In Silico Screening for Anti-inflammatory Bioactive Molecules from Ayurvedic Decoction, Balaguluchyadi kashayam

Author(s): Rahitha Devi S. J., Prakash Kumar B.*

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Balaguluchyadi kashayam, a polyherbal Ayurvedic decoction prepared from Sidacordifolia L., Tinospora cordifolia (Willd.) Miers, and Cedrusdeodara (Roxb. ex D.Don) G.Don, is used in Ayurveda for the treatment of chronic inflammatory conditions. Although this herbal decoction has been used for a long period for treating chronic inflammatory conditions, the mechanism of action of the decoction in reducing inflammatory conditions associated with chronic inflammation has not been clearly understood. Mass spectroscopy-based identification of bioactive molecules present in the decoction and its interaction with enzymes/proteins involved in the pathogenesis of chronic inflammation has been carried and reported in this study.

Introduction: Polyherbalism is one of the major principles of Ayurveda. Various phytoconstituents with different activities in the polyherbal decoction act on multi targets of a wide range of diseases. Balaguluchyadi kashayam is a polyherbal decoction prescribed for chronic inflammatory etiologies and the present study aims to evaluate the binding potential of the compounds, identified from Balaguluchyadi kashayam to enzymes/proteins involved in the development and progression of chronic inflammation.

Methods: The bioactive compounds present in the Balaguluchyadi Kashayam fractions were extracted by preparative HPLC and identified using UPLC MS Q-TOF. The physicochemical characteristics and ADMET properties of the compounds were calculated using Mol soft, Swiss ADME and OSIRIS data warrior software. Then the binding interactions between the molecules and the proinflammatory mediators such as 5 Lipoxygenase, Cyclooxygenase 2, Tumor necrosis factoralpha convertase enzyme (TACE) and Caspase 1 were determined using molecular docking software Auto Dock 4.0 (http://autodock.scripps.edu/downloads).

Results: The identified bioactive molecules in the decoction showed a good binding affinity towards the enzymes/proteins involved in the development and progression of chronic inflammation compared to the binding affinity of known inhibitors/drugs to the respective enzymes/proteins.

Conclusion: The bioactive molecules identified in Balaguluchyadi Kashayam could be developed as potential therapeutic molecules against enzymes/proteins involved in the development and progression of chronic inflammation.

Keywords: Balaguluchyadi kashayam, inflammation, pro-inflammatory mediators, UPLCMS Q-TOF, docking, ADMET studies.

[1]
Weiss, U. Inflammation. Nature, 2008, 454(7203), 427-427.
[http://dx.doi.org/10.1038/454427a] [PMID: 18650912]
[2]
Prasad, S. Chronic diseases caused by chronic inflammation require chronic treatment, anti-inflammatory role of dietary spices. J. Clin. Cell. Immunol., 2014, 5(4)
[http://dx.doi.org/10.4172/2155-9899.1000238]
[3]
Barbosa, M.L de C.; Fumian, M.M.; Miranda, A.L.P.; Barreiro, E.J.; Lima, L.M. Therapeutic approaches for tumor necrosis factor inhibition. Braz. J. Pharm. Sci., 2011, 47, 427-446.
[http://dx.doi.org/10.1590/S1984-82502011000300002]
[4]
Dinarello, C.A. Anti-inflammatory agents: present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[5]
Laporte, J.R.; Ibáñez, L.; Vidal, X.; Vendrell, L.; Leone, R. Upper gastrointestinal bleeding associated with the use of NSAIDs: newer versus older agents. Drug Saf., 2004, 27(6), 411-420.
[http://dx.doi.org/10.2165/00002018-200427060-00005] [PMID: 15144234]
[6]
Soltani, S.; Abolhasani, H.; Zarghi, A.; Jouyban, A. QSAR analysis of diaryl COX-2 inhibitors: comparison of feature selection and train-test data selection methods. Eur. J. Med. Chem., 2010, 45(7), 2753-2760.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.055] [PMID: 20332057]
[7]
Garodia, P.; Ichikawa, H.; Malani, N.; Sethi, G.; Aggarwal, B.B. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J. Soc. Integr. Oncol., 2007, 5(1), 25-37.
