Anticancer Potential of Dietary Natural Products: A Comprehensive Review

Author(s): Rumana Ahmad*, Mohsin A. Khan, A.N. Srivastava, Anamika Gupta, Aditi Srivastava, Tanvir R. Jafri, Zainab Siddiqui, Sunaina Chaubey, Tahmeena Khan, Arvind K. Srivastava

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative, antihypertensive and antidiabetic properties of several of these natural products are well documented in Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential functional foods for prevention, treatment and management of cancer.

Keywords: Dietary products, spices, anticancer, cytotoxicity, ayurveda, medicinal plants.

[1]
NutritionFacts.org. Why are cancer rates so low in India?. https://nutritionfacts.org/2015/05/05/why-are-cancer-rates-so-low-in-india/ Greger, M. May 5, 2015 (Accessed September 21, 2017).
[2]
Sinha, R.; Anderson, D.E.; McDonald, S.S.; Greenwald, P. Cancer risk and diet in India. J. Postgrad. Med., 2003, 49(3), 222-228.
[PMID: 14597785]
[3]
Samuelsson, G. Drugs of natural origin. A textbook of pharmacognosy, 4th ed; Swedish Pharmaceutical Press: Stockholm, 1999.
[4]
Sarker, M.M.R. Antihyperglycemic, insulin-sensitivity and anti-hyperlipidemic potential of Ganoderma lucidum, a dietary mushroom, on alloxan-and glucocorticoid-induced diabetic Long-Evans rats. Funct. Food Health Dis., 2015, 5(12), 450-466.
[5]
Vadde, R.; Radhakrishnan, S.; Kurundu, H.E.K.; Reddivari, L.; Vanamala, J.K. Indian gooseberry (Emblica officinalis Gaertn.) suppresses cell proliferation and induces apoptosis in human colon cancer stem cells independent of p53 status via suppression of c-Myc and cyclin D1. J. Funct. Foods, 2016, 25, 267-278.
[http://dx.doi.org/10.1016/j.jff.2016.06.007]
[6]
Sarker, M.M.R.; Gohda, E. Promotion of anti-keyhole limpet hemocyanin IgM and IgG antibody productions in vitro by red bell pepper extract. J. Funct. Foods, 2013, 5(4), 1918-1926.
[http://dx.doi.org/10.1016/j.jff.2013.09.013]
[7]
Goto, T.; Sarker, M.M.R.; Zhong, M.; Tanaka, S.; Gohda, E. Enhancement of immunoglobulin M production in B cells by the Extract of Red Bell Pepper. J. Health Sci., 2010, 56(3), 304-309.
[http://dx.doi.org/10.1248/jhs.56.304]
[8]
Mondal, S.; Bandyopadhyay, S.; Ghosh, M.K.; Mukhopadhyay, S.; Roy, S.; Mandal, C. Natural products: promising resources for cancer drug discovery. Anticancer. Agents Med. Chem., 2012, 12(1), 49-75.
[http://dx.doi.org/10.2174/187152012798764697] [PMID: 21707502]
[9]
Butt, M.S.; Naz, A.; Sultan, M.T.; Qayyum, M.M. Anti-oncogenic perspectives of spices/herbs: A comprehensive review. EXCLI J., 2013, 12, 1043-1065.
[PMID: 27092039]
[10]
Bhagat, N.; Chaturvedi, A. Spices as an alternative therapy for cancer treatment. Syst. Rev. Pharm., 2016, 7, 46-56.
[http://dx.doi.org/10.5530/srp.2016.7.7]
[11]
Mahishi, P.; Srinivasa, B.H.; Shivanna, M.B. Medicinal plant wealth of local communities in some villages in Shimoga District of Karnataka, India. J. Ethnopharmacol., 2005, 98(3), 307-312.
[http://dx.doi.org/10.1016/j.jep.2005.01.035] [PMID: 15814264]
[12]
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J. Curcumin and cancer: barriers to obtaining a health claim. Nutr. Rev., 2015, 73(3), 155-165.
[http://dx.doi.org/10.1093/nutrit/nuu064] [PMID: 26024538]
[13]
Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.; Kumar, A.P.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[14]
Ahmad, R.; Fatima, N.; Srivastava, A.N.; Khan, M.A. Anticancer potential of medicinal plants Withania somnifera, Tinospora cordifolia and Curcuma longa: A review. World Res. J. Med. Aromatic Plants, 2015, 3, 47-56.
[15]
Aggarwal, B.B. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu. Rev. Nutr., 2010, 30, 173-199.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104755] [PMID: 20420526]
[16]
Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H.B. Spices for prevention and treatment of cancers. Nutrients, 2016, 8(8), 495.
[http://dx.doi.org/10.3390/nu8080495] [PMID: 27529277]
[17]
Vázquez-Fresno, R.; Rosana, A.; Sajed, T.; Onookome-Okome, T.; Wishart, N.; Wishart, D. Herbs and Spices- biomarkers of intake based on human intervention studies – A systematic review. Genes Nutr., 2019, 14, 18.
[18]
Aggarwal, B.B.; Kumar, A.; Aggarwal, M.S.; Shishodia, S. Curcumin derived from turmeric (Curcuma longa): A spice for all seasons; Phyto. Pharma. Cancer Chemoprevent, 2005, pp. 350-387.
[19]
Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 20.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[20]
Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr., 2019, 11, 1-53.
[http://dx.doi.org/10.1080/10408398.2018.1552244] [PMID: 30632782]
[21]
Ruby, A.J.; Kuttan, G.; Babu, K.D.; Rajasekharan, K.N.; Kuttan, R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett., 1995, 94(1), 79-83.
[http://dx.doi.org/10.1016/0304-3835(95)03827-J] [PMID: 7621448]
[22]
Boozari, M.; Butler, A.E.; Sahebkar, A. Impact of curcumin on toll-like receptors. J. Cell. Physiol., 2019, 234(8), 12471-12482.
[http://dx.doi.org/10.1002/jcp.28103] [PMID: 30623441]
[23]
Song, X.; Zhang, M.; Dai, E.; Luo, Y. Molecular targets of curcumin in breast cancer (Review). Mol. Med. Rep., 2019, 19(1), 23-29.
[PMID: 30483727]
[24]
Talib, W.H.; Al-Hadid, S.A.; Ali, M.B.W.; Al-Yasari, I.H.; Ali, M.R.A. Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. Breast Cancer, 2018, 10, 207-217.
[http://dx.doi.org/10.2147/BCTT.S167812] [PMID: 30568488]
[25]
Kuo, C.L.; Wu, S.Y.; Ip, S.W.; Wu, P.P.; Yu, C.S.; Yang, J.S.; Chen, P.Y.; Wu, S.H.; Chung, J.G. Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. Int. J. Oncol., 2011, 39(2), 319-328.
[PMID: 21617861]
[26]
Yang, C.L.; Ma, Y.G.; Xue, Y.X.; Liu, Y.Y.; Xie, H.; Qiu, G.R. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA Cell Biol., 2012, 31(2), 139-150.
[http://dx.doi.org/10.1089/dna.2011.1300] [PMID: 21711158]
[27]
Mizumoto, A.; Ohashi, S.; Kamada, M.; Saito, T.; Nakai, Y.; Baba, K.; Hirohashi, K.; Mitani, Y.; Kikuchi, O.; Matsubara, J.; Yamada, A.; Takahashi, T.; Lee, H.; Okuno, Y.; Kanai, M.; Muto, M. Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma. J. Gastroenterol., 2019, 54(8), 687-698.
[http://dx.doi.org/10.1007/s00535-019-01549-x] [PMID: 30737573]
[28]
Liu, Z.; Huang, P.; Law, S.; Tian, H.; Leung, W.; Xu, C. Preventive effect of curcumin against chemotherapy-induced side-effects. Front. Pharmacol., 2018, 9, 1374.
[http://dx.doi.org/10.3389/fphar.2018.01374] [PMID: 30538634]
[29]
Dosoky, N.S.; Setzer, W.N. Chemical composition and biological activities of essential oils of curcuma species. Nutrients, 2018, 10(9) E1196
[http://dx.doi.org/10.3390/nu10091196] [PMID: 30200410]
[30]
Lee, G.; Joung, J.Y.; Cho, J.H.; Son, C.G.; Lee, N. Overcoming P-glycoprotein-mediated multidrug resistance in colorectal cancer: Potential reversal agents among herbal medicines. Evid. Based Complement. Alternat. Med., 2018, 2018 3412074
[http://dx.doi.org/10.1155/2018/3412074] [PMID: 30158992]
[31]
Liu, Y.; Sun, H.; Makabel, B.; Cui, Q.; Li, J.; Su, C.; Ashby, C.R., Jr; Chen, Z.; Zhang, J. The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy . Oncol. Rep., 2019, 42(1), 20-34.
[http://dx.doi.org/10.3892/or.2019.7148]
[32]
Willenbacher, E.; Khan, S.Z.; Mujica, S.C.A.; Trapani, D.; Hussain, S.; Wolf, D.; Willenbacher, W.; Spizzo, G.; Seeber, A. Curcumin: New insights into an ancient ingredient against cancer. Int. J. Mol. Sci., 2019, 20(8) E1808
[http://dx.doi.org/10.3390/ijms20081808] [PMID: 31013694]
[33]
Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget, 2017, 8(39), 66680-66698.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[34]
Kwiecien, S.; Magierowski, M.; Majka, J.; Ptak-Belowska, A.; Wojcik, D.; Sliwowski, Z.; Magierowska, K.; Brzozowski, T. Curcumin: A potent protectant against esophageal and gastric disorders. Int. J. Mol. Sci., 2019, 20(6) E1477
[http://dx.doi.org/10.3390/ijms20061477] [PMID: 30909623]
[35]
Deng, T.S. Biological clocks, some clock-related diseases, and medicinal plants. PsyCh J., 2018, 7(4), 197-205.
[http://dx.doi.org/10.1002/pchj.263] [PMID: 30561856]
[36]
Wojcik, M.; Krawczyk, M.; Wojcik, P.; Cypryk, K.; Wozniak, L.A. Molecular mechanisms underlying curcumin-mediated therapeutic effects in Type 2 Diabetes and cancer. Oxid. Med. Cell. Longev., 2018, 2018 9698258
[http://dx.doi.org/10.1155/2018/9698258] [PMID: 29743988]
[37]
Doello, K.; Ortiz, R.; Alvarez, P.J.; Melguizo, C.; Cabeza, L.; Prados, J. Latest in vitro and in vivo assay, clinical trials and patents in cancer treatment using curcumin: A literature review. Nutr. Cancer, 2018, 70(4), 569-578.
[http://dx.doi.org/10.1080/01635581.2018.1464347] [PMID: 29708445]
[38]
Sundar-Dhilip, K.S.; Houreld, N.N.; Abrahamse, H. Therapeutic potential and recent advances of curcumin in the treatment of aging- associated diseases. Molecules, 2018, 23(4), Pii, E835.
[http://dx.doi.org/10.3390/molecules23040835]
[39]
Shehzad, A.; Qureshi, M.; Anwar, M.N.; Lee, Y.S. Multifunctional curcumin mediate multitherapeutic effects. J. Food Sci., 2017, 82(9), 2006-2015.
[http://dx.doi.org/10.1111/1750-3841.13793] [PMID: 28771714]
[40]
Yeung, K.S.; Gubili, J.; Mao, J.J. Herb-drug interactions in cancer care. Oncology (Williston Park), 2018, 32(10), 516-520.
[PMID: 30334243]
[41]
Zhang, C.; Wang, N.; Tan, H.Y.; Guo, W.; Li, S.; Feng, Y. Targeting VEGF/VEGFRs pathway in the antiangiogenic treatment of human cancers by traditional Chinese medicine. Integr. Cancer Ther., 2018, 17(3), 582-601.
[http://dx.doi.org/10.1177/1534735418775828] [PMID: 29807443]
[42]
Frassová, Z.; Rudá-Kučerová, J. Curcumine (Turmeric - Curcuma longa) as a supportive phytotherapeutic treatment in oncology. Klin. Onkol., 2017, 31(1), 15-23.
