998, 58(16), 3555-3560.
[PMID: 9721860]
[27]
Chaux, A.; Cohen, J.S.; Schultz, L.; Albadine, R.; Jadallah, S.; Murphy, K.M.; Sharma, R.; Schoenberg, M.P.; Netto, G.J. High epidermal growth factor receptor immunohistochemical expression in urothelial carcinoma of the bladder is not associated with EGFR mutations in exons 19 and 21: a study using formalin-fixed, paraffin-embedded archival tissues. Hum. Pathol., 2012, 43(10), 1590-1595.
[http://dx.doi.org/10.1016/j.humpath.2011.11.016] [PMID: 22406363]
[28]
Hoda, D.; Simon, G.R.; Garrett, C.R. Targeting colorectal cancer with anti-epidermal growth factor receptor antibodies: focus on panitumumab. Ther. Clin. Risk Manag., 2008, 4(6), 1221-1227.
[PMID: 19337429]
[29]
Mendelsohn, J. Burchenal American Association for Cancer Research Clinical Research Award Lecture. Blockade of receptors for growth factors: an anticancer therapy--the fourth annual Joseph H Burchenal American Association of Cancer Research Clinical Research Award Lecture. Clin. Cancer Res., 2000, 6(3), 747-753.
[PMID: 10741693]
[30]
Goldstein, N.I.; Prewett, M.; Zuklys, K.; Rockwell, P.; Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res., 1995, 1(11), 1311-1318.
[PMID: 9815926]
[31]
Perrotte, P.; Matsumoto, T.; Inoue, K.; Kuniyasu, H.; Eve, B.Y.; Hicklin, D.J.; Radinsky, R.; Dinney, C.P. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res., 1999, 5(2), 257-265.
[PMID: 10037173]
[32]
Inoue, K.; Slaton, J.W.; Perrotte, P.; Davis, D.W.; Bruns, C.J.; Hicklin, D.J.; McConkey, D.J.; Sweeney, P.; Radinsky, R.; Dinney, C.P. Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin. Cancer Res., 2000, 6(12), 4874-4884.
[PMID: 11156247]
[33]
Azevedo, R.; Ferreira, J.A.; Peixoto, A.; Neves, M.; Sousa, N.; Lima, A.; Santos, L.L. Emerging antibody-based therapeutic strategies for bladder cancer: A systematic review. J. Control. Release, 2015, 214, 40-61.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.002] [PMID: 26196222]
[34]
Wong, Y-N.; Litwin, S.; Vaughn, D.; Cohen, S.; Plimack, E.R.; Lee, J.; Song, W.; Dabrow, M.; Brody, M.; Tuttle, H.; Hudes, G. Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J. Clin. Oncol., 2012, 30(28), 3545-3551.
[http://dx.doi.org/10.1200/JCO.2012.41.9572] [PMID: 22927525]
[35]
Morelli, M.P.; Cascone, T.; Troiani, T.; De Vita, F.; Orditura, M.; Laus, G.; Eckhardt, S.G.; Pepe, S.; Tortora, G.; Ciardiello, F. Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann. Oncol., 2005, 16(Suppl. 4), iv61-iv68.
[http://dx.doi.org/10.1093/annonc/mdi910] [PMID: 15923432]
[36]
Hussain, M.; Daignault, S.; Agarwal, N.; Grivas, P.D.; Siefker-Radtke, A.O.; Puzanov, I.; MacVicar, G.R.; Levine, E.G.; Srinivas, S.; Twardowski, P.; Eisenberger, M.A.; Quinn, D.I.; Vaishampayan, U.N.; Yu, E.Y.; Dawsey, S.; Day, K.C.; Day, M.L.; Al-Hawary, M.; Smith, D.C. A randomized phase 2 trial of gemcitabine/cisplatin with or without cetuximab in patients with advanced urothelial carcinoma. Cancer, 2014, 120(17), 2684-2693.
[http://dx.doi.org/10.1002/cncr.28767] [PMID: 24802654]
[37]
Wheeler, D.L.; Huang, S.; Kruser, T.J.; Nechrebecki, M.M.; Armstrong, E.A.; Benavente, S.; Gondi, V.; Hsu, K-T.; Harari, P.M. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene, 2008, 27(28), 3944-3956.
[http://dx.doi.org/10.1038/onc.2008.19] [PMID: 18297114]
[38]
Weiner, L.M. Fully human therapeutic monoclonal antibodies. J. Immunother., 2006, 29(1), 1-9.
[http://dx.doi.org/10.1097/01.cji.0000192105.24583.83] [PMID: 16365595]
[39]
Giusti, R.M.; Shastri, K.; Pilaro, A.M.; Fuchs, C.; Cordoba-Rodriguez, R.; Koti, K.; Rothmann, M.; Men, A.Y.; Zhao, H.; Hughes, M.; Keegan, P.; Weiss, K.D.; Pazdur, R. U.S. Food and Drug Administration approval: panitumumab for epidermal growth factor receptor-expressing metastatic colorectal carcinoma with progression following fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens. Clin. Cancer Res., 2008, 14(5), 1296-1302.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1354] [PMID: 18316547]
[40]
Köhne, C-H.; Hofheinz, R.; Mineur, L.; Letocha, H.; Greil, R.; Thaler, J.; Fernebro, E.; Gamelin, E.; Decosta, L.; Karthaus, M. First-line panitumumab plus irinotecan/5-fluorouracil/leucovorin treatment in patients with metastatic colorectal cancer. J. Cancer Res. Clin. Oncol., 2012, 138(1), 65-72.