[http://dx.doi.org/10.2310/7200.2006.029] [PMID: 17309811]
[8]
Bucar, F.; Wube, A.; Schmid, M. Natural product isolation how to get from biological material to pure compounds. Nat. Prod. Rep., 2013, 30(4), 525-545.
[http://dx.doi.org/10.1039/c3np20106f] [PMID: 23396532]
[9]
Kang, K. Bin.; Lee, D. Y.; Kim, T. B.; Kim, S. H.; Kim, H. J.; Kim, J. Prediction of tyrosinase inhibitory activities of Morus alba root bark extracts from HPLC fingerprints. Microchem. J., 2013, 110, 731-738.
[http://dx.doi.org/10.1016/j.microc.2013.08.012]
[10]
Sarkar, P.K.; Prajapati, P.K.; Shukla, V.J.; Ravishankar, B.; Choudhary, A.K. Toxicity and recovery studies of two ayurvedic preparations of iron. Indian J. Exp. Biol., 2009, 47(12), 987-992.
[PMID: 20329703]
[11]
Ruttkies, C.; Schymanski, E.L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform., 2016, 8, 3.
[http://dx.doi.org/10.1186/s13321-016-0115-9] [PMID: 26834843]
[12]
Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 2010, 11, 148.
[http://dx.doi.org/10.1186/1471-2105-11-148] [PMID: 20307295]
[13]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[14]
Dosanjh, N.; Sharma, A.; Randhawa, V.; Singh, H. Insilico Structure-Based Drug Designing of a Potent Inhibitor for Hu-man Notch1 - a Therapeutic Target for forlymphoblastic leu-kemia. Int J Sci Nat, 2011, 2, 705-712.
[15]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446-1457.
[http://dx.doi.org/10.1023/A:1020444330011] [PMID: 12425461]
[16]
Bugata, B.K.; Dowluru, S.K.; Avupati, V.R. Computational Virtual Screening of Sulfonylurea chalcones as New Class of 5-Lipoxygenase Inhibitors by Molecular Docking Studies. Int. J. Comput. Appl., 2013, 78, 44-47.
[17]
Kiefer, J.R.; Pawlitz, J.L.; Moreland, K.T.; Stegeman, R.A.; Hood, W.F.; Gierse, J.K.; Stevens, A.M.; Goodwin, D.C.; Rowlinson, S.W.; Marnett, L.J.; Stallings, W.C.; Kurumbail, R.G. Structural insights into the stereochemistry of the cyclooxygenase reaction. Nature, 2000, 405(6782), 97-101.
[http://dx.doi.org/10.1038/35011103] [PMID: 10811226]
[18]
Bandarage, U.K.; Wang, T.; Come, J.H.; Perola, E.; Wei, Y.; Rao, B.G. Novel thiol-based TACE inhibitors. Part 2: Rational design, synthesis, and SAR of thiol-containing aryl sulfones. Bioorg. Med. Chem. Lett., 2008, 18(1), 44-48.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.014] [PMID: 18054488]
[19]
Wilson, K.P.; Black, J.A.; Thomson, J.A.; Kim, E.E.; Griffith, J.P.; Navia, M.A.; Murcko, M.A.; Chambers, S.P.; Aldape, R.A.; Raybuck, S.A. Structure and mechanism of interleukin-1 beta converting enzyme. Nature, 1994, 370(6487), 270-275.
[http://dx.doi.org/10.1038/370270a0] [PMID: 8035875]
[20]
Pistorius, E. K.; Axelrod, B. Iron, an Essential Component of Lipoxygenase Iron, an Essential Component of Lipoxygenase, 1974, 249, 3183-6.
[21]
Govinda Rao, B.; Bandarage, U.K.; Wang, T.; Come, J.H.; Perola, E.; Wei, Y.; Tian, S.K.; Saunders, J.O. Novel thiol-based TACE inhibitors: rational design, synthesis, and SAR of thiol-containing aryl sulfonamides. Bioorg. Med. Chem. Lett., 2007, 17(8), 2250-2253.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.064] [PMID: 17289381]
[22]
Archana, P. Sathishkumar, N.; Bharathi; N. In Silico Docking Analysis of Curcumin – An Inhibitor for Obesity. Ijpbs, 2010, pp. 224-235.