[PMID: 29488773]
[43]
Cheng, Y.Y.; Hsieh, C.H.; Tsai, T.H. Concurrent administration of anticancer chemotherapy drug and herbal medicine on the perspective of pharmacokinetics. Yao Wu Shi Pin Fen Xi, 2018, 26(2S), S88-S95.
[http://dx.doi.org/10.1016/j.jfda.2018.01.003] [PMID: 29703390]
[44]
Li, J.Y.; Kampp, J.T. Review of common alternative herbal “remedies” for skin cancer. Dermatol. Surg., 2019, 45(1), 58-67.
[http://dx.doi.org/10.1097/DSS.0000000000001622] [PMID: 30096105]
[45]
Nabavi, S.M.; Russo, G.L.; Tedesco, I.; Daglia, M.; Orhan, I.E.; Nabavi, S.F.; Bishayee, A.; Nagulapalli Venkata, K.C.; Abdollahi, M.; Hajheydari, Z. Curcumin and melanoma: From chemistry to medicine. Nutr. Cancer, 2018, 70(2), 164-175.
[http://dx.doi.org/10.1080/01635581.2018.1412485] [PMID: 29300102]
[46]
Shakeri, A.; Ward, N.; Panahi, Y.; Sahebkar, A. Anti-angiogenic activity of curcumin in cancer therapy: A narrative review. Curr. Vasc. Pharmacol., 2019, 17(3), 262-269.
[http://dx.doi.org/10.2174/1570161116666180209113014] [PMID: 29424316]
[47]
Celik, H.; Aydin, T.; Solak, K.; Khalid, S.; Farooqi, A.A. Curcumin on the “flying carpets” to modulate different signal transduction cascades in cancers: Next-generation approach to bridge translational gaps. J. Cell. Biochem., 2018, 119(6), 4293-4303.
[http://dx.doi.org/10.1002/jcb.26749] [PMID: 29384224]
[48]
Murray-Stewart, T.; Casero, R.A. Regulation of polyamine metabolism by curcumin for cancer prevention and therapy. Med. Sci. (Basel), 2017, 5(4), Pii, E38.
[http://dx.doi.org/10.3390/medsci5040038]
[49]
Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomedicine, 2017, 12, 6027-6044.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[50]
Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res., 2013, 57(9), 1529-1542.
[http://dx.doi.org/10.1002/mnfr.201200838] [PMID: 23847105]
[51]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(12), 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[52]
Bisht, S.; Maitra, A. Systemic delivery of curcumin: 21st century solutions for an ancient conundrum. Curr. Drug Discov. Technol., 2009, 6(3), 192-199.
[http://dx.doi.org/10.2174/157016309789054933] [PMID: 19496751]
[53]
Zhai, B.; Zhang, N.; Han, X.; Li, Q.; Zhang, M.; Chen, X.; Li, G.; Zhang, R.; Chen, P.; Wang, W.; Li, C.; Xiang, Y.; Liu, S.; Duan, T.; Lou, J.; Xie, T.; Sui, X. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomed. Pharmacother., 2019, 114 108812
[http://dx.doi.org/10.1016/j.biopha.2019.108812] [PMID: 30965237]
[54]
Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X.; Xie, T. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomedicine, 2018, 13, 6279-6296.
[http://dx.doi.org/10.2147/IJN.S174527] [PMID: 30349250]
[55]
Surh, Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res., 1999, 428(1-2), 305-327.
[http://dx.doi.org/10.1016/S1383-5742(99)00057-5] [PMID: 10518003]
[56]
Kiso, Y.; Suzuki, Y.; Watanabe, N.; Oshima, Y.; Hikino, H. Antihepatotoxic principles of Curcuma longa rhizomes. Planta Med., 1983, 49(3), 185-187.
[http://dx.doi.org/10.1055/s-2007-969845] [PMID: 6657788]
[57]
Soni, K.B.; Rajan, A.; Kuttan, R. Reversal of aflatoxin induced liver damage by turmeric and curcumin. Cancer Lett., 1992, 66(2), 115-121.
[http://dx.doi.org/10.1016/0304-3835(92)90223-I] [PMID: 1394115]
[58]
Liu, X.; Sun, K.; Song, A.; Zhang, X.; Zhang, X.; He, X. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J. Surg. Oncol., 2014, 12, 389.
[http://dx.doi.org/10.1186/1477-7819-12-389] [PMID: 25523120]
[59]
Yoysungnoen-Chintana, P.; Bhattarakosol, P.; Patumraj, S. Antitumor and antiangiogenic activities of curcumin in cervical cancer xenografts in nude mice. BioMed Res. Int., 2014. Article ID 817972
[http://dx.doi.org/10.1155/2014/817972]
[60]
Wen, C.; Fu, L.; Huang, J.; Dai, Y.; Wang, B.; Xu, G.; Wu, L.; Zhou, H. Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin‑resistant breast cancer cells. Mol. Med. Rep., 2019, 19(6), 5162-5168.
[http://dx.doi.org/10.3892/mmr.2019.10180] [PMID: 31059026]
[61]
Li, H.; Zhong, C.; Wang, Q.; Chen, W.; Yuan, Y. Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis. Antiviral Res., 2019, 167, 98-103.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.011] [PMID: 31034848]
[62]
Petiti, J.; Rosso, V.; Lo Iacono, M.; Panuzzo, C.; Calabrese, C.; Signorino, E.; Pironi, L.; Cartellà, A.; Bracco, E.; Pergolizzi, B.; Beltramo, T.; Fava, C.; Cilloni, D. Curcumin induces apoptosis in JAK2-mutated cells by the inhibition of JAK2/STAT and mTORC1 pathways. J. Cell. Mol. Med., 2019, 23(6), 4349-4357.
[http://dx.doi.org/10.1111/jcmm.14326] [PMID: 31033209]
[63]
Mishra, S.; Verma, S.S.; Rai, V.; Awasthee, N.; Arya, J.S.; Maiti, K.K.; Gupta, S.C. Curcuma raktakanda induces apoptosis and suppresses migration in cancer cells: Role of reactive oxygen species. Biomol, 2019, 9(4), Pii, E159.
[64]
Liu, L.D.; Pang, Y.X.; Zhao, X.R.; Li, R.; Jin, C.J.; Xue, J.; Dong, R.Y.; Liu, P.S. Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch. Gynecol. Obstet., 2019, 299(6), 1627-1639.
[http://dx.doi.org/10.1007/s00404-019-05058-3] [PMID: 31006841]
[65]
Lübtow, M.M.; Nelke, L.C.; Seifert, J.; Kühnemundt, J.; Sahay, G.; Dandekar, G.; Nietzer, S.L.; Luxenhofer, R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. J. Control. Release, 2019, 303, 162-180.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.014] [PMID: 30981815]
[66]
Panyajai, P.; Tima, S.; Chiampanichayakul, S.; Anuchapreeda, S. Dietary turmeric bisdemethoxycurcumin suppresses Wilms’ Tumor 1 and CD34 protein expressions in KG-1a leukemic stem cells. Nutr. Cancer, 2019, 71(7), 1189-1200.
[http://dx.doi.org/10.1080/01635581.2019.1598565] [PMID: 30955364]
[67]
Lee, T.K.; Lee, D.; Lee, S.R.; Ko, Y.J.; Sung Kang, K.; Chung, S.J.; Kim, K.H. Sesquiterpenes from Curcuma zedoaria rhizomes and their cytotoxicity against human gastric cancer AGS cells. Bioorg. Chem., 2019, 87, 117-122.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.015] [PMID: 30884305]
[68]
Lee, M.J.; Tsai, Y.J.; Lin, M.Y.; You, H.L.; Kalyanam, N.; Ho, C.T.; Pan, M.H. Calebin-A induced death of malignant peripheral nerve sheath tumor cells by activation of histone acetyltransferase. Phytomedicine, 2019, 57, 377-384.
[http://dx.doi.org/10.1016/j.phymed.2019.01.001] [PMID: 30831486]
[69]
Gu, X.; Zhang, Q.; Zhang, W.; Zhu, L. Curcumin inhibits liver metastasis of gastric cancer through reducing circulating tumor cells. Aging, 2019, 11(5), 1501-1509.
[http://dx.doi.org/10.18632/aging.101848] [PMID: 30844765]
[70]
Kaya, P.; Lee, S.R.; Lee, Y.H.; Kwon, S.W.; Yang, H.; Lee, H.W.; Hong, E.J. Curcumae radix extract decreases mammary tumor-derived lung metastasis via suppression of C-C chemokine receptor type 7 expression. Nutrients, 2019, 11(2) E410
[http://dx.doi.org/10.3390/nu11020410] [PMID: 30781353]
[71]
Soumya, T.; Jayasree, P.R.; Deepak, M.; Manish Kumar, P.R. Chemical composition, antioxidant and antiproliferative activities of essential oil from rhizome and leaves of Curcuma mutabilis Škorničk., M. Sabu & Prasanthk., endemic to Western Ghats of India. Nat. Prod. Res., 2019, 6, 1-5.
[http://dx.doi.org/10.1080/14786419.2018.1533826] [PMID: 30724591]
[72]
Lin, C.Y.; Hung, C.C.; Wang, C.C.N.; Lin, H.Y.; Huang, S.H.; Sheu, M.J. Demethoxycurcumin sensitizes the response of non-small cell lung cancer to cisplatin through downregulation of TP and ERCC1-related pathways. Phytomedicine, 2019, 53, 28-36.
[http://dx.doi.org/10.1016/j.phymed.2018.08.005] [PMID: 30668408]
[73]
Han, H.; Wang, L.; Liu, Y.; Shi, X.; Zhang, X.; Li, M.; Wang, T. Combination of curcuma zedoary and kelp inhibits growth and metastasis of liver cancer in vivo and in vitro via reducing endogenous H2S levels. Food Funct., 2019, 10(1), 224-234.
[http://dx.doi.org/10.1039/C8FO01594E] [PMID: 30534696]
[74]
Zhu, Z.Y.; Xue, J.X.; Yu, L.X.; Bian, W.H.; Zhang, Y.F.; Sohn, K.C.; Shin, I.H.; Yao, C. Reducing postsurgical exudate in breast cancer patients by using San Huang decoction to ameliorate inflammatory status: a prospective clinical trial. Curr. Oncol., 2018, 25(6), e507-e515.
[http://dx.doi.org/10.3747/co.25.4108] [PMID: 30607117]
[75]
Li, Y.; Sun, W.; Han, N.; Zou, Y.; Yin, D. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer, 2018, 18(1), 1230.
[http://dx.doi.org/10.1186/s12885-018-5130-y] [PMID: 30526546]
[76]
Coker-Gurkan, A.; Bulut, D.; Genc, R.; Arisan, E.D.; Obakan-Yerlikaya, P.; Palavan-Unsal, N. Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Mol. Biol. Rep., 2019, 46(1), 355-369.
[PMID: 30467667]
[77]
Li, X.; Ma, S.; Yang, P.; Sun, B.; Zhang, Y.; Sun, Y.; Hao, M.; Mou, R.; Jia, Y. Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncol. Lett., 2018, 16(5), 6756-6762.
[http://dx.doi.org/10.3892/ol.2018.9488] [PMID: 30405819]
[78]
Alkhader, E.; Roberts, C.J.; Rosli, R.; Yuen, K.H.; Seow, E.K.; Lee, Y.Z.; Billa, N. Pharmacokinetic and anti-colon cancer properties of curcumin-containing chitosan-pectinate composite nanoparticles. J. Biomater. Sci. Polym. Ed., 2018, 29(18), 2281-2298.