[http://dx.doi.org/10.1007/s00432-011-1061-6] [PMID: 21960318]
[41]
Stephenson, J.J.; Gregory, C.; Burris, H.; Larson, T.; Verma, U.; Cohn, A.; Crawford, J.; Cohen, R.B.; Martin, J.; Lum, P.; Yang, X.; Amado, R.G. An open-label clinical trial evaluating safety and pharmacokinetics of two dosing schedules of panitumumab in patients with solid tumors. Clin. Colorectal Cancer, 2009, 8(1), 29-37.
[http://dx.doi.org/10.3816/CCC.2009.n.005] [PMID: 19203894]
[42]
Mellor, J.D.; Brown, M.P.; Irving, H.R.; Zalcberg, J.R.; Dobrovic, A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J. Hematol. Oncol., 2013, 6, 1.
[http://dx.doi.org/10.1186/1756-8722-6-1] [PMID: 23286345]
[43]
Pfister, D.; Lipton, A.; Belt, R.; Motzer, R.; Winston, C.; Metz, E.; Sherman, E.; Curnow, R. A phase I trial of the epidermal growth factor receptor (EGFR)-directed bispecific antibody (BsAB) MDX- 447 in patients with solid tumors. In: ed.^eds., Proc Am Soc Clin Oncol, 1999, p. 433a.
[44]
Sirotnak, F.M.; Zakowski, M.F.; Miller, V.A.; Scher, H.I.; Kris, M.G. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res., 2000, 6(12), 4885-4892.
[PMID: 11156248]
[45]
Petrylak, D.P.; Tangen, C.M.; Van Veldhuizen, P.J., Jr; Goodwin, J.W.; Twardowski, P.W.; Atkins, J.N.; Kakhil, S.R.; Lange, M.K.; Mansukhani, M.; Crawford, E.D. Results of the Southwest Oncology Group phase II evaluation (study S0031) of ZD1839 for advanced transitional cell carcinoma of the urothelium. BJU Int., 2010, 105(3), 317-321.
[http://dx.doi.org/10.1111/j.1464-410X.2009.08799.x] [PMID: 19888985]
[46]
Zachos, I.; Konstantinopoulos, P.A.; Tzortzis, V.; Gravas, S.; Karatzas, A.; Karamouzis, M.V.; Melekos, M.; Papavassiliou, A.G. Systemic therapy of metastatic bladder cancer in the molecular era: current status and future promise. Expert Opin. Investig. Drugs, 2010, 19(7), 875-887.
[http://dx.doi.org/10.1517/13543784.2010.496450] [PMID: 20528482]
[47]
Witjes, J.A.; Compérat, E.; Cowan, N.C.; De Santis, M.; Gakis, G.; Lebret, T.; Ribal, M.J.; Van der Heijden, A.G.; Sherif, A. European Association of Urology. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol., 2014, 65(4), 778-792.
[http://dx.doi.org/10.1016/j.eururo.2013.11.046] [PMID: 24373477]
[48]
Pruthi, R.S.; Nielsen, M.; Heathcote, S.; Wallen, E.M.; Rathmell, W.K.; Godley, P.; Whang, Y.; Fielding, J.; Schultz, H.; Grigson, G.; Smith, A.; Kim, W. A phase II trial of neoadjuvant erlotinib in patients with muscle-invasive bladder cancer undergoing radical cystectomy: clinical and pathological results. BJU Int., 2010, 106(3), 349-354.
[http://dx.doi.org/10.1111/j.1464-410X.2009.09101.x] [PMID: 20089114]
[49]
Harari, P.M. Epidermal growth factor receptor inhibition strategies in oncology. Endocr. Relat. Cancer, 2004, 11(4), 689-708.
[http://dx.doi.org/10.1677/erc.1.00600] [PMID: 15613446]
[50]
Arteaga, C.L.; Baselga, J. Clinical trial design and end points for epidermal growth factor receptor-targeted therapies: implications for drug development and practice. Clin. Cancer Res., 2003, 9(5), 1579-1589.
[PMID: 12738709]
[51]
Rebouissou, S; Bernard-Pierrot, I; de Reyniès, A; Lepage, M-L; Krucker, C; Chapeaublanc, E; Hérault, A; Kamoun, A; Caillault, A; Letouzé, E EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Science translational medicine, 2014, 6, 244ra91-244ra91.
[http://dx.doi.org/10.1126/scitranslmed.3008970]
[52]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[53]
Birkenkamp-Demtröder, K.; Nordentoft, I.; Christensen, E.; Høyer, S.; Reinert, T.; Vang, S.; Borre, M.; Agerbæk, M.; Jensen, J.B.; Ørntoft, T.F.; Dyrskjøt, L. Genomic alterations in liquid biopsies from patients with bladder cancer. Eur. Urol., 2016, 70(1), 75-82.
[http://dx.doi.org/10.1016/j.eururo.2016.01.007] [PMID: 26803478]
[54]
Krüger, S.; Weitsch, G.; Büttner, H.; Matthiensen, A.; Böhmer, T.; Marquardt, T.; Sayk, F.; Feller, A.C.; Böhle, A. HER2 overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic implications. Int. J. Cancer, 2002, 102(5), 514-518.
