Microwave-assisted Single Step Cinnamic Acid Derivatization and Evaluation for Cytotoxic Potential

Author(s): Sonali Mishra, Shilpi Singh, Arif Ali, Amit C. Gupta, Karuna Shanker*, Dnyaneshwar U. Bawankule, Suaib Luqman

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Phenylpropylene biosynthesis pathway plays a crucial role in the vanillin and their derivative(s) production in the plants. The intermediate of vanillin synthesis i.e. cinnamic acid (CA) is converted into 2-Hydroxy 4-MethoxyBenzaldehyde (HMB) in Decalepis arayalpathra having a number of therapeutic value.

Objective: Microwave-assisted modifications in cinnamic acid were planned for potential anticancer properties with better yield and efficiency. The present study also confirms the presence of HMB and its precursor i.e. cinnamic acid in D. arayalpathra tubers.

Methods: We used a single step Microwave Assisted Synthesis (MAS) to modify cinnamic acid, and then examined the synthetic and natural cinnamic acid derivatives anticancer potential against six human cancer (K-562, WRL-68, A549, A431, MCF-7, and COLO-201) and two normal (L-132 and HEK-293) cell lines at 2, 10 and 50 µg/ml concentrations.

Results: β-bromostyrene and β -nitrostyrene have shown inhibition with IC50 values ranging 0.10-21 µM and 0.03-0.06 µM, respectively to the cancer cell lines. β-bromostyrene was the most potent anticancer derivative of CA with better cellular safety and biocompatibility.

Conclusion: The present study of microwave-assisted synthesis demonstrates a single-step modification in cinnamic acid. MAS is a fast, reliable, and robust method. The resultant compounds have shown in-vitro anticancer activity against human lung carcinoma and breast adenocarcinoma.

Keywords: 2-hydroxy-4-methoxybenzaldehyde, PAL synthesis, cinnamic acid, microwave-assisted derivatization, reaction time, anticancer.