[23]
Moody, B. An introduction to CYGWIN PhysioNet, 2013.
[24]
Celotti, F.; Durand, T. The metabolic effects of inhibitors of 5-lipoxygenase and of cyclooxygenase 1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy. Prostaglandins Other Lipid Mediat., 2003, 71(3-4), 147-162.
[http://dx.doi.org/10.1016/S1098-8823(03)00039-X] [PMID: 14518558]
[25]
Kumar, B.P.; Abhimannue, A.P.; Mohan, M.C.; Jacob, J.; Babu, B.M. Inhibition of lipoxygenase by ele-phantopus scaber extract and determination of its inhibition pattern. J. Adv. Sci. Res., 2015, 6, 1-5.
[26]
Khanna, S.; Madan, M.; Vangoori, A.; Banerjee, R.; Thaimattam, R.; Jafar Sadik Basha, S.K.; Ramesh, M.; Casturi, S.R.; Pal, M. Evaluation of glycolamide esters of indomethacin as potential cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem., 2006, 14(14), 4820-4833.
[http://dx.doi.org/10.1016/j.bmc.2006.03.023] [PMID: 16581252]
[27]
Brill, A.; Chauhan, A.K.; Canault, M.; Walsh, M.T.; Bergmeier, W.; Wagner, D.D. Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc. Res., 2009, 84(1), 137-144.
[http://dx.doi.org/10.1093/cvr/cvp176] [PMID: 19482949]
[28]
Mathiak, G.; Grass, G.; Herzmann, T.; Luebke, T.; Zetina, C.C.; Boehm, S.A.; Bohlen, H.; Neville, L.F.; Hoelscher, A.H. Caspase-1-inhibitor ac-YVAD-cmk reduces LPS-lethality in rats without affecting haematology or cytokine responses. Br. J. Pharmacol., 2000, 131(3), 383-386.
[http://dx.doi.org/10.1038/sj.bjp.0703629] [PMID: 11015286]
[29]
Kim, M.H.; Nugroho, A.; Choi, J.; Park, J.H.; Park, H.J. Rhododendrin, an analgesic/anti-inflammatory arylbutanoid glycoside, from the leaves of Rhododendron aureum. Arch. Pharm. Res., 2011, 34(6), 971-978.
[http://dx.doi.org/10.1007/s12272-011-0614-1] [PMID: 21725818]
[30]
Lili, W.; Yehong, S.; Qi, Y.; Yan, H.; Jinhui, Z.; Yan, L.; Cheng, G. In vitro permeability analysis, pharmacokinetic and brain distribution study in mice of imperatorin, isoimperatorin and cnidilin in Radix Angelicae Dahuricae. Fitoterapia, 2013, 85, 144-153.
[http://dx.doi.org/10.1016/j.fitote.2013.01.007] [PMID: 23353658]
[31]
Parish, E.J.; Miles, D.H. Investigation of the antitumor activity of podocarpic acid derivatives. J. Pharm. Sci., 1984, 73(5), 694-696.
[http://dx.doi.org/10.1002/jps.2600730528] [PMID: 6737247]
[32]
Telford, J.E.; Kilbride, S.M.; Davey, G.P. Decylubiquinone increases mitochondrial function in synaptosomes. J. Biol. Chem., 2010, 285(12), 8639-8645.
[http://dx.doi.org/10.1074/jbc.M109.079780] [PMID: 20080966]
[33]
Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep., 2005, 22(6), 696-716.
[http://dx.doi.org/10.1039/b514045p] [PMID: 16311631]
[34]
Siddikuzzaman.; Guruvayoorappan, C.; Berlin Grace, V. M. All-Trans Retinoic Acid and Cancer. Immunopharmacol. Immunotoxicol., 2011, 33, 241-249.