[http://dx.doi.org/10.1002/ijc.10731] [PMID: 12432555]
[55]
Ohta, J.I.; Miyoshi, Y.; Uemura, H.; Fujinami, K.; Mikata, K.; Hosaka, M.; Tokita, Y.; Kubota, Y. Fluorescence in situ hybridization evaluation of c-erbB-2 gene amplification and chromosomal anomalies in bladder cancer. Clin. Cancer Res., 2001, 7(8), 2463-2467.
[PMID: 11489827]
[56]
Jimenez, R.E.; Hussain, M.; Bianco, F.J., Jr; Vaishampayan, U.; Tabazcka, P.; Sakr, W.A.; Pontes, J.E.; Wood, D.P., Jr; Grignon, D.J. Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin. Cancer Res., 2001, 7(8), 2440-2447.
[PMID: 11489824]
[57]
Kiss, B.; Wyatt, A.W.; Douglas, J.; Skuginna, V.; Mo, F.; Anderson, S.; Rotzer, D.; Fleischmann, A.; Genitsch, V.; Hayashi, T.; Neuenschwander, M.; Buerki, C.; Davicioni, E.; Collins, C.; Thalmann, G.N.; Black, P.C.; Seiler, R. Her2 alterations in muscle-invasive bladder cancer: Patient selection beyond protein expression for targeted therapy. Sci. Rep., 2017, 7, 42713.
[http://dx.doi.org/10.1038/srep42713] [PMID: 28205537]
[58]
Pressl, M.F.; Cordon-Cardo, C.; Slamon, D.J. Expression of the HER-Z/neu proto-oncogene in normal human adult and fetal tissues. Liver, 1990, 7, 7.
[59]
Carlsson, J.; Wester, K.; De La Torre, M.; Malmström, P-U.; Gårdmark, T. EGFR-expression in primary urinary bladder cancer and corresponding metastases and the relation to HER2-expression. On the possibility to target these receptors with radionuclides. Radiol. Oncol., 2015, 49(1), 50-58.
[http://dx.doi.org/10.2478/raon-2014-0015] [PMID: 25810701]
[60]
Hussain, M.H.; MacVicar, G.R.; Petrylak, D.P.; Dunn, R.L.; Vaishampayan, U.; Lara, P.N., Jr; Chatta, G.S.; Nanus, D.M.; Glode, L.M.; Trump, D.L.; Chen, H.; Smith, D.C. National Cancer Institute. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J. Clin. Oncol., 2007, 25(16), 2218-2224.
[http://dx.doi.org/10.1200/JCO.2006.08.0994] [PMID: 17538166]
[61]
Oudard, S.; Culine, S.; Vano, Y.; Goldwasser, F.; Théodore, C.; Nguyen, T.; Voog, E.; Banu, E.; Vieillefond, A.; Priou, F.; Deplanque, G.; Gravis, G.; Ravaud, A.; Vannetzel, J.M.; Machiels, J.P.; Muracciole, X.; Pichon, M.F.; Bay, J.O.; Elaidi, R.; Teghom, C.; Radvanyi, F.; Beuzeboc, P. Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur. J. Cancer, 2015, 51(1), 45-54.
[http://dx.doi.org/10.1016/j.ejca.2014.10.009] [PMID: 25459391]
[62]
Lambert, J.M.; Chari, R.V. Ado-trastuzumab Emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. In: ed.^eds. ACS Publications, 2014.
[63]
Nordstrom, J.L.; Gorlatov, S.; Zhang, W.; Yang, Y.; Huang, L.; Burke, S.; Li, H.; Ciccarone, V.; Zhang, T.; Stavenhagen, J.; Koenig, S.; Stewart, S.J.; Moore, P.A.; Johnson, S.; Bonvini, E. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res., 2011, 13(6), R123.
[http://dx.doi.org/10.1186/bcr3069] [PMID: 22129105]
[64]
Burris, H.A.; Giaccone, G. Im S-A, Bauer TM, Trepel JB, Nordstrom JL, Li H, Carlin DA, Baughman JE, Stewart S. Phase I study of margetuximab (MGAH22), an FC-modified chimeric monoclonal antibody (MAb), in patients (pts) with advanced solid tumors expressing the HER2 oncoprotein. In: ed.^eds. American Society of Clinical Oncology, 2013.
[65]
Wülfing, C.; Machiels, J.P.H.; Richel, D.J.; Grimm, M.O.; Treiber, U.; De Groot, M.R.; Beuzeboc, P.; Parikh, R.; Pétavy, F.; El-Hariry, I.A. A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer, 2009, 115(13), 2881-2890.
[http://dx.doi.org/10.1002/cncr.24337] [PMID: 19399906]
[66]
Powles, T.; Huddart, R.A.; Elliott, T.; Jones, R.; Hussain, S.A.; Crabb, S.J.; Ackerman, C.; Jagdev, S.; Chester, J.D.; Hilman, S. A phase II/III, double-blind, randomized trial comparing maintenance lapatinib versus placebo after first line chemotherapy in HER1/2 positive metastatic bladder cancer patients. In: ed.^eds. American Society of Clinical Oncology, 2015.