Verma, R.S.; Mishra, P.; Kumar, A.; Chauhan, A.; Padalia, R.C.; Sundaresan, V. Chemical composition of root aroma of Decalepis arayalpathra (J. Joseph and V. Chandras.) Venter, an endemic and endangered ethnomedicinal plant from Western Ghats, India. Nat. Prod. Res., 2014, 28(15), 1202-1205.
[http://dx.doi.org/10.1080/14786419.2014.918127] [PMID: 24841455]
Chakraborty, D.; Sircar, D.; Mitra, A. Phenylalanine ammonia-lyase-mediated biosynthesis of 2-hydroxy-4-methoxybenzaldehyde in roots of Hemidesmus indicus. J. Plant Physiol., 2008, 165(10), 1033-1040.
[http://dx.doi.org/10.1016/j.jplph.2007.09.002] [PMID: 18023917]
Steenackers, W.; Klíma, P.; Quareshy, M.; Cesarino, I.; Kumpf, R.P.; Corneillie, S.; Araújo, P.; Viaene, T.; Goeminne, G.; Nowack, M.K.; Ljung, K.; Friml, J.; Blakeslee, J.J.; Novák, O.; Zažímalová, E.; Napier, R.; Boerjan, W.; Vanholme, B. cis-cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol., 2017, 173(1), 552-565.
[http://dx.doi.org/10.1104/pp.16.00943] [PMID: 27837086]
Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 2014, 19(12), 19292-19349.
[http://dx.doi.org/10.3390/molecules191219292] [PMID: 25429559]
Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem., 2012, 12(8), 749-767.
[http://dx.doi.org/10.2174/138955712801264792] [PMID: 22512578]
Chen, Y.L.; Huang, S.T.; Sun, F.M.; Chiang, Y.L.; Chiang, C.J.; Tsai, C.M.; Weng, C.J. Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. Eur. J. Pharm. Sci., 2011, 43(3), 188-194.
[http://dx.doi.org/10.1016/j.ejps.2011.04.012] [PMID: 21536127]
Luo, W.; Zhao, M.; Yang, B.; Shen, G.; Rao, G. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chem., 2009, 114(2), 499-504.
Srivastava, P. Jyotsna.; Gupta, N.; Maurya, A.K.; Shanker, K. New anti-inflammatory triterpene from the root of Ricinus communis. Nat. Prod. Res., 2014, 28(5), 306-311.
[http://dx.doi.org/10.1080/14786419.2013.861834] [PMID: 24279342]
De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem., 2011, 18(11), 1672-1703.
[http://dx.doi.org/10.2174/092986711795471347] [PMID: 21434850]
Hamid, A.A.; Aiyelaagbe, O.O.; Negi, A.S.; Luqman, S.; Kaneez, F. Isolation and antiproliferative activity of chemical constituents from Asystasia buettneri Lindau. Nat. Prod. Res., 2017, 1-5.
[PMID: 28774190]
Woerdenbag, H.J.; Moskal, T.A.; Pras, N.; Malingré, T.M.
el-Feraly, F.S.; Kampinga, H.H.; Konings, A.W. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J. Nat. Prod., 1993, 56(6), 849-856.
[http://dx.doi.org/10.1021/np50096a007] [PMID: 8350087]
Ranjana; Nooreen, Z.; Bushra, U.; Jyotshna.; Bawankule, D. U.; Shanker, K.; Ahmad, A.; Tandon, S., Standardization and xanthine oxidase inhibitory potential of Zanthoxylum armatum fruits. J. Ethnopharmacol., 2019, 230, 1-8.
Srikanta, B.M.; Nayaka, M.A.H.; Dharmesh, S.M. Inhibition of Helicobacter pylori growth and its cytotoxicity by 2-hydroxy 4-methoxy benzaldehyde of Decalepis hamiltonii (Wight & Arn); a new functional attribute. Biochimie, 2011, 93(4), 678-688.
[http://dx.doi.org/10.1016/j.biochi.2010.12.009] [PMID: 21185348]
Fukuyama, T.; Arai, M.; Matsubara, H.; Ryu, I. Mizoroki-Heck arylation of alpha,beta-unsaturated acids with a hybrid fluorous ether, F-626: Facile filtrative separation of products and efficient recycling of a reaction medium containing a catalyst. J. Org. Chem., 2004, 69(23), 8105-8107.
[http://dx.doi.org/10.1021/jo049028+] [PMID: 15527297]
Kim, S.M.; Kim, Y.S.; Kim, D.W.; Yang, J.W. Transition metal-free, NaOtBu-O2-mediated one-pot cascade oxidation of allylic alcohols to α,β-unsaturated carboxylic acids. Green Chem., 2012, 14(11)
Pontiki, E.; Hadjipavlou-Litina, D.; Litinas, K.; Geromichalos, G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules, 2014, 19(7), 9655-9674.
[http://dx.doi.org/10.3390/molecules19079655] [PMID: 25004073]
Dasgupta, A.; Ramkumar, V.; Sankararaman, S. Catalytic asymmetric hydrogenation using a [2.2] paracyclophane based chiral 1, 2, 3-triazol-5-ylidene-Pd complex under ambient conditions and 1 atmosphere of H2. RSC Advances, 2015, 5(28), 21558-21561.
Lee, K.S.; Kim, K.D. Efficient synthesis of primary amides from carboxylic acids using N, N′-carbonyldiimidazole and ammonium acetate in ionic liquid. Synth. Commun., 2011, 41(23), 3497-3500.
Li, L.; Li, Z.; Liu, M.; Shen, W.; Wang, B.; Guo, H.; Lu, Y. Design, synthesis and antimycobacterial activity of novel Imidazo [1, 2-a] pyridine amide-cinnamamide hybrids. Molecules, 2015, 21(1)E49
[http://dx.doi.org/10.3390/molecules21010049] [PMID: 26729085]
Liu, Y-T.; Feng, L.; Yin, D-W. Synthesis and characterization of novel β-amino acid derivatives. Res. Chem. Intermed., 2013, 39(3), 875-880.
Pandey, A.K.; Sharma, R.; Shivahare, R.; Arora, A.; Rastogi, N.; Gupta, S.; Chauhan, P.M. Synthesis of perspicamide A and related diverse analogues: Their bioevaluation as potent antileishmanial agents. J. Org. Chem., 2013, 78(4), 1534-1546.
[http://dx.doi.org/10.1021/jo3025626] [PMID: 23289499]
Yang, Z.; Li, J.; Hua, J.; Yang, T.; Yi, J.; Zhou, C.; Das, J.; Sinha, P.; Roy, S.; Maity, S. Fe (III)/pyridine-mediated decarboxylative nitration of α, β-unsaturated acids with iron nitrate. Synlett, 2017, 28(9), 1079-1082.
Ye, C.; Shreeve, J.M. Structure-dependent oxidative bromination of unsaturated C-C bonds mediated by selectfluor. J. Org. Chem., 2004, 69(24), 8561-8563.
[http://dx.doi.org/10.1021/jo048383x] [PMID: 15549846]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 16 March, 2020
Page: [236 - 243]
Pages: 8
DOI: 10.2174/1389201020666191015161429
Price: $65

Article Metrics

PDF: 12