[http://dx.doi.org/10.1080/09205063.2018.1541500] [PMID: 30376409]
[79]
Khan, A.Q.; Siveen, K.S.; Prabhu, K.S.; Kuttikrishnan, S.; Akhtar, S.; Shaar, A.; Raza, A.; Mraiche, F.; Dermime, S.; Uddin, S. Curcumin-mediated degradation of S-phase kinase protein 2 induces cytotoxic effects in human papillomavirus-positive and negative squamous carcinoma cells. Front. Oncol., 2018, 8, 399.
[http://dx.doi.org/10.3389/fonc.2018.00399] [PMID: 30333956]
[80]
Cai, B.; Ma, L.; Nong, S.; Wu, Y.; Guo, X.; Pu, J. β-elemene induced anticancer effect in bladder cancer through upregulation of PTEN and suppression of AKT phosphorylation. Oncol. Lett., 2018, 16(5), 6019-6025.
[http://dx.doi.org/10.3892/ol.2018.9401] [PMID: 30333873]
[81]
Wang, N.; Yang, B.; Zhang, X.; Wang, S.; Zheng, Y.; Li, X.; Liu, S.; Pan, H.; Li, Y.; Huang, Z.; Zhang, F.; Wang, Z. Network pharmacology-based validation of caveolin-1 as a key mediator of Ai Du Qing inhibition of drug resistance in breast cancer. Front. Pharmacol., 2018, 9, 1106.
[http://dx.doi.org/10.3389/fphar.2018.01106] [PMID: 30333750]
[82]
Wang, K.; Tan, S.L.; Lu, Q.; Xu, R.; Cao, J.; Wu, S.Q.; Wang, Y.H.; Zhao, X.K.; Zhong, Z.H. Curcumin suppresses microRNA-7641-mediated regulation of p16 expression in bladder cancer. Am. J. Chin. Med., 2018, 46(6), 1357-1368.
[http://dx.doi.org/10.1142/S0192415X18500714] [PMID: 30149755]
[83]
Lin, L.; Li, L.; Chen, X.; Zeng, B.; Lin, T. Preliminary evaluation of the potential role of β-elemene in reversing erlotinib-resistant human NSCLC A549/ER cells. Oncol. Lett., 2018, 16(3), 3380-3388.
[http://dx.doi.org/10.3892/ol.2018.8980] [PMID: 30127938]
[84]
Vishwakarma, V.; New, J.; Kumar, D.; Snyder, V.; Arnold, L.; Nissen, E.; Hu, Q.; Cheng, N.; Miller, D.; Thomas, A.R.; Shnayder, Y.; Kakarala, K.; Tsue, T.T.; Girod, D.A.; Thomas, S.M. Potent antitumor effects of a combination of three nutraceutical compounds. Sci. Rep., 2018, 8(1), 12163.
[http://dx.doi.org/10.1038/s41598-018-29683-1] [PMID: 30111862]
[85]
Yang, J.; Zhang, B.; Qin, Z.; Li, S.; Xu, J.; Yao, Z.; Zhang, X.; Gonzalez, F.J.; Yao, X. Efflux excretion of bisdemethoxycurcumin-O-glucuronide in UGT1A1-overexpressing HeLa cells: Identification of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 (MRP1) as the glucuronide transporters. Biofactors, 2018, 44(6), 558-569.
[http://dx.doi.org/10.1002/biof.1452] [PMID: 30334318]
[86]
Li, M.; Yue, G.G.; Tsui, S.K.; Fung, K.P.; Lau, C.B. Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. Phytomedicine, 2018, 46, 131-141.
[http://dx.doi.org/10.1016/j.phymed.2018.03.065] [PMID: 30097113]
[87]
Jang, H.J.; Park, E.J.; Lee, S.J.; Lim, H.J.; Jo, J.H.; Lee, S.W.; Rho, M.C. Diarylheptanoids from Curcuma phaeocaulis suppress IL-6-induced STAT3 activation. Planta Med., 2019, 85(2), 94-102.
[http://dx.doi.org/10.1055/a-0668-0962] [PMID: 30096715]
[88]
Kim, H.; Jang, E.; Kim, S.Y.; Choi, J.Y.; Lee, N.R.; Kim, D.S.; Lee, K.T.; Inn, K.S.; Kim, B.J.; Lee, J.H. Preclinical evaluation of in vitro and in vivo antiviral activities of KCT-01, a new herbal formula against Hepatitis B virus. Evid. Based Complement. Alternat. Med., 2018, 2018 1073509
[http://dx.doi.org/10.1155/2018/1073509] [PMID: 30069220]
[89]
Calaf, G.M.; Ponce-Cusi, R.; Carrión, F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol. Rep., 2018, 40(4), 2381-2388.
[http://dx.doi.org/10.3892/or.2018.6603] [PMID: 30066930]
[90]
Datta, S.; Misra, S.K.; Saha, M.L.; Lahiri, N.; Louie, J.; Pan, D.; Stang, P.J. Orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Proc. Natl. Acad. Sci. USA, 2018, 115(32), 8087-8092.
[http://dx.doi.org/10.1073/pnas.1803800115] [PMID: 30038010]
[91]
Lee, M.; Kim, K.S.; Fukushi, A.; Kim, D.H.; Kim, C.H.; Lee, Y.C. Transcriptional activation of human GD3 synthase (hST8Sia I) gene in curcumin-induced autophagy in A549 human lung carcinoma cells. Int. J. Mol. Sci., 2018, 19(7), 1943.
[http://dx.doi.org/10.3390/ijms19071943] [PMID: 30004453]
[92]
Banerjee, S.; Ji, C.; Mayfield, J.E.; Goel, A.; Xiao, J.; Dixon, J.E.; Guo, X. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc. Natl. Acad. Sci. USA, 2018, 115(32), 8155-8160.
[http://dx.doi.org/10.1073/pnas.1806797115] [PMID: 29987021]
[93]
Wang, J.T.; Ge, D.; Qu, H.F.; Wang, G.K.; Wang, G. Chemical constituents of Curcuma kwangsiensis and their antimigratory activities in RKO cells. Nat. Prod. Res., 2019, 33(24), 1-7.
[http://dx.doi.org/10.1080/14786419.2018.1484463] [PMID: 29914271]
[94]
Theppawong, A.; Van de Walle, T.; Grootaert, C.; Bultinck, M.; Desmet, T.; Van Camp, J.; D’hooghe, M. Synthesis of novel aza-aromatic curcuminoids with improved biological activities towards various cancer cell lines. ChemistryOpen, 2018, 7(5), 381-392.
[http://dx.doi.org/10.1002/open.201800029] [PMID: 29872613]
[95]
Lee, Y.H.; Song, N.Y.; Suh, J.; Kim, D.H.; Kim, W.; Ann, J.; Lee, J.; Baek, J.H.; Na, H.K.; Surh, Y.J. Curcumin suppresses oncogenicity of human colon cancer cells by covalently modifying the cysteine 67 residue of SIRT1. Cancer Lett., 2018, 431, 219-229.
[http://dx.doi.org/10.1016/j.canlet.2018.05.036] [PMID: 29807115]
[96]
Jain, A.; Rani, V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci., 2018, 205, 97-106.
[http://dx.doi.org/10.1016/j.lfs.2018.05.021] [PMID: 29752960]
[97]
Garrido-Armas, M.; Corona, J.C.; Escobar, M.L.; Torres, L.; Ordóñez-Romero, F.; Hernández-Hernández, A.; Arenas-Huertero, F. Paraptosis in human glioblastoma cell line induced by curcumin. Toxicol. In Vitro, 2018, 51, 63-73.
[http://dx.doi.org/10.1016/j.tiv.2018.04.014] [PMID: 29723631]
[98]
Zhu, G.; Shen, Q.; Jiang, H.; Ji, O.; Zhu, L.; Zhang, L. Curcumin inhibited the growth and invasion of human monocytic leukaemia SHI-1 cells in vivo by altering MAPK and MMP signalling. Pharm. Biol., 2019, 58(1), 25-34.
[99]
Wang, J.; Wu, J.; Li, X.; Liu, H.; Qin, J.; Bai, Z.; Chi, B.; Chen, X. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells. J. Proteomics, 2018, 182, 1-11.
[http://dx.doi.org/10.1016/j.jprot.2018.04.025] [PMID: 29684682]
[100]
Agarwal, A.; Kasinathan, A.; Ganesan, R.; Balasubramanian, A.; Bhaskaran, J.; Suresh, S.; Srinivasan, R.; Aravind, K.B.; Sivalingam, N. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr. Res., 2018, 51, 67-81.
[http://dx.doi.org/10.1016/j.nutres.2017.12.011] [PMID: 29673545]
[101]
Yang, J.Y.; Zhong, X.; Kim, S.J.; Kim, D.H.; Kim, H.S.; Lee, J.S.; Yum, H.W.; Lee, J.; Na, H.K.; Surh, Y.J. Comparative effects of curcumin and tetrahydrocurcumin on dextran sulfate sodium-induced colitis and inflammatory signaling in mice. J. Cancer Prev., 2018, 23(1), 18-24.
[http://dx.doi.org/10.15430/JCP.2018.23.1.18] [PMID: 29629345]
[102]
Sheikh, S.; Sturzu, A.; Kalbacher, H.; Nagele, T.; Weidenmaier, C.; Horger, M.; Schwentner, C.; Ernemann, U.; Heckl, S. A novel fluorescence-labeled curcumin conjugate: Synthesis, evaluation and imaging on human cell lines. Curr. Pharm. Des., 2018, 24(16), 1821-1826.
[http://dx.doi.org/10.2174/1381612824666180406103317] [PMID: 29623828]
[103]
Sahu, A.; Solanki, P.; Mitra, S. Curcuminoid-loaded poly(methyl methacrylate) nanoparticles for cancer therapy. Int. J. Nanomed, 2018, 13(T-NANO 2014 Abstracts), 101-105.
[http://dx.doi.org/10.2147/IJN.S124021] [PMID: 29593406]
[104]
Zamrus, S.N.H.; Akhtar, M.N.; Yeap, S.K.; Quah, C.K.; Loh, W.S.; Alitheen, N.B.; Zareen, S.; Tajuddin, S.N.; Hussin, Y.; Shah, S.A.A. Design, synthesis and cytotoxic effects of curcuminoids on HeLa, K562, MCF-7 and MDA-MB-231 cancer cell lines. Chem. Cent. J., 2018, 12(1), 31.
[http://dx.doi.org/10.1186/s13065-018-0398-1] [PMID: 29556774]
[105]
Montalbán, M.G.; Coburn, J.M.; Lozano-Pérez, A.A.; Cenis, J.L.; Víllora, G.; Kaplan, D.L. Production of curcumin-loaded Silk fibroin nanoparticles for cancer therapy. Nanomaterials (Basel), 2018, 8(2), pii, E126.
[http://dx.doi.org/10.3390/nano8020126]
[106]
Zhao, W.; Zhou, X.; Qi, G.; Guo, Y. Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation. J. Biochem. Mol. Toxicol., 2018, 32(5) e22049
[http://dx.doi.org/10.1002/jbt.22049] [PMID: 29485738]
[107]
He, H.; Qiao, K.; Wang, C.; Yang, W.; Xu, Z.; Zhang, Z.; Jia, Y.; Zhang, C.; Peng, L. Hydrazinocurcumin induces apoptosis of hepatocellular carcinoma cells through the p38 MAPK Pathway. Clin. Transl. Sci., 2020. Epub ahead of print
[108]
Perna, A.; De Luca, A.; Adelfi, L.; Pasquale, T.; Varriale, B.; Esposito, T. Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line. BMC Complement. Altern. Med., 2018, 18(1), 63.
[http://dx.doi.org/10.1186/s12906-018-2125-9] [PMID: 29448931]
[109]
Song, G.; Lu, H.; Chen, F.; Wang, Y.; Fan, W.; Shao, W.; Lu, H.; Lin, B. Tetrahydrocurcumin‑induced autophagy via suppression of PI3K/Akt/mTOR in non‑small cell lung carcinoma cells. Mol. Med. Rep., 2018, 17(4), 5964-5969.