[67]
Narayan, V; Mamtani, R; Keefe, S; Guzzo, T; Malkowicz, SB; Vaughn, DJ Cisplatin, gemcitabine, and lapatinib as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer research and treatment: official journal of Korean Cancer Association, 2016, 48, 1084.
[http://dx.doi.org/10.4143/crt.2015.405]
[68]
Huang, L.; Huang, Z.; Bai, Z.; Xie, R.; Sun, L.; Lin, K. Development and strategies of VEGFR-2/KDR inhibitors. Future Med. Chem., 2012, 4(14), 1839-1852.
[http://dx.doi.org/10.4155/fmc.12.121] [PMID: 23043480]
[69]
Hahn, N.M.; Stadler, W.M.; Zon, R.T.; Waterhouse, D.; Picus, J.; Nattam, S.; Johnson, C.S.; Perkins, S.M.; Waddell, M.J.; Sweeney, C.J. Hoosier Oncology Group. Phase II trial of cisplatin, gemcitabine, and bevacizumab as first-line therapy for metastatic urothelial carcinoma: Hoosier Oncology Group GU 04-75. J. Clin. Oncol., 2011, 29(12), 1525-1530.
[http://dx.doi.org/10.1200/JCO.2010.31.6067] [PMID: 21422406]
[70]
Al-Halafi, A.M. Vascular endothelial growth factor trap-eye and trap technology: Aflibercept from bench to bedside. Oman J. Ophthalmol., 2014, 7(3), 112-115.
[http://dx.doi.org/10.4103/0974-620X.142591] [PMID: 25378873]
[71]
André, T.; Chibaudel, B. [Aflibercept (Zaltrap(®)) approved in metastatic colorectal cancer]. Bull. Cancer, 2013, 100(10), 1023-1025.
[http://dx.doi.org/10.1684/bdc.2013.1807] [PMID: 24047539]
[72]
Twardowski, P.; Stadler, W.M.; Frankel, P.; Lara, P.N.; Ruel, C.; Chatta, G.; Heath, E.; Quinn, D.I.; Gandara, D.R. Phase II study of Aflibercept (VEGF-Trap) in patients with recurrent or metastatic urothelial cancer, a California Cancer Consortium Trial. Urology, 2010, 76(4), 923-926.
[http://dx.doi.org/10.1016/j.urology.2010.04.025] [PMID: 20646741]
[73]
Kong, D-H.; Kim, M.R.; Jang, J.H.; Na, H-J.; Lee, S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci., 2017, 18(8), 1786.
[http://dx.doi.org/10.3390/ijms18081786] [PMID: 28817103]
[74]
Petrylak, D.P.; Tagawa, S.T.; Kohli, M.; Eisen, A.; Canil, C.; Sridhar, S.S.; Spira, A.; Yu, E.Y.; Burke, J.M.; Shaffer, D.; Pan, C.X.; Kim, J.J.; Aragon-Ching, J.B.; Quinn, D.I.; Vogelzang, N.J.; Tang, S.; Zhang, H.; Cavanaugh, C.T.; Gao, L.; Kauh, J.S.; Walgren, R.A.; Chi, K.N. Docetaxel as monotherapy or combined with ramucirumab or icrucumab in second-line treatment for locally advanced or metastatic urothelial carcinoma: an open-label, three-arm, randomized controlled phase II trial. J. Clin. Oncol., 2016, 34(13), 1500-1509.
[http://dx.doi.org/10.1200/JCO.2015.65.0218] [PMID: 26926681]
[75]
Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; Rolland, F.; Demkow, T.; Hutson, T.E.; Gore, M.; Freeman, S.; Schwartz, B.; Shan, M.; Simantov, R.; Bukowski, R.M. TARGET Study Group. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med., 2007, 356(2), 125-134.
[http://dx.doi.org/10.1056/NEJMoa060655] [PMID: 17215530]
[76]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[77]
Sridhar, S.S.; Winquist, E.; Eisen, A.; Hotte, S.J.; McWhirter, E.; Tannock, I.F.; Mukherjee, S.D.; Wang, L.; Blattler, C.; Wright, J.J.; Moore, M.J. A phase II trial of sorafenib in first-line metastatic urothelial cancer: a study of the PMH Phase II Consortium. Invest. New Drugs, 2011, 29(5), 1045-1049.
[http://dx.doi.org/10.1007/s10637-010-9408-4] [PMID: 20191303]
[78]
Krege, S.; Rexer, H.; vom Dorp, F.; de Geeter, P.; Klotz, T.; Retz, M.; Heidenreich, A.; Kühn, M.; Kamradt, J.; Feyerabend, S.; Wülfing, C.; Zastrow, S.; Albers, P.; Hakenberg, O.; Roigas, J.; Fenner, M.; Heinzer, H.; Schrader, M. Prospective randomized double-blind multicentre phase II study comparing gemcitabine and cisplatin plus sorafenib chemotherapy with gemcitabine and cisplatin plus placebo in locally advanced and/or metastasized urothelial cancer: SUSE (AUO-AB 31/05). BJU Int., 2014, 113(3), 429-436.
[http://dx.doi.org/10.1111/bju.12437] [PMID: 24053564]
[79]
Miyata, Y.; Asai, A.; Mitsunari, K.; Matsuo, T.; Ohba, K.; Sakai, H. Safety and efficacy of combination therapy with low-dose gemcitabine, paclitaxel, and sorafenib in patients with cisplatin-resistant urothelial cancer. Med. Oncol., 2015, 32(10), 235.