[http://dx.doi.org/10.3109/08923973.2010.521507]
[35]
Martin, S.S. Accumulation of the flavonoids betagarin and betavulgarin in Beta vulgaris infected by the fungus Cercospora beticola. Physiol. Plant Pathol., 1977, 11, 297-303.
[http://dx.doi.org/10.1016/0048-4059(77)90072-8]
[36]
Cunha, W.R.; Luis, M.; Sola, R.C.; Ambrósio, S.R.; Bastos, J.K.; Franca, D. Phytochemicals - A Global Perspective of Their Role in Nutrition and Health; InTech, 2012.
[37]
Jung, J.C.; Park, O.S. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives. Molecules, 2009, 14, 4790-4803.
[http://dx.doi.org/10.3390/molecules14114790]
[38]
Pegnyemb, D.E.; Mbing, J.N.; de Théodore Atchadé, A.; Tih, R.G.; Sondengam, B.L.; Blond, A.; Bodo, B. Antimicrobial biflavonoids from the aerial parts of Ouratea sulcata. Phytochemistry, 2005, 66(16), 1922-1926.
[http://dx.doi.org/10.1016/j.phytochem.2005.06.017] [PMID: 16083925]
[39]
Woerdenbag, H.J.; Lemstra, W.; Malingré, T.M.; Konings, A.W.T. Enhanced cytostatic activity of the sesquiterpene lactone eupatoriopicrin by glutathione depletion. Br. J. Cancer, 1989, 59(1), 68-75.
[http://dx.doi.org/10.1038/bjc.1989.13] [PMID: 2757925]
[40]
Xu, P.; Huang, M.W.; Xiao, C.X.; Long, F.; Wang, Y.; Liu, S.Y.; Jia, W.W.; Wu, W.J.; Yang, D.; Hu, J.F.; Liu, X.H.; Zhu, Y.Z. Matairesinol suppresses neuroinflammation and migration associated with src and erk1/2-nf-κb pathway in activating bv2 microglia. Neurochem. Res., 2017, 42(10), 2850-2860.
[http://dx.doi.org/10.1007/s11064-017-2301-1] [PMID: 28512713]
[41]
da Costa, R.C.; Santana, D.B.; Araújo, R.M.; de Paula, J.E.; do Nascimento, P.C.; Lopes, N.P.; Braz-Filho, R.; Espindola, L.S. Discovery of the rapanone and suberonone mixture as a motif for leishmanicidal and antifungal applications. Bioorg. Med. Chem., 2014, 22(1), 135-140.
[http://dx.doi.org/10.1016/j.bmc.2013.11.044] [PMID: 24331757]
[42]
Kobayashi, K.; Nishino, C. Biological Activities of Pisiferic Acid and O-Methyl- pisiferic Acid. Agric. Biol. Chem., 1986, 50, 2405-2407.
[http://dx.doi.org/10.1080/00021369.1986.10867758]
[43]
Suhaimi, S.A.; Hong, S.L.; Abdul Malek, S.N. Rutamarin, an Active Constituent from Ruta angustifolia Pers., Induced Apoptotic Cell Death in the HT29 Colon Adenocarcinoma Cell Line. Pharmacogn. Mag., 2017, 13(Suppl. 2), S179-S188.
[http://dx.doi.org/10.4103/pm.pm_432_16] [PMID: 28808378]
[44]
Mitscher, L.; Han Park, Y.; Alshamma, A.; Hudson, P.B.; Haas, T. Amorfrutin A, and B, bibenzyl antimicrobial agents from Amorpha fruticosa; , 1981, Vol. 20, .
[45]
Lee, K.H.; Anuforo, D.C.; Huang, E.S.; Piantadosi, C. Antitumor agents. I. Augustibalin, a new cytotoxic sesquiterpene lactone from Balduina angustifolia (Pursh.). Robins. J. Pharm. Sci., 1972, 61(4), 626-628.
[http://dx.doi.org/10.1002/jps.2600610431] [PMID: 4335374]
[46]
Du, J.; He, Z.D.; Jiang, R.W.; Ye, W.C.; Xu, H.X.; But, P.P.H. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 2003, 62(8), 1235-1238.
