A Random Forest Model to Predict the Activity of a Large Set of Soluble Epoxide Hydrolase Inhibitors Solely Based on a Set of Simple Fragmental Descriptors

Author(s): Jamal Shamsara*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 8 , 2019

Become EABM
Become Reviewer
Call for Editor


Background: The Soluble Epoxide Hydrolase (sEH) is a ubiquitously expressed enzyme in various tissues. The inhibition of the sEH has shown promising results to treat hypertension, alleviate pain and inflammation.

Objective: In this study, the power of machine learning has been employed to develop a predictive QSAR model for a large set of sEH inhibitors.

Methods: In this study, the random forest method was employed to make a valid model for the prediction of sEH inhibition. Besides, two new methods (Treeinterpreter python package and LIME, Local Interpretable Model-agnostic Explanations) have been exploited to explain and interpret the model.

Results: The performance metrics of the model were as follows: R2=0.831, Q2=0.565, RMSE=0.552 and R2 pred=0.595. The model also demonstrated good predictability on the two extra external test sets at least in terms of ranking. The Spearman’s rank correlation coefficients for external test set 1 and 2 were 0.872 and 0.673, respectively. The external test set 2 was a diverse one compared to the training set. Therefore, the model could be used for virtual screening to enrich potential sEH inhibitors among a diverse compound library.

Conclusion: As the model was solely developed based on a set of simple fragmental descriptors, the model was explained by two local interpretation algorithms, and this could guide medicinal chemists to design new sEH inhibitors. Moreover, the most important general descriptors (fragments) suggested by the model were consistent with the available crystallographic data. The model is available as an executable binary at http://www.pharm-sbg.com and https://github.com/shamsaraj.

Keywords: Cheminformatics, machine learning, QSAR, random forest, soluble epoxide hydrolase, virtual screening.