[http://dx.doi.org/10.1007/s12032-015-0683-y] [PMID: 26310889]
[80]
Ho, J.N.; Byun, S.S.; Lee, S.E.; Youn, J.I.; Lee, S. Multikinase inhibitor motesanib enhances the antitumor effect of cisplatin in cisplatin‑resistant human bladder cancer cells via apoptosis and the PI3K/Akt pathway. Oncol. Rep., 2019, 41(4), 2482-2490.
[http://dx.doi.org/10.3892/or.2019.7005] [PMID: 30816494]
[81]
Gallagher, D.J.; Milowsky, M.I.; Gerst, S.R.; Ishill, N.; Riches, J.; Regazzi, A.; Boyle, M.G.; Trout, A.; Flaherty, A-M.; Bajorin, D.F. Phase II study of sunitinib in patients with metastatic urothelial cancer. J. Clin. Oncol., 2010, 28(8), 1373-1379.
[http://dx.doi.org/10.1200/JCO.2009.25.3922] [PMID: 20142593]
[82]
Grivas, P.D.; Daignault, S.; Tagawa, S.T.; Nanus, D.M.; Stadler, W.M.; Dreicer, R.; Kohli, M.; Petrylak, D.P.; Vaughn, D.J.; Bylow, K.A.; Wong, S.G.; Sottnik, J.L.; Keller, E.T.; Al-Hawary, M.; Smith, D.C.; Hussain, M. Double-blind, randomized, phase 2 trial of maintenance sunitinib versus placebo after response to chemotherapy in patients with advanced urothelial carcinoma. Cancer, 2014, 120(5), 692-701.
[http://dx.doi.org/10.1002/cncr.28477] [PMID: 24249435]
[83]
Gupta, R.S. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol., 1995, 15(1), 1-11.
[http://dx.doi.org/10.1111/j.1365-2958.1995.tb02216.x] [PMID: 7752884]
[84]
Richardson, A.; Schwager, F.; Landry, S.J.; Georgopoulos, C. The importance of a mobile loop in regulating chaperonin/co-chaperonin interaction: humans versus Escherichia coli. J. Biol. Chem., 2001, 276(7), 4981-4987.
[http://dx.doi.org/10.1074/jbc.M008628200] [PMID: 11050098]
[85]
Levy-Rimler, G.; Bell, R.E.; Ben-Tal, N.; Azem, A. Type I chaperonins: not all are created equal. FEBS Lett., 2002, 529(1), 1-5.
[http://dx.doi.org/10.1016/S0014-5793(02)03178-2] [PMID: 12354603]
[86]
Dubaquié, Y.; Looser, R.; Fünfschilling, U.; Jenö, P.; Rospert, S. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J., 1998, 17(20), 5868-5876.
[http://dx.doi.org/10.1093/emboj/17.20.5868] [PMID: 9774331]
[87]
Soltys, B.J.; Gupta, R.S. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp. Cell Res., 1996, 222(1), 16-27.
[http://dx.doi.org/10.1006/excr.1996.0003] [PMID: 8549659]
[88]
Cappello, F.; David, S.; Peri, G.; Farina, F.; Conway de Macario, E.; Macario, A.J.; Zummo, G. Hsp60: molecular anatomy and role in colorectal cancer diagnosis and treatment. Front. Biosci. (Schol. Ed.), 2011, 3, 341-351.
[http://dx.doi.org/10.2741/s155] [PMID: 21196380]
[89]
Cappello, F.; Conway de Macario, E.; Di Felice, V.; Zummo, G.; Macario, A.J. Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin. PLoS Pathog., 2009, 5(8) e1000552
[http://dx.doi.org/10.1371/journal.ppat.1000552] [PMID: 19714222]
[90]
Multhoff, G.; Botzler, C.; Issels, R. The role of heat shock proteins in the stimulation of an immune response. Biol. Chem., 1998, 379(3), 295-300.
[PMID: 9563825]
[91]
Macario, A.J.; Conway de Macario, E. Chaperonopathies and chaperonotherapy. FEBS Lett., 2007, 581(19), 3681-3688.
[http://dx.doi.org/10.1016/j.febslet.2007.04.030] [PMID: 17475257]
[92]
Urushibara, M.; Kageyama, Y.; Akashi, T.; Otsuka, Y.; Takizawa, T.; Koike, M.; Kihara, K. HSP60 may predict good pathological response to neoadjuvant chemoradiotherapy in bladder cancer. Jpn. J. Clin. Oncol., 2007, 37(1), 56-61.
[http://dx.doi.org/10.1093/jjco/hyl121] [PMID: 17095522]
[93]
Stravopodis, D.J.; Margaritis, L.H.; Voutsinas, G.E. Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex. Curr. Med. Chem., 2007, 14(29), 3122-3138.
[http://dx.doi.org/10.2174/092986707782793925] [PMID: 18220746]
[94]
Schmitt, E.; Gehrmann, M.; Brunet, M.; Multhoff, G.; Garrido, C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J. Leukoc. Biol., 2007, 81(1), 15-27.