[http://dx.doi.org/10.1016/S0031-9422(02)00753-7] [PMID: 12648543]
[47]
Samaga, K.K.L.; Rao, G.V.; Chandrashekara Reddy, G.; Kush, A.K.; Diwakar, L. Synthetic racemates of abyssinone I and II induces apoptosis through mitochondrial pathway in human cervix carcinoma cells. Bioorg. Chem., 2014, 56, 54-61.
[http://dx.doi.org/10.1016/j.bioorg.2014.06.004] [PMID: 25019692]
[48]
Sharma, P. Cinnamic acid derivatives: A new chapter of vari-ous pharmacological activities. J. Chem. Pharm. Res., 2011, 3, 403-423.
[49]
Hong, J.; Smith, T.J.; Ho, C.T.; August, D.A.; Yang, C.S. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem. Pharmacol., 2001, 62(9), 1175-1183.
[http://dx.doi.org/10.1016/S0006-2952(01)00767-5] [PMID: 11705450]
[50]
Teng, C.M.; Lin, C.H.; Lin, C.N.; Chung, M.I.; Huang, T.F. Frangulin B, an antagonist of collagen-induced platelet aggregation and adhesion, isolated from Rhamnus formosana. Thromb. Haemost., 1993, 70(6), 1014-1018.
[http://dx.doi.org/10.1055/s-0038-1649717] [PMID: 8165593]
[51]
Aggarwal, B.B.; Prasad, S.; Reuter, S.; Kannappan, R.; Yadev, V.R.; Park, B. Identification of novel anti-inflammatory agents from Ayurve-dic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach, 2011, 12
[52]
Bellavance, G.; Barriault, L. Modular Total Syntheses of Hyperforin, Papuaforins A, B, and C via Gold(I)-. Catalyzed Carbocyclization. J. Org. Chem., 2018, 83(13), 7215-7230.
[http://dx.doi.org/10.1021/acs.joc.8b00426] [PMID: 29732886]
[53]
Qiu, J.; Chi, G.; Wu, Q.; Ren, Y.; Chen, C.; Feng, H. Pretreatment with the compound asperuloside decreases acute lung injury via inhibiting MAPK and NF-κB signaling in a murine model. Int. Immunopharmacol., 2016, 31, 109-115.
[http://dx.doi.org/10.1016/j.intimp.2015.12.013] [PMID: 26710167]
[54]
Braquet, P.; Hosford, D. Ethnopharmacology and the development of natural PAF antagonists as therapeutic agents. J. Ethnopharmacol., 1991, 32(1-3), 135-139.
[http://dx.doi.org/10.1016/0378-8741(91)90111-P] [PMID: 1881152]
[55]
N.; Tomiyama, K.; Katsui, N.; Murai, A.; Masamune, T. Biological activities of rishitin, an antifungal com-pound isolated from diseased potato tubers, and its deriva-tives. Plant Cell Physiol., 1969, 10, 183-192.
[56]
Denicolaï, E.; Baeza-Kallee, N.; Tchoghandjian, A.; Carré, M.; Colin, C.; Jiglaire, C.J.; Mercurio, S.; Beclin, C.; Figarella-Branger, D. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo. Oncotarget, 2014, 5(21), 10934-10948.
[http://dx.doi.org/10.18632/oncotarget.2541] [PMID: 25400117]
[57]
Bayazit, V.; Konar, V. Analgesic effects of scilliroside, pro-scillaridin-a and taxifolin from squill bulb (Urginea maritima) on pains. Dig. J. Nanomater. Biostruct., 2010, 5, 457-465.
[58]
Wazen, R.M.; Kuroda, S.; Nishio, C.; Sellin, K.; Brunski, J.B.; Nanci, A. cannabidiolic caid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration. Toxicol. Lett., 2014, 8, 1385-1395.
[59]
Wang, S.; Zhang, C.; Yang, G.; Yang, Y. Biological properties of 6-gingerol: a brief review. Nat. Prod. Commun., 2014, 9(7), 1027-1030.