[http://dx.doi.org/10.3892/mmr.2018.8600] [PMID: 29436654]
[110]
Einbond, L.S.; Manservisi, F.; Wu, H.A.; Balick, M.; Antonetti, V.; Vornoli, A.; Menghetti, I.; Belpoggi, F.; Redenti, S.; Roter, A. A transcriptomic analysis of turmeric: Curcumin represses the expression of cholesterol biosynthetic genes and synergizes with simvastatin. Pharmacol. Res., 2018, 132, 176-187.
[http://dx.doi.org/10.1016/j.phrs.2018.01.023] [PMID: 29408497]
[111]
Tong, J.B.; Zhang, X.X.; Wang, X.H.; Zeng, S.J.; Wang, D.Y.; Zhang, Z.Q.; Hu, J.; Yang, C.; Li, Z.G. Qiyusanlong decoction suppresses lung cancer in mice via Wnt/β-catenin pathway. Mol. Med. Rep., 2018, 17(4), 5320-5327.
[http://dx.doi.org/10.3892/mmr.2018.8478] [PMID: 29393404]
[112]
Cheng, W.L.; Huang, C.Y.; Tai, C.J.; Chang, Y.J.; Hung, C.S. Maspin enhances the anticancer activity of Curcumin in hormone-refractory prostate cancer cells. Anticancer Res., 2018, 38(2), 863-870.
[PMID: 29374713]
[113]
Kukula-Koch, W.; Grabarska, A.; Łuszczki, J.; Czernicka, L.; Nowosadzka, E.; Gumbarewicz, E.; Jarząb, A.; Audo, G.; Upadhyay, S.; Głowniak, K.; Stepulak, A. Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography. Phytother. Res., 2018, 32(5), 933-942.
[http://dx.doi.org/10.1002/ptr.6035] [PMID: 29368356]
[114]
Wang, L.; Zhao, Y.; Wu, Q.; Guan, Y.; Wu, X. Therapeutic effects of β-elemene via attenuation of the Wnt/β-catenin signaling pathway in cervical cancer cells. Mol. Med. Rep., 2018, 17(3), 4299-4306.
[http://dx.doi.org/10.3892/mmr.2018.8455] [PMID: 29363722]
[115]
Abd-Rabou, A.A.; Edris, A.E. Evaluation of the antiproliferative activity of some nanoparticulate essential oils formulated in microemulsion on selected human carcinoma cell lines. Curr. Clin. Pharmacol., 2017, 12(4), 231-244.
[http://dx.doi.org/10.2174/1574884713666180110144336] [PMID: 29318975]
[116]
Prasad, S.; Tyagi, A.K.; Siddik, Z.H.; Aggarwal, B.B. Curcumin-free turmeric exhibits activity against human HCT-116 colon Tumor Xenograft: Comparison with Curcumin and whole turmeric. Front. Pharmacol., 2017, 8, 871.
[http://dx.doi.org/10.3389/fphar.2017.00871] [PMID: 29311914]
[117]
Anuchapreeda, S.; Khumpirapang, N.; Rupitiwiriya, K.; Tho-Iam, L.; Saiai, A.; Okonogi, S.; Usuki, T. Cytotoxicity and inhibition of leukemic cell proliferation by sesquiterpenes from rhizomes of Mah-Lueang (Curcuma cf. viridiflora Roxb.). Bioorg. Med. Chem. Lett., 2018, 28(3), 410-414.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.029] [PMID: 29274817]
[118]
Levine, C.B.; Bayle, J.; Biourge, V.; Wakshlag, J.J. Cellular effects of a turmeric root and rosemary leaf extract on canine neoplastic cell lines. BMC Vet. Res., 2017, 13(1), 388.
[http://dx.doi.org/10.1186/s12917-017-1302-2]
[119]
Mohebbati, R.; Anaeigoudari, A.; Khazdair, M.R. The effects of Curcuma longa and curcumin on reproductive systems. Endocr. Regul., 2017, 51(4), 220-228.
[http://dx.doi.org/10.1515/enr-2017-0024] [PMID: 29232190]
[120]
Son, H.E.; Kim, E.J.; Jang, W.G. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells. Life Sci., 2018, 193, 34-39.
[http://dx.doi.org/10.1016/j.lfs.2017.12.008] [PMID: 29223538]
[121]
Kang, K.; Peng, L.; Jung, Y.J.; Kim, J.Y.; Lee, E.H.; Lee, H.J.; Kim, S.M.; Sung, S.H.; Pan, C.H.; Choi, Y. High-throughput and direct measurement of androgen levels using turbulent flow chromatography liquid chromatography-triple quadrupole mass spectrometry (TFC-LC-TQMS) to discover chemicals that modulate dihydrotestosterone production in human prostate cancer cells. Biotechnol. Lett., 2018, 40(2), 263-270.
[http://dx.doi.org/10.1007/s10529-017-2480-5] [PMID: 29164416]
[122]
Naqvi, A.; Malasoni, R.; Gupta, S.; Srivastava, A.; Pandey, R.R.; Dwivedi, A.K. In silico and in vitro anticancer activity of isolated novel marker compound from chemically modified bioactive fraction from Curcuma longa (NCCL). Pharmacogn. Mag., 2017, 13(Suppl. 3), S640-S644.
[http://dx.doi.org/10.4103/pm.pm_23_17] [PMID: 29142426]
[123]
Jung, E.B.; Trinh, T.A.; Lee, T.K.; Yamabe, N.; Kang, K.S.; Song, J.H.; Choi, S.; Lee, S.; Jang, T.S.; Kim, K.H.; Hwang, G.S. Curcuzedoalide contributes to the cytotoxicity of Curcuma zedoaria rhizomes against human gastric cancer AGS cells through induction of apoptosis. J. Ethnopharmacol., 2018, 213, 48-55.
[http://dx.doi.org/10.1016/j.jep.2017.10.025] [PMID: 29102767]
[124]
Mou, S.; Zhou, Z.; He, Y.; Liu, F.; Gong, L. Curcumin inhibits cell proliferation and promotes apoptosis of laryngeal cancer cells through Bcl-2 and PI3K/Akt, and by upregulating miR-15a. Oncol. Lett., 2017, 14(4), 4937-4942.
[http://dx.doi.org/10.3892/ol.2017.6739] [PMID: 29085504]
[125]
Wang, J.; Qi, L.; Mei, L.; Wu, Z. Curcumin inhibits the proliferation and induces apoptosis in HT-29 cell lines through a reactive oxygen species (ROS)-dependent mechanism. Pak. J. Pharm. Sci., 2017, 30(5), 1671-1677.
[PMID: 29084689]
[126]
Zhao, Q.; Guan, J.; Qin, Y.; Ren, P.; Zhang, Z.; Lv, J.; Sun, S.; Zhang, C.; Mao, W. Curcumin sensitizes lymphoma cells to DNA damage agents through regulating Rad51-dependent homologous recombination. Biomed. Pharmacother., 2018, 97, 115-119.
[http://dx.doi.org/10.1016/j.biopha.2017.09.078] [PMID: 29080451]
[127]
Calaf, G.M.; Roy, D. Metastatic genes targeted by an antioxidant in an established radiation- and estrogen-breast cancer model. Int. J. Oncol., 2017, 51(5), 1590-1600.
[http://dx.doi.org/10.3892/ijo.2017.4125] [PMID: 29048630]
[128]
Zang, S.; Tang, Q.; Dong, F.; Liu, H.; Li, L.; Guo, F.; Pan, X.; Lin, H.; Zeng, W.; Cai, Z.; Zhong, Q.; Zang, N.; Zang, L. Curcumol inhibits the proliferation of gastric adenocarcinoma MGC-803 cells via downregulation of IDH1. Oncol. Rep., 2017, 38(6), 3583-3591.
[http://dx.doi.org/10.3892/or.2017.6028] [PMID: 29039582]
[129]
Ismail, H.F.; Hashim, Z.; Soon, W.T.; Rahman, N.S.A.; Zainudin, A.N.; Majid, F.A.A. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J. Tradit. Complement. Med., 2017, 7(4), 452-465.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.006] [PMID: 29034193]
[130]
Rajmani, R.S.; Singh, P.; Singh, L.V. Apoptotic and immunosuppressive effects of turmeric paste on 7, 12 Di methyl Benz (a) anthracene induced skin tumor model of wistar rat. Nutr. Cancer, 2017, 69(8), 1245-1255.
[http://dx.doi.org/10.1080/01635581.2017.1367933] [PMID: 29016221]
[131]
Dos Santos Filho, E.X.; da Silva, A.C.G.; de Ávila, R.I.; Batista, A.C.; Marreto, R.N.; Lima, E.M.; de Oliveira, C.M.A.; Mendonça, E.F.; Valadares, M.C. Chemopreventive effects of FITOPROT against 5-fluorouracil-induced toxicity in HaCaT cells. Life Sci., 2018, 193, 300-308.
[http://dx.doi.org/10.1016/j.lfs.2017.09.035] [PMID: 28962868]
[132]
Zhou, Q.M.; Sun, Y.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Su, S.B. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int., 2017, 17, 84.
[http://dx.doi.org/10.1186/s12935-017-0453-3] [PMID: 28959140]
[133]
Doktorovova, S.; Souto, E.B.; Silva, A.M. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm. Dev. Technol., 2018, 23(1), 96-105.
[http://dx.doi.org/10.1080/10837450.2017.1384491] [PMID: 28949267]
[134]
Jain, A.; Rani, V. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts. Mol. Cell. Biochem., 2018, 442(1-2), 81-96.
[http://dx.doi.org/10.1007/s11010-017-3195-6] [PMID: 28929270]
[135]
Zhou, J.L.; Wu, Y.Q.; Tan, C.M.; Zhu, M.; Ma, L.K. [Screening of anti-lung cancer bioactive compounds from Curcuma longa by target cell extraction and UHPLC/LTQ Orbitrap MS]. Zhongguo Zhongyao Zazhi, 2016, 41(19), 3624-3629.
[PMID: 28925159]
[136]
Ahmad, R.; Srivastava, A.N.; Khan, M.A. Evaluation of in vitro anticancer activity of rhizome of Curcuma longa against human breast cancer and Vero cell lines. Int. J. Botany Studies, 2016, 1, (1), 01-06.
[http://dx.doi.org/10.22271/botany]
[137]
Tyagi, A.K.; Prasad, S.; Majeed, M.; Aggarwal, B.B. Calebin A, a novel component of turmeric, suppresses NF-κB regulated cell survival and inflammatory gene products leading to inhibition of cell growth and chemosensitization. Phytomedicine, 2017, 34, 171-181.
[http://dx.doi.org/10.1016/j.phymed.2017.08.021] [PMID: 28899500]
[138]
Wang, X.P.; Wang, Q.X.; Lin, H.P.; Chang, N. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma. Food Funct., 2017, 8(9), 3319-3326.
[http://dx.doi.org/10.1039/C7FO00555E] [PMID: 28848967]
[139]
Zhang, H.H.; Zhang, Y.; Cheng, Y.N.; Gong, F.L.; Cao, Z.Q.; Yu, L.G.; Guo, X.L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol. Carcinog., 2018, 57(1), 44-56.
[http://dx.doi.org/10.1002/mc.22718] [PMID: 28833603]
[140]
Win, N.N.; Ito, T.; Ngwe, H.; Win, Y.Y.; Prema, ; Okamoto, Y.; Tanaka, M.; Asakawa, Y.; Abe, I.; Morita, H. Labdane diterpenoids from Curcuma amada rhizomes collected in Myanmar and their antiproliferative activities. Fitoterapia, 2017, 122, 34-39.
[http://dx.doi.org/10.1016/j.fitote.2017.08.006] [PMID: 28827004]
[141]
Owen, H.C.; Appiah, S.; Hasan, N.; Ghali, L.; Elayat, G.; Bell, C. Phytochemical modulation of apoptosis and autophagy: Strategies to overcome chemoresistance in leukemic stem cells in the bone marrow microenvironment. Int. Rev. Neurobiol., 2017, 135, 249-278.