[http://dx.doi.org/10.1189/jlb.0306167] [PMID: 16931602]
[95]
Sims, J.D.; McCready, J.; Jay, D.G. Extracellular heat shock protein (Hsp)70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One, 2011, 6(4) e18848
[http://dx.doi.org/10.1371/journal.pone.0018848] [PMID: 21533148]
[96]
Lebret, T.; Watson, R.W.G.; Molinié, V.; O’Neill, A.; Gabriel, C.; Fitzpatrick, J.M.; Botto, H. Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer, 2003, 98(5), 970-977.
[http://dx.doi.org/10.1002/cncr.11594] [PMID: 12942564]
[97]
Cardillo, M.R.; Sale, P.; Di Silverio, F. Heat shock protein-90, IL-6 and IL-10 in bladder cancer. Anticancer Res., 2000, 20(6B), 4579-4583.
[PMID: 11205307]
[98]
Lebret, T.; Watson, R.W.G.; Molinié, V.; Poulain, J-E.; O’Neill, A.; Fitzpatrick, J.M.; Botto, H. HSP90 expression: a new predictive factor for BCG response in stage Ta-T1 grade 3 bladder tumours. Eur. Urol., 2007, 51(1), 161-166.
[http://dx.doi.org/10.1016/j.eururo.2006.06.006] [PMID: 16828965]
[99]
Hara, I.; Sato, N.; Miyake, H.; Muramaki, M.; Hikosaka, S.; Kamidono, S. Introduction of 65 kDa antigen of Mycobacterium tuberculosis to cancer cells enhances anti-tumor effect of BCG therapy. Microbiol. Immunol., 2004, 48(4), 289-295.
[http://dx.doi.org/10.1111/j.1348-0421.2004.tb03525.x] [PMID: 15107539]
[100]
Harada, M.; Kimura, G.; Nomoto, K. Heat shock proteins and the antitumor T cell response. Biotherapy, 1998, 10(3), 229-235.
[http://dx.doi.org/10.1007/BF02678301] [PMID: 9559978]
[101]
Mayor-López, L.; Tristante, E.; Carballo-Santana, M.; Carrasco-García, E.; Grasso, S.; García-Morales, P.; Saceda, M.; Luján, J.; García-Solano, J.; Carballo, F.; de Torre, C.; Martínez-Lacaci, I. Comparative study of 17-AAG and NVP-AUY922 in pancreatic and colorectal cancer cells: are there common determinants of sensitivity? Transl. Oncol., 2014, 7(5), 590-604.
[http://dx.doi.org/10.1016/j.tranon.2014.08.001] [PMID: 25389454]
[102]
Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M.F.; Fritz, L.C.; Burrows, F.J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 2003, 425(6956), 407-410.
[http://dx.doi.org/10.1038/nature01913] [PMID: 14508491]
[103]
Xu, W.; Mimnaugh, E.; Rosser, M.F.; Nicchitta, C.; Marcu, M.; Yarden, Y.; Neckers, L. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J. Biol. Chem., 2001, 276(5), 3702-3708.
[http://dx.doi.org/10.1074/jbc.M006864200] [PMID: 11071886]
[104]
Chatterjee, S.; Burns, T.F. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int. J. Mol. Sci., 2017, 18(9), 18.
[http://dx.doi.org/10.3390/ijms18091978] [PMID: 28914774]
[105]
Karkoulis, P.K.; Stravopodis, D.J.; Margaritis, L.H.; Voutsinas, G.E. 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells. BMC Cancer, 2010, 10, 481.
[http://dx.doi.org/10.1186/1471-2407-10-481] [PMID: 20828379]
[106]
Li, Q.Q.; Hao, J-J.; Zhang, Z.; Krane, L.S.; Hammerich, K.H.; Sanford, T.; Trepel, J.B.; Neckers, L.; Agarwal, P.K. Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci. Rep., 2017, 7(1), 201.
[http://dx.doi.org/10.1038/s41598-017-00143-6] [PMID: 28298630]
[107]
Devarakonda, C.V.; Kita, D.; Phoenix, K.N.; Claffey, K.P. Patient-derived heavy chain antibody targets cell surface HSP90 on breast tumors. BMC Cancer, 2015, 15, 614.
[http://dx.doi.org/10.1186/s12885-015-1608-z] [PMID: 26334999]
[108]
Proia, D.A.; Bates, R.C. Ganetespib and HSP90: translating preclinical hypotheses into clinical promise. Cancer Res., 2014, 74(5), 1294-1300.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3263] [PMID: 24556722]
[109]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[110]
Tatokoro, M.; Koga, F.; Yoshida, S.; Kawakami, S.; Fujii, Y.; Neckers, L.; Kihara, K. Potential role of Hsp90 inhibitors in overcoming cisplatin resistance of bladder cancer-initiating cells. Int. J. Cancer, 2012, 131(4), 987-996.
[http://dx.doi.org/10.1002/ijc.26475] [PMID: 21964864]
[111]
Koga, F.; Yoshida, S.; Tatokoro, M.; Kawakami, S.; Fujii, Y.; Kumagai, J.; Neckers, L.; Kihara, K. 496 potential role of heat shock protein 90 inhibitors to overcome chemoradiotherapy resistance associated with her-2 and NF-kb overexpression in muscle-invasive bladder cancer. Eur. Urol. Suppl., 2011, 10, 167.