[http://dx.doi.org/10.1177/1934578X1400900736] [PMID: 25230520]
[60]
Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol., 2015, 6, 297-310.
[http://dx.doi.org/10.1016/j.redox.2015.08.006] [PMID: 26298204]
[61]
Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev., 2011, 22(4), 189-195.
[http://dx.doi.org/10.1016/j.cytogfr.2011.10.001] [PMID: 22019906]
[62]
Ghosal, S.; Chauchan, R.B.P.S.M.R. Alkaloid of Sida Cordifolia. Phytochemistry, 1975, 14, 830-832.
[http://dx.doi.org/10.1016/0031-9422(75)83057-3]
[63]
Dinda, B.; Das, N.; Dinda, S.; Dinda, M. SilSarma, I. The genus Sida L. - A traditional medicine: its ethnopharmacological, phytochemical and pharmacological data for commercial exploitation in herbal drugs industry. J. Ethnopharmacol., 2015, 176, 135-176.
[http://dx.doi.org/10.1016/j.jep.2015.10.027] [PMID: 26497766]
[64]
Jacob, J.; Babu, B.M.; Mohan, M.C.; Abhimannue, A.P.; Kumar, B.P. Inhibition of proinflammatory pathways by bioactive fraction of Tinospora cordifolia. Inflammopharmacology, 2018, 26(2), 531-538.
[http://dx.doi.org/10.1007/s10787-017-0319-2] [PMID: 28197798]
[65]
Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol., 2003, 30(5), 279-291.
[http://dx.doi.org/10.1007/s10295-003-0049-x] [PMID: 12698321]
[66]
Hamsa, N.S.; Nair, V.P.; Chandramohan, V.; Patel, S.J. Pharmacophore elucidation and docking studies on anti-inflammatory compounds of medicinal plants for Ulcerative Colitis. Asian J Pharm Clin Res, 2013, 6, 56-61.
[67]
Hossain, M.M.; Roy, P.K.; Mosnaz, A.T.; Shakil, S.K.; Hasan, M.M.; Prodhan, S.H. Structural analysis and molecular docking of potential ligands with chorismate synthase of Listeria monocytogenes: a novel antibacterial drug target. Indian J. Biochem. Biophys., 2015, 52(1), 45-59.
[PMID: 26040111]
[68]
Jeevanantham Appusamy, S.J. Sangeetha Govindaraj.; Ariharasivakumar Ganesan S. K. Evaluation of anti-inflammatory and anti-arthritic activity of balaguluchyadi kwatham tablets in wistar albino rat models. Int. J. Pharm. Res., 2018, 12, 323-339.
[69]
Krishnan, S.; Peter, J.; Sabu, V.; Helen, A. Scientific validation of Anti-arthritic effect of Kashayams – a polyherbal formulation in collagen-induced arthritic rats. J. Ayurveda Integr. Med., 2018, 1-8.
[70]
Zhang, R.; Han, D.; Li, Z.; Shen, C.; Zhang, Y.; Li, J. Gink-golide C alleviates myocardial ischemia/reperfusion-induced inflammatory injury via inhibition of CD40-NF-κB pathway. Front. Pharmacol., 2018, 9, 1-15.
[71]
Shah, V.O.; Ferguson, J.; Hunsaker, L.A.; Deck, L.M.; Jagt, V.D.L. Cardiac glycosides inhibit LPS-induced activation of pro inflammatory cytokines in whole blood through an NF-κB dependent mechanism. Int. J. Appl. Res. Nat. Prod., 2011, 4, 11-19.
[72]
Cho, J.Y.; Park, J.; Kim, P.S.; Yoo, E.S.; Baik, K.U.; Park, M.H. Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-alpha production and T cell proliferation. Biol. Pharm. Bull., 2001, 24(2), 167-171.
[http://dx.doi.org/10.1248/bpb.24.167] [PMID: 11217086]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 02 September, 2020
Page: [435 - 450]
Pages: 16
DOI: 10.2174/1573409915666191015113753
Price: $65

Article Metrics

PDF: 37
HTML: 1