[http://dx.doi.org/10.1016/bs.irn.2017.02.012] [PMID: 28807161]
[142]
de Campos, P.S.; Matte, B.F.; Diel, L.F.; Jesus, L.H.; Bernardi, L.; Alves, A.M.; Rados, P.V.; Lamers, M.L. Low doses of Curcuma longa modulates cell migration and cell-cell adhesion. Phytother. Res., 2017, 31(9), 1433-1440.
[http://dx.doi.org/10.1002/ptr.5872] [PMID: 28782139]
[143]
Liu, W.; Zhang, Z.; Lin, G.; Luo, D.; Chen, H.; Yang, H.; Liang, J.; Liu, Y.; Xie, J.; Su, Z.; Cao, H. Tetrahydrocurcumin is more effective than curcumin in inducing the apoptosis of H22 cells via regulation of a mitochondrial apoptosis pathway in ascites tumor-bearing mice. Food Funct., 2017, 8(9), 3120-3129.
[http://dx.doi.org/10.1039/C7FO00484B] [PMID: 28766664]
[144]
Mukunthan, K.S.; Satyan, R.S.; Patel, T.N. Pharmacological evaluation of phytochemicals from South Indian Black Turmeric (Curcuma caesia Roxb.) to target cancer apoptosis. J. Ethnopharmacol., 2017, 209, 82-90.
[http://dx.doi.org/10.1016/j.jep.2017.07.021] [PMID: 28733192]
[145]
Bian, Y.; Guo, D. Targeted therapy for hepatocellular carcinoma: Co-Delivery of sorafenib and curcumin using lactosylated pH-responsive nanoparticles. Drug Des. Devel. Ther., 2020, 14, 647-659.
[146]
Prakash, E.; Saxena, A.K.; Gupta, D.K. In vitro study of Curcuma domestica ethanolic extract for anticancer properties. J. Environ. Sci. Comp. Sci. Eng. Technol., 2014, 3(3), 1183-1187.
[147]
Jiang, M.; Huang, O.; Zhang, X.; Xie, Z.; Shen, A.; Liu, H.; Geng, M.; Shen, K. Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules, 2013, 18(1), 701-720.
[http://dx.doi.org/10.3390/molecules18010701] [PMID: 23299550]
[148]
Hashim, F.J.; Shawkat, M.S.; Aljewari, H. Anti-cancer effect of Curcuma longa on leukemic cell lines evaluated by apoptosis and comet assay. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 671-674.
[149]
Ayyadurai, N.; Valarmathy, N.; Kannan, S.; Jansirani, D.; Alsenaidy, A. Evaluation of cytotoxic properties of Curcuma longa and Tagetes erecta on cancer cell line (Hep2). Afr. J. Pharm. Pharmacol., 2013, 7, 736-739.
[http://dx.doi.org/10.5897/AJPP12.031]
[150]
Duarte, V.M.; Han, E.; Veena, M.S.; Salvado, A.; Suh, J.D.; Liang, L.J.; Faull, K.F.; Srivatsan, E.S.; Wang, M.B. Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKβ protein of the NFκB pathway. Mol. Cancer Ther., 2010, 9(10), 2665-2675.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0064] [PMID: 20937593]
[151]
Chakravarti, N.; Kadara, H.; Yoon, D.J.; Shay, J.W.; Myers, J.N.; Lotan, D.; Sonenberg, N.; Lotan, R. Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells. Cancer Prev. Res. (Phila.), 2010, 3(3), 331-338.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0076] [PMID: 20145189]
[152]
Chang, K.W.; Hung, P.S.; Lin, I.Y.; Hou, C.P.; Chen, L.K.; Tsai, Y.M.; Lin, S.C. Curcumin upregulates insulin-like growth factor binding protein-5 (IGFBP-5) and C/EBPalpha during oral cancer suppression. Int. J. Cancer, 2010, 127(1), 9-20.
[http://dx.doi.org/10.1002/ijc.25220] [PMID: 20127863]
[153]
Mach, C.M.; Mathew, L.; Mosley, S.A.; Kurzrock, R.; Smith, J.A. Determination of minimum effective dose and optimal dosing schedule for liposomal curcumin in a xenograft human pancreatic cancer model. Anticancer Res., 2009, 29(6), 1895-1899.
[PMID: 19528445]
[154]
Cohen, A.N.; Veena, M.S.; Srivatsan, E.S.; Wang, M.B. Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa beta kinase. Arch. Otolaryngol. Head Neck Surg., 2009, 135(2), 190-197.
[http://dx.doi.org/10.1001/archotol.135.2.190] [PMID: 19221248]
[155]
Wang, D.; Veena, M.S.; Stevenson, K.; Tang, C.; Ho, B.; Suh, J.D.; Duarte, V.M.; Faull, K.F.; Mehta, K.; Srivatsan, E.S.; Wang, M.B. Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor kappaB by an AKT-independent pathway. Clin. Cancer Res., 2008, 14(19), 6228-6236.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5177] [PMID: 18829502]
[156]
Li, L.; Ahmed, B.; Mehta, K.; Kurzrock, R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol. Cancer Ther., 2007, 6(4), 1276-1282.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0556] [PMID: 17431105]
[157]
Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3072] [PMID: 17545551]
[158]
LoTempio, M.M.; Veena, M.S.; Steele, H.L.; Ramamurthy, B.; Ramalingam, T.S.; Cohen, A.N.; Chakrabarti, R.; Srivatsan, E.S.; Wang, M.B. Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin. Cancer Res., 2005, 11(19 Pt 1), 6994-7002.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0301] [PMID: 16203793]
[159]
Siwak, D.R.; Shishodia, S.; Aggarwal, B.B.; Kurzrock, R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer, 2005, 104(4), 879-890.
[http://dx.doi.org/10.1002/cncr.21216] [PMID: 16007726]
[160]
Tourkina, E.; Gooz, P.; Oates, J.C.; Ludwicka-Bradley, A.; Silver, R.M.; Hoffman, S. Curcumin-induced apoptosis in scleroderma lung fibroblasts: role of protein kinase cepsilon. Am. J. Respir. Cell Mol. Biol., 2004, 31(1), 28-35.
[http://dx.doi.org/10.1165/rcmb.2003-0354OC] [PMID: 14742295]
[161]
Jana, N.R.; Dikshit, P.; Goswami, A.; Nukina, N. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J. Biol. Chem., 2004, 279(12), 11680-11685.
[http://dx.doi.org/10.1074/jbc.M310369200] [PMID: 14701837]
[162]
Woo, J.H.; Kim, Y.H.; Choi, Y.J.; Kim, D.G.; Lee, K.S.; Bae, J.H.; Min, D.S.; Chang, J.S.; Jeong, Y.J.; Lee, Y.H.; Park, J.W.; Kwon, T.K. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 2003, 24(7), 1199-1208.
[http://dx.doi.org/10.1093/carcin/bgg082] [PMID: 12807727]
[163]
Chun, K.S.; Keum, Y.S.; Han, S.S.; Song, Y.S.; Kim, S.H.; Surh, Y.J. Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis, 2003, 24(9), 1515-1524.
[http://dx.doi.org/10.1093/carcin/bgg107] [PMID: 12844482]
[164]
Chan, W.H.; Wu, C.C.; Yu, J.S. Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J. Cell. Biochem., 2003, 90(2), 327-338.
[http://dx.doi.org/10.1002/jcb.10638] [PMID: 14505349]
[165]
Hour, T.C.; Chen, J.; Huang, C.Y.; Guan, J.Y.; Lu, S.H.; Pu, Y.S. Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21(WAF1/CIP1) and C/EBPbeta expressions and suppressing NF-kappaB activation. Prostate, 2002, 51(3), 211-218.
[http://dx.doi.org/10.1002/pros.10089] [PMID: 11967955]
[166]
Inano, H.; Onoda, M. Prevention of radiation-induced mammary tumors. Int. J. Radiat. Oncol. Biol. Phys., 2002, 52(1), 212-223.
[http://dx.doi.org/10.1016/S0360-3016(01)02651-7] [PMID: 11777641]
[167]
Roy, M.; Chakraborty, S.; Siddiqi, M.; Bhattacharya, R.K. Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pac. J. Cancer Prev., 2002, 3(1), 61-67.
[PMID: 12718610]
[168]
Mukhopadhyay, A.; Bueso-Ramos, C.; Chatterjee, D.; Pantazis, P.; Aggarwal, B.B. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 2001, 20(52), 7597-7609.
[http://dx.doi.org/10.1038/sj.onc.1204997] [PMID: 11753638]
[169]
Bush, J.A.; Cheung, K.J., Jr; Li, G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp. Cell Res., 2001, 271(2), 305-314.
[http://dx.doi.org/10.1006/excr.2001.5381] [PMID: 11716543]
[170]
Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; Yu, H.S.; Jee, S.H.; Chen, G.S.; Chen, T.M.; Chen, C.A.; Lai, M.K.; Pu, Y.S.; Pan, M.H.; Wang, Y.J.; Tsai, C.C.; Hsieh, C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001, 21(4B), 2895-2900.
[PMID: 11712783]
[171]
Ramsewak, R.S.; DeWitt, D.L.; Nair, M.G. Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine, 2000, 7(4), 303-308.
[http://dx.doi.org/10.1016/S0944-7113(00)80048-3] [PMID: 10969724]
[172]
Wu, W.Y.; Xu, Q.; Shi, L.C.; Zhang, W.B. Inhibitory effects of Curcuma aromatica oil on proliferation of hepatoma in mice. World J. Gastroenterol., 2000, 6(2), 216-219.
[PMID: 11819559]
[173]
Elattar, T.M.; Virji, A.S. The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res., 2000, 20(3A), 1733-1738.
[PMID: 10928101]
[174]
Mohandas, K.M.; Desai, D.C. Epidemiology of digestive tract cancers in India. V. Large and small bowel. Indian J. Gastroenterol., 1999, 18(3), 118-121.
[PMID: 10407566]
[175]
Hanif, R.; Qiao, L.; Shiff, S.J.; Rigas, B. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J. Lab. Clin. Med., 1997, 130(6), 576-584.
[http://dx.doi.org/10.1016/S0022-2143(97)90107-4] [PMID: 9422331]
[176]
Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M.C. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett., 1985, 29(2), 197-202.
[http://dx.doi.org/10.1016/0304-3835(85)90159-4] [PMID: 4075289]
[177]
Karna, P.; Chagani, S.; Gundala, S.R.; Rida, P.C.; Asif, G.; Sharma, V.; Gupta, M.V.; Aneja, R. Benefits of whole ginger extract in prostate cancer. Br. J. Nutr., 2012, 107(4), 473-484.
[http://dx.doi.org/10.1017/S0007114511003308] [PMID: 21849094]
[178]
Prasad, S.; Tyagi, A.K. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol. Res. Pract., 2015, 2015142979
[http://dx.doi.org/10.1155/2015/142979] [PMID: 25838819]
[179]
Haniadka, R.; Rajeev, A.G.; Palatty, P.L.; Arora, R.; Baliga, M.S. Zingiber officinale (ginger) as an anti-emetic in cancer chemotherapy: a review. J. Altern. Complement. Med., 2012, 18(5), 440-444.
[http://dx.doi.org/10.1089/acm.2010.0737] [PMID: 22540971]
[180]
Pereira, M.M.; Haniadka, R.; Chacko, P.P.; Palatty, P.L.; Baliga, M.S. Zingiber officinale Roscoe (ginger) as an adjuvant in cancer treatment: a review. J. BUON, 2011, 16(3), 414-424.
[PMID: 22006742]
[181]
Baliga, M.S.; Haniadka, R.; Pereira, M.M.; D’Souza, J.J.; Pallaty, P.L.; Bhat, H.P.; Popuri, S. Update on the chemopreventive effects of ginger and its phytochemicals. Crit. Rev. Food Sci. Nutr., 2011, 51(6), 499-523.