[http://dx.doi.org/10.1016/S1569-9056(11)60487-9]
[112]
Chehab, M.; Caza, T.; Skotnicki, K.; Landas, S.; Bratslavsky, G.; Mollapour, M.; Bourboulia, D. Targeting Hsp90 in urothelial carcinoma. Oncotarget, 2015, 6(11), 8454-8473.
[http://dx.doi.org/10.18632/oncotarget.3502] [PMID: 25909217]
[113]
McConnell, J.R.; McAlpine, S.R. Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg. Med. Chem. Lett., 2013, 23(7), 1923-1928.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.014] [PMID: 23453837]
[114]
Acquaviva, J.; He, S.; Sang, J.; Smith, D.L.; Sequeira, M.; Zhang, C.; Bates, R.C.; Proia, D.A. mTOR inhibition potentiates HSP90 inhibitor activity via cessation of HSP synthesis. Mol. Cancer Res., 2014, 12(5), 703-713.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0605] [PMID: 24554781]
[115]
Gavenonis, J.; Jonas, N.E.; Kritzer, J.A. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix. Bioorg. Med. Chem., 2014, 22(15), 3989-3993.
[http://dx.doi.org/10.1016/j.bmc.2014.06.006] [PMID: 24984936]
[116]
Thelander, L.; Gräslund, A.; Thelander, M. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem. Biophys. Res. Commun., 1983, 110(3), 859-865.
[http://dx.doi.org/10.1016/0006-291X(83)91040-9] [PMID: 6340669]
[117]
Hoyes, K.P.; Hider, R.C.; Porter, J.B. Cell cycle synchronization and growth inhibition by 3-hydroxypyridin-4-one iron chelators in leukemia cell lines. Cancer Res., 1992, 52(17), 4591-4599.
[PMID: 1511427]
[118]
Wang, F.; Elliott, R.L.; Head, J.F. Inhibitory effect of deferoxamine mesylate and low iron diet on the 13762NF rat mammary adenocarcinoma. Anticancer Res., 1999, 19(1A), 445-450.
[PMID: 10226580]
[119]
Jiang, X.P.; Wang, F.; Yang, D.C.; Elliott, R.L.; Head, J.F. Induction of apoptosis by iron depletion in the human breast cancer MCF-7 cell line and the 13762NF rat mammary adenocarcinoma in vivo. Anticancer Res., 2002, 22(5), 2685-2692.
[PMID: 12529982]
[120]
Torti, S.V.; Torti, F.M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[http://dx.doi.org/10.1038/nrc3495] [PMID: 23594855]
[121]
Jiang, X.P.; Elliott, R.L.; Head, J.F. Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res., 2010, 30(3), 759-765.
[PMID: 20392994]
[122]
McClelland, A.; Kühn, L.C.; Ruddle, F.H. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell, 1984, 39(2 Pt 1), 267-274.
[http://dx.doi.org/10.1016/0092-8674(84)90004-7] [PMID: 6094009]
[123]
Daniels, T.R.; Delgado, T.; Rodriguez, J.A.; Helguera, G.; Penichet, M.L. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol., 2006, 121(2), 144-158.
[http://dx.doi.org/10.1016/j.clim.2006.06.010] [PMID: 16904380]
[124]
Gatter, K.C.; Brown, G.; Trowbridge, I.S.; Woolston, R.E.; Mason, D.Y. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J. Clin. Pathol., 1983, 36(5), 539-545.
[http://dx.doi.org/10.1136/jcp.36.5.539] [PMID: 6302135]
[125]
Yang, D.C.; Wang, F.; Elliott, R.L.; Head, J.F. Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res., 2001, 21(1B), 541-549.
[PMID: 11299801]
[126]
Prior, R.; Reifenberger, G.; Wechsler, W. Transferrin receptor expression in tumours of the human nervous system: relation to tumour type, grading and tumour growth fraction. Virchows Arch. A Pathol. Anat. Histopathol., 1990, 416(6), 491-496.
[http://dx.doi.org/10.1007/BF01600299] [PMID: 2110696]
[127]
Seymour, G.J.; Walsh, M.D.; Lavin, M.F.; Strutton, G.; Gardiner, R.A. Transferrin receptor expression by human bladder transitional cell carcinomas. Urol. Res., 1987, 15(6), 341-344.
[http://dx.doi.org/10.1007/BF00265663] [PMID: 3324443]
[128]
Kondo, K.; Noguchi, M.; Mukai, K.; Matsuno, Y.; Sato, Y.; Shimosato, Y.; Monden, Y. Transferrin receptor expression in adenocarcinoma of the lung as a histopathologic indicator of prognosis. Chest, 1990, 97(6), 1367-1371.
[http://dx.doi.org/10.1378/chest.97.6.1367] [PMID: 2189695]
[129]
Tacchini, L.; Bianchi, L.; Bernelli-Zazzera, A.; Cairo, G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem., 1999, 274(34), 24142-24146.
[http://dx.doi.org/10.1074/jbc.274.34.24142] [PMID: 10446187]
[130]
Ryschich, E.; Huszty, G.; Knaebel, H.P.; Hartel, M.; Büchler, M.W.; Schmidt, J. Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur. J. Cancer, 2004, 40(9), 1418-1422.