Shen, H.C. Soluble epoxide hydrolase inhibitors: A patent review. Expert Opin. Ther. Pat., 2010, 20(7), 941-956.
He, J.; Wang, C.; Zhu, Y.; Ai, D. Soluble epoxide hydrolase: A potential target for metabolic diseases. J. Diabetes, 2016, 8(3), 305-313.
[http://dx.doi.org/10.1111/1753-0407.12358] [PMID: 26621325]
Mohammadpour, A.H.; Nazemian, F.; Moallem, S.A.; Alamdaran, S.A.; Asad-Abadi, E.; Shamsara, J. Correlation between heat-shock protein 27 serum concentration and common carotid intima-media thickness in hemodialysis patients. Iran. J. Kidney Dis., 2011, 5(4), 260-266.
[PMID: 21725184]
Mohammadpour, A.H.; Falsoleiman, H.; Shamsara, J.; Allah Abadi, G.; Rasooli, R.; Ramezani, M. Pentoxifylline decreases serum level of adhesion molecules in atherosclerosis patients. Iran. Biomed. J., 2014, 18(1), 23-27.
[PMID: 24375159]
Tu, R.; Armstrong, J.; Lee, K.S.S.; Hammock, B.D.; Sapirstein, A.; Koehler, R.C. Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci. Rep., 2018, 8(1), 5279.
[http://dx.doi.org/10.1038/s41598-018-23504-1] [PMID: 29588470]
Tripathi, N.; Paliwal, S.; Sharma, S.; Verma, K.; Gururani, R.; Tiwari, A.; Verma, A.; Chauhan, M.; Singh, A.; Kumar, D.; Pant, A. Discovery of novel soluble epoxide hydrolase inhibitors as potent vasodilators. Sci. Rep., 2018, 8(1), 14604.
[http://dx.doi.org/10.1038/s41598-018-32449-4] [PMID: 30279487]
Lukin, A.; Kramer, J.; Hartmann, M.; Weizel, L.; Hernandez-Olmos, V.; Falahati, K.; Burghardt, I.; Kalinchenkova, N.; Bagnyukova, D.; Zhurilo, N.; Rautio, J.; Forsberg, M.; Ihalainen, J.; Auriola, S.; Leppänen, J.; Konstantinov, I.; Pogoryelov, D.; Proschak, E.; Dar’in, D.; Krasavin, M. Discovery of polar spirocyclic orally bioavailable urea inhibitors of soluble epoxide hydrolase. Bioorg. Chem., 2018, 80, 655-667.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.014] [PMID: 30059891]
Lee, K.S.S.; Liu, J.Y.; Wagner, K.M.; Pakhomova, S.; Dong, H.; Morisseau, C.; Fu, S.H.; Yang, J.; Wang, P.; Ulu, A.; Mate, C.A.; Nguyen, L.V.; Hwang, S.H.; Edin, M.L.; Mara, A.A.; Wulff, H.; Newcomer, M.E.; Zeldin, D.C.; Hammock, B.D. Correction to optimized inhibitors of soluble epoxide hydrolase improve in vitro target residence time and in vivo efficacy. J. Med. Chem., 2018, 61(9), 4271.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00582] [PMID: 29701466]
Burmistrov, V.; Morisseau, C.; Pitushkin, D.; Karlov, D.; Fayzullin, R.R.; Butov, G.M.; Hammock, B.D. Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(13), 2302-2313.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.024] [PMID: 29803731]
Xing, L.; McDonald, J.J.; Kolodziej, S.A.; Kurumbail, R.G.; Williams, J.M.; Warren, C.J.; O’Neal, J.M.; Skepner, J.E.; Roberds, S.L. Discovery of potent inhibitors of soluble epoxide hydrolase by combinatorial library design and structure-based virtual screening. J. Med. Chem., 2011, 54(5), 1211-1222.
[http://dx.doi.org/10.1021/jm101382t] [PMID: 21302953]
Tanaka, D.; Tsuda, Y.; Shiyama, T.; Nishimura, T.; Chiyo, N.; Tominaga, Y.; Sawada, N.; Mimoto, T.; Kusunose, N. A practical use of ligand efficiency indices out of the fragment-based approach: ligand efficiency-guided lead identification of soluble epoxide hydrolase inhibitors. J. Med. Chem., 2011, 54(3), 851-857.
[http://dx.doi.org/10.1021/jm101273e] [PMID: 21192659]
Das, N.; Dhanawat, M.; Kulshrestha, A.; Shrivastava, S.K. Pharmacophoric modeling and atom-based 3D-QSAR of novel 1-aryl-3-(1-acylpiperidin-4-yl) urea as human soluble epoxide hydrolase inhibitors (sEHIs). Med. Chem., 2011, 7(6), 581-592.
[http://dx.doi.org/10.2174/157340611797928479] [PMID: 22313298]
Xing, L.; Goulet, R.; Johnson, K. Statistical analysis and compound selection of combinatorial libraries for soluble epoxide hydrolase. J. Chem. Inf. Model., 2011, 51(7), 1582-1592.
[http://dx.doi.org/10.1021/ci200123y] [PMID: 21615155]
Polishchuk, P. Interpretation of quantitative structure-activity relationship models: Past, present, and future. J. Chem. Inf. Model., 2017, 57(11), 2618-2639.
[http://dx.doi.org/10.1021/acs.jcim.7b00274] [PMID: 28949520]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
Hadizadeh, F.; Shamsara, J. Receptor-based 3D-QSAR approach to find selectivity features of flexible similar binding sites: Case study on MMP-12/MMP-13. Int. J. Bioinform. Res. Appl., 2015, 11(4), 326-346.
[http://dx.doi.org/10.1504/IJBRA.2015.070139] [PMID: 26561318]
Mitchell, J.B.O. Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2014, 4(5), 468-481.
[http://dx.doi.org/10.1002/wcms.1183] [PMID: 25285160]
Hessler, G.; Baringhaus, K-H. Artificial intelligence in drug design. Molecules, 2018, 23(10), 2520.
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
Landrum, G. RDKit: Open-source Cheminformatics. 2006.Available at. http://www.rdkit.org
Lipiński, P.F.J.; Szurmak, P. SCRAMBLE’N’GAMBLE: a tool for fast and facile generation of random data for statistical evaluation of QSAR models. Chem. Zvesti, 2017, 71(11), 2217-2232.
[http://dx.doi.org/10.1007/s11696-017-0215-7] [PMID: 29104352]
Lenselink, E.B.; Ten Dijke, N.; Bongers, B.; Papadatos, G.; van Vlijmen, H.W.T.; Kowalczyk, W.; IJzerman, A.P.; van Westen, G.J.P. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J. Cheminform., 2017, 9(1), 45.
[http://dx.doi.org/10.1186/s13321-017-0232-0] [PMID: 29086168]
Pedregosa, F. Ga; Varoquaux, l.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, d., Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
Roy, K.; Kar, S.; Das, R. Statistical Methods in QSAR/QSPR.A Primer on QSAR/QSPR Modeling; Springer International Publishing, 2015, pp. 37-59.
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR Models - Strategies and Importance. Int. J. Drug Design Discov., 2011, 2(3), 511-519.
Liu, R.; Wallqvist, A. Molecular similarity-based domain applicability metric efficiently identifies out-of-domain compounds. J. Chem. Inf. Model., 2019, 59(1), 181-189.
[http://dx.doi.org/10.1021/acs.jcim.8b00597] [PMID: 30404432]
Takai, K.; Chiyo, N.; Nakajima, T.; Nariai, T.; Ishikawa, C.; Nakatani, S.; Ikeno, A.; Yamamoto, S.; Sone, T. Three-dimensional rational approach to the discovery of potent substituted cyclopropyl urea soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1705-1708.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.076] [PMID: 25800114]
Amano, Y.; Tanabe, E.; Yamaguchi, T. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening. Bioorg. Med. Chem., 2015, 23(10), 2310-2317.
[http://dx.doi.org/10.1016/j.bmc.2015.03.083] [PMID: 25862210]
Lee, K.S.; Liu, J.Y.; Wagner, K.M.; Pakhomova, S.; Dong, H.; Morisseau, C.; Fu, S.H.; Yang, J.; Wang, P.; Ulu, A.; Mate, C.A.; Nguyen, L.V.; Hwang, S.H.; Edin, M.L.; Mara, A.A.; Wulff, H.; Newcomer, M.E.; Zeldin, D.C.; Hammock, B.D. Optimized inhibitors of soluble epoxide hydrolase improve in vitro target residence time and in vivo efficacy. J. Med. Chem., 2014, 57(16), 7016-7030.
[http://dx.doi.org/10.1021/jm500694p] [PMID: 25079952]
Stierand, K.; Rarey, M. Drawing the PDB: Protein-ligand complexes in two dimensions. ACS Med. Chem. Lett., 2010, 1(9), 540-545.
[http://dx.doi.org/10.1021/ml100164p] [PMID: 24900245]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 16 October, 2019
Page: [555 - 569]
Pages: 15
DOI: 10.2174/1386207322666191016110232
Price: $65

Article Metrics

PDF: 34