[http://dx.doi.org/10.1080/10408391003698669] [PMID: 21929329]
[182]
Kim, J.S.; Lee, S.I.; Park, H.W.; Yang, J.H.; Shin, T.Y.; Kim, Y.C.; Baek, N.I.; Kim, S.H.; Choi, S.U.; Kwon, B.M.; Leem, K.H.; Jung, M.Y.; Kim, D.K. Cytotoxic components from the dried rhizomes of Zingiber officinale Roscoe. Arch. Pharm. Res., 2008, 31(4), 415-418.
[http://dx.doi.org/10.1007/s12272-001-1172-y] [PMID: 18449496]
[183]
Campbell, C.T.; Prince, M.; Landry, G.M.; Kha, V.; Kleiner, H.E. Pro-apoptotic effects of 1′-acetoxychavicol acetate in human breast carcinoma cells. Toxicol. Lett., 2007, 173(3), 151-160.
[http://dx.doi.org/10.1016/j.toxlet.2007.07.008] [PMID: 17766064]
[184]
Rhode, J.; Fogoros, S.; Zick, S.; Wahl, H.; Griffith, K.A.; Huang, J.; Liu, J.R. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement. Altern. Med., 2007, 7, 44.
[http://dx.doi.org/10.1186/1472-6882-7-44] [PMID: 18096028]
[185]
Nonn, L.; Duong, D.; Peehl, D.M. Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cells. Carcinogenesis, 2007, 28(6), 1188-1196.
[http://dx.doi.org/10.1093/carcin/bgl241] [PMID: 17151092]
[186]
Brown, A.C.; Shah, C.; Liu, J.; Pham, J.T.; Zhang, J.G.; Jadus, M.R. Ginger’s (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro. Phytother. Res., 2009, 23(5), 640-645.
[http://dx.doi.org/10.1002/ptr.2677] [PMID: 19117330]
[187]
Kim, J.K.; Kim, Y.; Na, K.M.; Surh, Y.J.; Kim, T.Y. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic. Res., 2007, 41(5), 603-614.
[http://dx.doi.org/10.1080/10715760701209896] [PMID: 17454143]
[188]
Nigam, N.; Bhui, K.; Prasad, S.; George, J.; Shukla, Y. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chem. Biol. Interact., 2009, 181, 77-84.
[189]
Keum, Y.S.; Kim, J.; Lee, K.H.; Park, K.K.; Surh, Y.J.; Lee, J.M.; Lee, S.S.; Yoon, J.H.; Joo, S.Y.; Cha, I.H.; Yook, J.I. Induction of apoptosis and caspase-3 activation by chemopreventive [6]-paradol and structurally related compounds in KB cells. Cancer Lett., 2002, 177(1), 41-47.
[http://dx.doi.org/10.1016/S0304-3835(01)00781-9] [PMID: 11809529]
[190]
Nedungadi, D.; Binoy, A.; Vinod, V.; Vanuopadath, M.; Nair, S.S.; Nair, B.G.; Mishra, N. Ginger extract activates caspase independent paraptosis in cancer cells via ER stress, mitochondrial dysfunction, AIF translocation and DNA damage. Nutr. Cancer, 2019, 1-13.
[191]
Sang, S.; Hong, J.; Wu, H.; Liu, J.; Yang, C.S.; Pan, M.H.; Badmaev, V.; Ho, C.T. Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. J. Agric. Food Chem., 2009, 57(22), 10645-10650.
[http://dx.doi.org/10.1021/jf9027443] [PMID: 19877681]
[192]
Park, Y.J.; Wen, J.; Bang, S.; Park, S.W.; Song, S.Y. [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med. J., 2006, 47(5), 688-697.
[http://dx.doi.org/10.3349/ymj.2006.47.5.688] [PMID: 17066513]
[193]
Katiyar, S.K.; Agarwal, R.; Mukhtar, H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res., 1996, 56(5), 1023-1030.
[PMID: 8640756]
[194]
Park, K.K.; Chun, K.S.; Lee, J.M.; Lee, S.S.; Surh, Y.J. Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett., 1998, 129(2), 139-144.
[http://dx.doi.org/10.1016/S0304-3835(98)00081-0] [PMID: 9719454]
[195]
Habib, S.H.; Makpol, S.; Abdul Hamid, N.A.; Das, S.; Ngah, W.Z.; Yusof, Y.A. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics (São Paulo), 2008, 63(6), 807-813.
[http://dx.doi.org/10.1590/S1807-59322008000600017] [PMID: 19061005]
[196]
Pan, D.; Zeng, C.; Zhang, W.; Li, T.; Qin, Z.; Yao, X.; Dai, Y.; Yao, Z.; Yu, Y.; Yao, X. Non-volatile pungent compounds isolated from Zingiber officinale and their mechanisms of action. Food Funct., 2019, 10(2), 1203-1211.
[http://dx.doi.org/10.1039/C8FO02019A] [PMID: 30741292]
[197]
Ganaie, M.A.; Al Saeedan, A.; Madhkali, H.; Jan, B.L.; Khatlani, T.; Sheikh, I.A.; Rehman, M.U.; Wani, K. Chemopreventive efficacy zingerone (4-[4-hydroxy-3-methylphenyl] butan-2-one) in experimental colon carcinogenesis in Wistar rats. Environ. Toxicol., 2019, 34(5), 610-625.
[http://dx.doi.org/10.1002/tox.22727] [PMID: 30720227]
[198]
Mega Tiber, P.; Kocyigit Sevinc, S.; Kilinc, O.; Orun, O. Biological effects of whole Z.Officinale extract on chronic myeloid leukemia cell line K562. Gene, 2019, 692, 217-222.
[http://dx.doi.org/10.1016/j.gene.2019.01.015] [PMID: 30684525]
[199]
Ferri-Lagneau, K.F.; Haider, J.; Sang, S.; Leung, T. Rescue of hematopoietic stem/progenitor cells formation in plcg1 zebrafish mutant. Sci. Rep., 2019, 9(1), 244.
[http://dx.doi.org/10.1038/s41598-018-36338-8] [PMID: 30664660]
[200]
Morimoto, M.; Mitsukawa, M.; Fujiwara, C.; Kawamura, Y.; Masuda, S. Inhibition of mRNA processing activity from ginger-, clove- and cinnamon-extract, and by two ginger constituents, 6-gingerol and 6-shogaol. Biosci. Biotechnol. Biochem., 2019, 83(3), 498-501.
[http://dx.doi.org/10.1080/09168451.2018.1547107] [PMID: 30426858]
[201]
Kim, M.J.; Yun, J.M. Molecular mechanism of the protective effect of zerumbone on lipopolysaccharide-induced inflammation of THP-1 cell-derived macrophages. J. Med. Food, 2019, 22(1), 62-73.
[http://dx.doi.org/10.1089/jmf.2018.4253] [PMID: 30383973]
[202]
Fuzer, A.M.; Martin, A.C.B.M.; Becceneri, A.B.; da Silva, J.A.; Vieira, P.C.; Cominetti, M.R. 10]-Gingerol Affects multiple metastatic processes and induces apoptosis in MDA-MB-231 breast tumor cells. Anticancer. Agents Med. Chem., 2019, 19(5), 645-654.
[203]
Oh, T.I.; Jung, H.J.; Lee, Y.M.; Lee, S.; Kim, G.H.; Kan, S.Y.; Kang, H.; Oh, T.; Ko, H.M.; Kwak, K.C.; Lim, J.H. Zerumbone, a tropical ginger sesquiterpene of Zingiber officinale Roscoe, attenuates α-MSH-induced melanogenesis in B16F10 cells. Int. J. Mol. Sci., 2018, 19(10) E3149
[http://dx.doi.org/10.3390/ijms19103149] [PMID: 30322121]
[204]
Choi, J.S.; Ryu, J.; Bae, W.Y.; Park, A.; Nam, S.; Kim, J.E.; Jeong, J.W. Zingerone suppresses tumor development through decreasing cyclin D1 expression and inducing mitotic arrest. Int. J. Mol. Sci., 2018, 19(9) E2832
[http://dx.doi.org/10.3390/ijms19092832] [PMID: 30235818]
[205]
Yao, J.; Du, Z.; Li, Z.; Zhang, S.; Lin, Y.; Li, H.; Zhou, L.; Wang, Y.; Yan, G.; Wu, X.; Duan, Y.; Du, G. 6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype. Food Funct., 2018, 9(9), 4611-4620.
[http://dx.doi.org/10.1039/C8FO01147H] [PMID: 30151521]
[206]
Luna-Dulcey, L.; Tomasin, R.; Naves, M.A.; da Silva, J.A.; Cominetti, M.R. Autophagy-dependent apoptosis is triggered by a semi-synthetic [6]-gingerol analogue in triple negative breast cancer cells. Oncotarget, 2018, 9(56), 30787-30804.
[http://dx.doi.org/10.18632/oncotarget.25704] [PMID: 30112107]
[207]
Mansingh, D.P.; O J, S.; Sali, V.K.; Vasanthi, H.R. [6]-Gingerol-induced cell cycle arrest, reactive oxygen species generation, and disruption of mitochondrial membrane potential are associated with apoptosis in human gastric cancer (AGS) cells. J. Biochem. Mol. Toxicol., 2018, 32(10) e22206
[http://dx.doi.org/10.1002/jbt.22206] [PMID: 30091159]
[208]
Chen, S.Y.; Lee, Y.R.; Hsieh, M.C.; Omar, H.A.; Teng, Y.N.; Lin, C.Y.; Hung, J.H. Enhancing the anticancer activity of Antrodia cinnamomea in hepatocellular carcinoma cells via cocultivation with ginger: The impact on cancer cell survival pathways. Front. Pharmacol., 2018, 9, 780.
[http://dx.doi.org/10.3389/fphar.2018.00780] [PMID: 30072899]
[209]
Dermani, F.K.; Amini, R.; Saidijam, M.; Pourjafar, M.; Saki, S.; Najafi, R. Zerumbone inhibits epithelial-mesenchymal transition and cancer stem cells properties by inhibiting the β-catenin pathway through miR-200c. J. Cell. Physiol., 2018, 233(12), 9538-9547.
[http://dx.doi.org/10.1002/jcp.26874] [PMID: 29943808]
[210]
Swapana, N.; Tominaga, T.; Elshamy, A.I.; Ibrahim, M.A.A.; Hegazy, M.F.; Brajakishor Singh, C.; Suenaga, M.; Imagawa, H.; Noji, M.; Umeyama, A.; Kaemgalangol, A. Unusual seco-isopimarane diterpenoid from aromatic ginger Kaempferia galanga. Fitoterapia, 2018, 129, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2018.06.010] [PMID: 29913194]
[211]
Luo, Y.; Chen, X.; Luo, L.; Zhang, Q.; Gao, C.; Zhuang, X.; Yuan, S.; Qiao, T. [6]-Gingerol enhances the radiosensitivity of gastric cancer via G2/M phase arrest and apoptosis induction. Oncol. Rep., 2018, 39(5), 2252-2260.
[http://dx.doi.org/10.3892/or.2018.6292] [PMID: 29512739]
[212]
Nedungadi, D.; Binoy, A.; Pandurangan, N.; Pal, S.; Nair, B.G.; Mishra, N. 6-Shogaol induces caspase-independent paraptosis in cancer cells via proteasomal inhibition. Exp. Cell Res., 2018, 364(2), 243-251.
[http://dx.doi.org/10.1016/j.yexcr.2018.02.018] [PMID: 29462602]
[213]
Mukkavilli, R.; Yang, C.; Tanwar, R.S.; Saxena, R.; Gundala, S.R.; Zhang, Y.; Ghareeb, A.; Floyd, S.D.; Vangala, S.; Kuo, W.W.; Rida, P.C.G.; Aneja, R. Pharmacokinetic-pharmacodynamic correlations in the development of ginger extract as an anticancer agent. Sci. Rep., 2018, 8(1), 3056.