[http://dx.doi.org/10.1016/j.ejca.2004.01.036] [PMID: 15177502]
[131]
Smith, N.W.; Strutton, G.M.; Walsh, M.D.; Wright, G.R.; Seymour, G.J.; Lavin, M.F.; Gardiner, R.A. Transferrin receptor expression in primary superficial human bladder tumours identifies patients who develop recurrences. Br. J. Urol., 1990, 65(4), 339-344.
[http://dx.doi.org/10.1111/j.1464-410X.1990.tb14752.x] [PMID: 2340368]
[132]
Essaghir, A.; Demoulin, J-B. A minimal connected network of transcription factors regulated in human tumors and its application to the quest for universal cancer biomarkers. PLoS One, 2012, 7(6) e39666
[http://dx.doi.org/10.1371/journal.pone.0039666] [PMID: 22761861]
[133]
Griffin, T.W.; Pagnini, P.G.; McGrath, J.J.; McCann, J.C.; Houston, L.L. In vitro cytotoxicity of recombinant ricin A chain-antitransferrin receptor immunotoxin against human adenocarcinomas of the colon and pancreas. J. Biol. Response Mod., 1988, 7(6), 559-567.
[PMID: 3265147]
[134]
Debinski, W.; Pastan, I. Monovalent immunotoxin containing truncated form of Pseudomonas exotoxin as potent antitumor agent. Cancer Res., 1992, 52(19), 5379-5385.
[PMID: 1394141]
[135]
Dreier, T.; Lode, H.N.; Xiang, R.; Dolman, C.S.; Reisfeld, R.A.; Kang, A.S. Recombinant immunocytokines targeting the mouse transferrin receptor: construction and biological activities. Bioconjug. Chem., 1998, 9(4), 482-489.
[http://dx.doi.org/10.1021/bc980020e] [PMID: 9667950]
[136]
Xu, L.; Huang, C-C.; Huang, W.; Tang, W-H.; Rait, A.; Yin, Y.Z.; Cruz, I.; Xiang, L-M.; Pirollo, K.F.; Chang, E.H. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther., 2002, 1(5), 337-346.
[PMID: 12489850]
[137]
Daniels, T.R.; Bernabeu, E.; Rodríguez, J.A.; Patel, S.; Kozman, M.; Chiappetta, D.A.; Holler, E.; Ljubimova, J.Y.; Helguera, G.; Penichet, M.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta, 2012, 1820(3), 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[138]
Chang, J.; Paillard, A.; Passirani, C.; Morille, M.; Benoit, J-P.; Betbeder, D.; Garcion, E. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm. Res., 2012, 29(6), 1495-1505.
[http://dx.doi.org/10.1007/s11095-011-0624-1] [PMID: 22167349]
[139]
Mayers, G.; Raghavan, D.; Hitt, S.; Glaves, D. Transferrin-gemcitabine conjugates: application to chemotherapy. Proc 89th Annual Meeting Am Assoc Cancer Res, 1998, pp. 63-64.
[140]
Lamouille, S.; Mallet, C.; Feige, J-J.; Bailly, S. Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood, 2002, 100(13), 4495-4501.
[http://dx.doi.org/10.1182/blood.V100.13.4495] [PMID: 12453878]
[141]
Necchi, A.; Giannatempo, P.; Mariani, L.; Farè, E.; Raggi, D.; Pennati, M.; Zaffaroni, N.; Crippa, F.; Marchianò, A.; Nicolai, N.; Maffezzini, M.; Togliardi, E.; Daidone, M.G.; Gianni, A.M.; Salvioni, R.; De Braud, F. PF-03446962, a fully-human monoclonal antibody against transforming growth-factor β (TGFβ) receptor ALK1, in pre-treated patients with urothelial cancer: an open label, single-group, phase 2 trial. Invest. New Drugs, 2014, 32(3), 555-560.
[http://dx.doi.org/10.1007/s10637-014-0074-9] [PMID: 24566706]
[142]
Harrison, O.J.; Jin, X.; Hong, S.; Bahna, F.; Ahlsen, G.; Brasch, J.; Wu, Y.; Vendome, J.; Felsovalyi, K.; Hampton, C.M.; Troyanovsky, R.B.; Ben-Shaul, A.; Frank, J.; Troyanovsky, S.M.; Shapiro, L.; Honig, B. The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure, 2011, 19(2), 244-256.
[http://dx.doi.org/10.1016/j.str.2010.11.016] [PMID: 21300292]
[143]
Mrozik, K.M.; Blaschuk, O.W.; Cheong, C.M.; Zannettino, A.C.W.; Vandyke, K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer, 2018, 18(1), 939.
[http://dx.doi.org/10.1186/s12885-018-4845-0] [PMID: 30285678]
[144]
Wallerand, H.; Cai, Y.; Wainberg, Z.A.; Garraway, I.; Lascombe, I.; Nicolle, G.; Thiery, J-P.; Bittard, H.; Radvanyi, F.; Reiter, R.R. Phospho-Akt pathway activation and inhibition depends on Ncadherin or phospho-EGFR expression in invasive human bladder cancer cell lines. ed.^eds., Urologic Oncology: Seminars and Original Investigations; Elsevier, 2010, p. 180-188.
[http://dx.doi.org/10.1016/j.urolonc.2008.09.041]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 2
Year: 2020
Page: [150 - 172]
Pages: 23
DOI: 10.2174/1874467212666191016124935
Price: $65

Article Metrics

PDF: 38
HTML: 4
EPUB: 1