[http://dx.doi.org/10.1038/s41598-018-21125-2] [PMID: 29445099]
[214]
Zainal, N.S.; Gan, C.P.; Lau, B.F.; Yee, P.S.; Tiong, K.H.; Abdul Rahman, Z.A.; Patel, V.; Cheong, S.C. Zerumbone targets the CXCR4-RhoA and PI3K-mTOR signaling axis to reduce motility and proliferation of oral cancer cells. Phytomedicine, 2018, 39, 33-41.
[http://dx.doi.org/10.1016/j.phymed.2017.12.011] [PMID: 29433681]
[215]
Li, Z.; Wang, Y.; Gao, M.; Cui, W.; Zeng, M.; Cheng, Y.; Li, J. Nine new gingerols from the Rhizoma of Zingiber officinale and their cytotoxic activities. Molecules, 2018, 23(2) E315
[http://dx.doi.org/10.3390/molecules23020315] [PMID: 29393873]
[216]
Wang, L.X.; Qian, J.; Zhao, L.N.; Zhao, S.H. Effects of volatile oil from ginger on the murine B16 melanoma cells and its mechanism. Food Funct., 2018, 9(2), 1058-1069.
[http://dx.doi.org/10.1039/C7FO01127J] [PMID: 29355275]
[217]
Annamalai, G.; Suresh, K. [6]-Shogaol attenuates inflammation, cell proliferation via modulate NF-κB and AP-1 oncogenic signaling in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis. Biomed. Pharmacother., 2018, 98, 484-490.
[http://dx.doi.org/10.1016/j.biopha.2017.12.009] [PMID: 29287195]
[218]
Wani, N.A.; Zhang, B.; Teng, K.Y.; Barajas, J.M.; Motiwala, T.; Hu, P.; Yu, L.; Brüschweiler, R.; Ghoshal, K.; Jacob, S.T. Reprograming of glucose metabolism by zerumbone suppresses hepatocarcinogenesis. Mol. Cancer Res., 2018, 16(2), 256-268.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0304] [PMID: 29187559]
[219]
Kotowski, U.; Kadletz, L.; Schneider, S.; Foki, E.; Schmid, R.; Seemann, R.; Thurnher, D.; Heiduschka, G. 6-shogaol induces apoptosis and enhances radiosensitivity in head and neck squamous cell carcinoma cell lines. Phytother. Res., 2018, 32(2), 340-347.
[http://dx.doi.org/10.1002/ptr.5982] [PMID: 29168275]
[220]
Shamsi, T.N.; Parveen, R.; Fatima, S. Panchakola reduces oxidative stress in MCF-7 breast cancer and HEK293 cells. J. Diet. Suppl., 2018, 15(5), 704-714.
[http://dx.doi.org/10.1080/19390211.2017.1386255] [PMID: 29144788]
[221]
Wang, Q.; Wei, Q.; Yang, Q.; Cao, X.; Li, Q.; Shi, F.; Tong, S.S.; Feng, C.; Yu, Q.; Yu, J.; Xu, X. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect. Int. J. Pharm., 2018, 535(1-2), 308-315.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.006] [PMID: 29126908]
[222]
Kumar, C.; Rasool, R.U.; Iqra, Z.; Nalli, Y.; Dutt, P.; Satti, N.K.; Sharma, N.; Gandhi, S.G.; Goswami, A.; Ali, A. Alkyne-azide cycloaddition analogues of dehydrozingerone as potential anti-prostate cancer inhibitors via the PI3K/Akt/NF-kB pathway. MedChemComm, 2017, 8(11), 2115-2124.
[http://dx.doi.org/10.1039/C7MD00267J] [PMID: 30108729]
[223]
Martin, A.C.B.M.; Fuzer, A.M.; Becceneri, A.B.; da Silva, J.A.; Tomasin, R.; Denoyer, D.; Kim, S.H.; McIntyre, K.A.; Pearson, H.B.; Yeo, B.; Nagpal, A.; Ling, X.; Selistre-de-Araújo, H.S.; Vieira, P.C.; Cominetti, M.R.; Pouliot, N. [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo. Oncotarget, 2017, 8(42), 72260-72271.
[http://dx.doi.org/10.18632/oncotarget.20139] [PMID: 29069785]
[224]
Chiavarini, M.; Minelli, L.; Fabiani, R. Garlic consumption and colorectal cancer risk in man: a systematic review and meta-analysis. Public Health Nutr., 2016, 19(2), 308-317.
[http://dx.doi.org/10.1017/S1368980015001263] [PMID: 25945653]
[225]
Bronowicka-Adamska, P.; Bentke, A.; Lasota, M.; Wróbel, M. Effect of S-Allyl-L-Cysteine on MCF-7 cell line 3-mercaptopyruvate sulfurtransferase/sulfane sulfur system, viability and apoptosis. Int. J. Mol. Sci., 2020, 21(3), 1090.
[226]
Czepukojc, B.; Baltes, A.K.; Cerella, C.; Kelkel, M.; Viswanathan, U.M.; Salm, F.; Burkholz, T.; Schneider, C.; Dicato, M.; Montenarh, M.; Jacob, C.; Diederich, M. Synthetic polysulfane derivatives induce cell cycle arrest and apoptotic cell death in human hematopoietic cancer cells. Food Chem. Toxicol., 2014, 64, 249-257.
[http://dx.doi.org/10.1016/j.fct.2013.10.020] [PMID: 24157544]
[227]
Xiao, X.; Chen, B.; Liu, X.; Liu, P.; Zheng, G.; Ye, F.; Tang, H.; Xie, X. Diallyl disulfide suppresses SRC/Ras/ERK signaling-mediated proliferation and metastasis in human breast cancer by up-regulating miR-34a. PLoS One, 2014, 9(11) e112720
[http://dx.doi.org/10.1371/journal.pone.0112720] [PMID: 25396727]
[228]
Ling, H.; Lu, L.F.; He, J.; Xiao, G.H.; Jiang, H.; Su, Q. Diallyl disulfide selectively causes checkpoint kinase-1 mediated G2/M arrest in human MGC803 gastric cancer cell line. Oncol. Rep., 2014, 32(5), 2274-2282.
[http://dx.doi.org/10.3892/or.2014.3417] [PMID: 25176258]
[229]
Yin, X.; Zhang, R.; Feng, C.; Zhang, J.; Liu, D.; Xu, K.; Wang, X.; Zhang, S.; Li, Z.; Liu, X.; Ma, H. Diallyl disulfide induces G2/M arrest and promotes apoptosis through the p53/p21 and MEK-ERK pathways in human esophageal squamous cell carcinoma. Oncol. Rep., 2014, 32(4), 1748-1756.
[http://dx.doi.org/10.3892/or.2014.3361] [PMID: 25175641]
[230]
Zhang, X.; Zhu, Y.; Duan, W.; Feng, C.; He, X. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway. Mol. Med. Rep., 2015, 11(4), 2755-2760.
[http://dx.doi.org/10.3892/mmr.2014.3109] [PMID: 25523417]
[231]
Tung, Y.C.; Tsai, M.L.; Kuo, F.L.; Lai, C.S.; Badmaev, V.; Ho, C.T.; Pan, M.H. Se-methyl-L-selenocysteine induces apoptosis via endoplasmic reticulum stress and the death receptor pathway in human colon adenocarcinoma COLO 205 cells. J. Agric. Food Chem., 2015, 63(20), 5008-5016.
[http://dx.doi.org/10.1021/acs.jafc.5b01779] [PMID: 25943382]
[232]
Jikihara, H.; Qi, G.; Nozoe, K.; Hirokawa, M.; Sato, H.; Sugihara, Y.; Shimamoto, F. Aged garlic extract inhibits 1,2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation. Oncol. Rep., 2015, 33(3), 1131-1140.
[http://dx.doi.org/10.3892/or.2014.3705] [PMID: 25573280]
[233]
Suda, S.; Watanabe, K.; Tanaka, Y.; Watanabe, K.; Tanaka, R.; Ogihara, J.; Ariga, T.; Hosono-Fukao, T.; Hosono, T.; Seki, T. Identification of molecular target of diallyl trisulfide in leukemic cells. Biosci. Biotechnol. Biochem., 2014, 78(8), 1415-1417.
[http://dx.doi.org/10.1080/09168451.2014.921563] [PMID: 25130746]
[234]
Jeong, J.W.; Park, S.; Park, C.; Chang, Y.C.; Moon, D.O.; Kim, S.O.; Kim, G.Y.; Cha, H.J.; Kim, H.S.; Choi, Y.W.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells. Oncol. Rep., 2014, 32(1), 373-381.
[http://dx.doi.org/10.3892/or.2014.3215] [PMID: 24859825]
[235]
Xu, Y.S.; Feng, J.G.; Zhang, D.; Zhang, B.; Luo, M.; Su, D.; Lin, N.M. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta Pharmacol. Sin., 2014, 35(2), 267-274.
[http://dx.doi.org/10.1038/aps.2013.176] [PMID: 24362328]
[236]
Wu, Y.; Wu, Z.R.; Chen, P.; Yang-Li, ; Deng, W.R.; Wang, Y.Q.; Li, H.Y. Effect of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase gene expression and melanine accumulation in melanoma cells. Bioorg. Med. Chem. Lett., 2015, 25(7), 1476-1478.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.028] [PMID: 25726329]
[237]
Huang, J.; Yang, B.; Xiang, T.; Peng, W.; Qiu, Z.; Wan, J.; Zhang, L.; Li, H.; Li, H.; Ren, G. Diallyl disulfide inhibits growth and metastatic potential of human triple-negative breast cancer cells through inactivation of the β-catenin signaling pathway. Mol. Nutr. Food Res., 2015, 59(6), 1063-1075.
[http://dx.doi.org/10.1002/mnfr.201400668] [PMID: 25755089]
[238]
Kaschula, C.H.; Tuveri, R.; Ngarande, E.; Dzobo, K.; Barnett, C.; Kusza, D.A.; Graham, L.M.; Katz, A.A.; Rafudeen, M.S.; Parker, M.I.; Hunter, R.; Schäfer, G. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer, 2019, 19(1), 248.
[http://dx.doi.org/10.1186/s12885-019-5388-8] [PMID: 30894168]
[239]
Wang, J.; Si, L.; Wang, G.; Bai, Z.; Li, W. Increased sulfiredoxin expression in gastric cancer cells may be a molecular target of the anticancer component diallyl trisulfide. BioMed Res. Int., 2019, 2019 4636804
[http://dx.doi.org/10.1155/2019/4636804] [PMID: 30863778]
[240]
Gruhlke, M.C.H.; Antelmann, H.; Bernhardt, J.; Kloubert, V.; Rink, L.; Slusarenko, A.J. The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radic. Biol. Med., 2019, 131, 144-153.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.022] [PMID: 30500420]
[241]
Shin, N.R.; Kwon, H.J.; Ko, J.W.; Kim, J.S.; Lee, I.C.; Kim, J.C.; Kim, S.H.; Shin, I.S. S-Allyl cysteine reduces eosinophilic airway inflammation and mucus overproduction on ovalbumin-induced allergic asthma model. Int. Immunopharmacol., 2019, 68, 124-130.
[http://dx.doi.org/10.1016/j.intimp.2019.01.001] [PMID: 30622029]
[242]
Das, B.; Sinha, D. Diallyl disulphide suppresses the cannonical Wnt signaling pathway and reverses the fibronectin-induced epithelial mesenchymal transition of A549 lung cancer cells. Food Funct., 2019, 10(1), 191-202.
[http://dx.doi.org/10.1039/C8FO00246K] [PMID: 30516195]
[243]
Sun, J.; Mu, H.; Yu, J.; Li, L.; Yan, H.; Li, G.; Tan, H.; Yang, N.; Yang, X.; Yi, L. Diallyl disulfide down-regulates calreticulin and promotes C/EBPα expression in differentiation of human leukaemia cells. J. Cell. Mol. Med., 2019, 23(1), 194-204.
[http://dx.doi.org/10.1111/jcmm.13904] [PMID: 30394654]
[244]
Kaowinn, S.; Kaewpiboon, C.; Kim, J.E.; Lee, M.R.; Hwang, D.Y.; Choi, Y.W.; Kim, H.W.; Park, J.K.; Song, K.M.; Lee, N.H.; Maeng, J.S.; Chung, Y.H. N-Benzyl-N-methyl-dodecan-1-amine, a novel compound from garlic, exerts anti-cancer effects on human A549 lung cancer cells overexpressing cancer upregulated gene (CUG)2. Eur. J. Pharmacol., 2018, 841, 19-27.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.035] [PMID: 30287155]
[245]
Xiao, J.; Xing, F.; Liu, Y.; Lv, Y.; Wang, X.; Ling, M.T.; Gao, H.; Ouyang, S.; Yang, M.; Zhu, J.; Xia, Y.; So, K.F.; Tipoe, G.L. Garlic-derived compound S-allylmercaptocysteine inhibits hepatocarcinogenesis through targeting LRP6/Wnt pathway. Acta Pharm. Sin. B, 2018, 8(4), 575-586.
[http://dx.doi.org/10.1016/j.apsb.2017.10.003] [PMID: 30109182]
[246]
Ohkubo, S.; Dalla Via, L.; Grancara, S.; Kanamori, Y.; García-Argáez, A.N.; Canettieri, G.; Arcari, P.; Toninello, A.; Agostinelli, E. The antioxidant, aged garlic extract, exerts cytotoxic effects on wild-type and multidrug-resistant human cancer cells by altering mitochondrial permeability. Int. J. Oncol., 2018, 53(3), 1257-1268.
[http://dx.doi.org/10.3892/ijo.2018.4452] [PMID: 29956777]
[247]
Alkhatib, M.H.; Al-Otaibi, W.A.; Wali, A.N. Antineoplastic activity of mitomycin C formulated in nanoemulsions-based essential oils on HeLa cervical cancer cells. Chem. Biol. Interact., 2018, 291, 72-80.
[http://dx.doi.org/10.1016/j.cbi.2018.06.009] [PMID: 29908166]
[248]
Chen, H.; Zhu, B.; Zhao, L.; Liu, Y.; Zhao, F.; Feng, J.; Jin, Y.; Sun, J.; Geng, R.; Wei, Y. Allicin inhibits proliferation and invasion in vitro and in vivo via SHP-1-mediated STAT3 signaling in cholangiocarcinoma. Cell. Physiol. Biochem., 2018, 47(2), 641-653.
[http://dx.doi.org/10.1159/000490019] [PMID: 29794468]
[249]
Pan, J.; Zhang, L.; Xu, S.; Cheng, X.; Yu, H.; Bao, J.; Lu, R. Induction of apoptosis in human papillary-thyroid-carcinoma BCPAP cells by diallyl trisulfide through activation of the MAPK signaling pathway. J. Agric. Food Chem., 2018, 66(23), 5871-5878.
[http://dx.doi.org/10.1021/acs.jafc.8b02243] [PMID: 29786427]
[250]
Xiong, T.; Liu, X.W.; Huang, X.L.; Xu, X.F.; Xie, W.Q.; Zhang, S.J.; Tu, J. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer. Oncol. Lett., 2018, 15(5), 7817-7827.
[http://dx.doi.org/10.3892/ol.2018.8299] [PMID: 29725473]
[251]
Li, X.; Ni, J.; Tang, Y.; Wang, X.; Tang, H.; Li, H.; Zhang, S.; Shen, X. Allicin inhibits mouse colorectal tumorigenesis through suppressing the activation of STAT3 signaling pathway. Nat. Prod. Res., 2018, 23, 1-4.
[PMID: 29683343]
[252]
Kim, W.T.; Seo, S.P.; Byun, Y.J.; Kang, H.W.; Kim, Y.J.; Lee, S.C.; Jeong, P.; Song, H.J.; Choe, S.Y.; Kim, D.J.; Kim, S.K.; Ha, Y.S.; Moon, S.K.; Lee, G.T.; Kim, I.Y.; Yun, S.J.; Kim, W.J. The anticancer effects of garlic extracts on bladder cancer compared to cisplatin: A common mechanism of action via centromere protein M. Am. J. Chin. Med., 2018, 46(3), 689-705.
[http://dx.doi.org/10.1142/S0192415X18500362] [PMID: 29595070]
[253]
Zhang, Q.; Li, X.T.; Chen, Y.; Chen, J.Q.; Zhu, J.Y.; Meng, Y.; Wang, X.Q.; Li, Y.; Geng, S.S.; Xie, C.F.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemother. Pharmacol., 2018, 81(6), 969-977.
[http://dx.doi.org/10.1007/s00280-018-3565-0] [PMID: 29594332]
[254]
Pathak, S.; Catanzaro, R.; Vasan, D.; Marotta, F.; Chabria, Y.; Jothimani, G.; Verma, R.S.; Murugesan, R.; Khuda-Bukhsh, A.R.; Banerjee, A. Benefits of aged garlic extract in modulating toxicity biomarkers against p-dimethylaminoazobenzene and phenobarbital induced liver damage in Rattus norvegicus. Drug Chem. Toxicol., 2018, 12, 1-14.
[http://dx.doi.org/10.1080/01480545.2018.1499773] [PMID: 30207178]
[255]
Li, Z.; Le, W.; Cui, Z. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Discov., 2018, 4, 108.
[http://dx.doi.org/10.1038/s41420-018-0122-x] [PMID: 30479841]
[256]
Liu, Y.; Zhao, Y.; Wei, Z.; Tao, L.; Sheng, X.; Wang, S.; Chen, J.; Ruan, J.; Liu, Z.; Cao, Y.; Shan, Y.; Wang, A.; Chen, W.; Lu, Y. Targeting thioredoxin system with an organosulfur compound, Diallyl Trisulfide (DATS), attenuates progression and metastasis of Triple-Negative Breast Cancer (TNBC). Cell. Physiol. Biochem., 2018, 50(5), 1945-1963.
[http://dx.doi.org/10.1159/000494874] [PMID: 30396169]
[257]
Olivito, F.; Amodio, N.; Di Gioia, M.L.; Nardi, M.; Oliverio, M.; Juli, G.; Tassone, P.; Procopio, A. Synthesis and preliminary evaluation of the anti-cancer activity on A549 lung cancer cells of a series of unsaturated disulfides. MedChemComm, 2018, 10(1), 116-119.
[http://dx.doi.org/10.1039/C8MD00503F] [PMID: 30774859]
[258]
Xie, W.P.; Zhang, Y.; Zhang, Y.K.; Li, G.; Xin, J.; Bi, R.X.; Li, C.J. Treatment of Saos-2 osteosarcoma cells with diallyl trisulfide is associated with an increase in calreticulin expression. Exp. Ther. Med., 2018, 15(6), 4737-4742.
[http://dx.doi.org/10.3892/etm.2018.6037] [PMID: 29844798]
[259]
Xu, Y.; Su, D.; Zhu, L.; Zhang, S.; Ma, S.; Wu, K.; Yuan, Q.; Lin, N. S-allylcysteine suppresses ovarian cancer cell proliferation by DNA methylation through DNMT1. J. Ovarian Res., 2018, 11(1), 39.
[http://dx.doi.org/10.1186/s13048-018-0412-1] [PMID: 29759079]
[260]
Pan, Y.; Zheng, Y.M.; Ho, W.S. Effect of quercetin glucosides from Allium extracts on HepG2, PC-3 and HT-29 cancer cell lines. Oncol. Lett., 2018, 15(4), 4657-4661.
[http://dx.doi.org/10.3892/ol.2018.7893] [PMID: 29552109]
[261]
Arumai Selvan, D.; Mahendiran, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B, 2018, 180, 243-252.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.014] [PMID: 29476965]
[262]
Li, C.; Jing, H.; Ma, G.; Liang, P. Allicin induces apoptosis through activation of both intrinsic and extrinsic pathways in glioma cells. Mol. Med. Rep., 2018, 17(4), 5976-5981.
[http://dx.doi.org/10.3892/mmr.2018.8552] [PMID: 29436625]
[263]
Li, X.; Meng, Y.; Xie, C.; Zhu, J.; Wang, X.; Li, Y.; Geng, S.; Wu, J.; Zhong, C.; Li, M. Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J. Cell. Biochem., 2018, 119(5), 4134-4141.
[http://dx.doi.org/10.1002/jcb.26613] [PMID: 29243835]
[264]
Yin, X.; Feng, C.; Han, L.; Ma, Y.; Jiao, Y.; Wang, J.; Jia, L.; Jing, F.; Gao, X.; Zhang, Y.; Zhang, J. Diallyl disulfide inhibits the metastasis of type Ć esophageal-gastric junction adenocarcinoma cells via NF-κB and PI3K/AKT signaling pathways in vitro. Oncol. Rep., 2018, 39(2), 784-794.
[PMID: 29207122]
[265]
Nicastro, H.L.; Ross, S.A.; Milner, J.A. Garlic and onions: their cancer prevention properties. Cancer Prev. Res. (Phila.), 2015, 8(3), 181-189.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0172] [PMID: 25586902]
[266]
Lai, W.W.; Hsu, S.C.; Chueh, F.S.; Chen, Y.Y.; Yang, J.S.; Lin, J.P.; Lien, J.C.; Tsai, C.H.; Chung, J.G. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signaling pathways. Anticancer Res., 2013, 33(5), 1941-1950.
[PMID: 23645742]
[267]
Syed, D.N.; Adhami, V.M.; Khan, M.I.; Mukhtar, H. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anticancer. Agents Med. Chem., 2013, 13(7), 995-1001.
[http://dx.doi.org/10.2174/18715206113139990129] [PMID: 23293889]
[268]
Khan, N.; Syed, D.N.; Ahmad, N.; Mukhtar, H. Fisetin: a dietary antioxidant for health promotion. Antioxid. Redox Signal., 2013, 19(2), 151-162.
[http://dx.doi.org/10.1089/ars.2012.4901] [PMID: 23121441]
[269]
Inoue-Choi, M.; Oppeneer, S.J.; Robien, K. Reality check: there is no such thing as a miracle food. Nutr. Cancer, 2013, 65(2), 165-168.
[http://dx.doi.org/10.1080/01635581.2013.748921] [PMID: 23441603]
[270]
Perlman, S.; Hazan, Y.; Hagay, Z.; Appelman, Z.; Caspi, B. “Onion skin” sign in an ovarian mucinous cyst. J. Clin. Ultrasound, 2013, 41(1), 63-64.
[http://dx.doi.org/10.1002/jcu.21872] [PMID: 22250065]
[271]
Chang, H.S.; Yamato, O.; Yamasaki, M.; Ko, M.; Maede, Y. Growth inhibitory effect of alk(en)yl thiosulfates derived from onion and garlic in human immortalized and tumor cell lines. Cancer Lett., 2005, 223(1), 47-55.
[http://dx.doi.org/10.1016/j.canlet.2004.10.008] [PMID: 15890236]
[272]
Taché, S.; Ladam, A.; Corpet, D.E. Chemoprevention of aberrant crypt foci in the colon of rats by dietary onion. Eur. J. Cancer, 2007, 43(2), 454-458.
[http://dx.doi.org/10.1016/j.ejca.2006.09.022] [PMID: 17188859]
[273]
Fujiwara, Y.; Horlad, H.; Shiraishi, D.; Tsuboki, J.; Kudo, R.; Ikeda, T.; Nohara, T.; Takeya, M.; Komohara, Y. Onionin A, a sulfur-containing compound isolated from onions, impairs tumor development and lung metastasis by inhibiting the protumoral and immunosuppressive functions of myeloid cells. Mol. Nutr. Food Res., 2016, 60(11), 2467-2480.
[http://dx.doi.org/10.1002/mnfr.201500995] [PMID: 27393711]
[274]
Chu, Y.F.; Sun, J.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem., 2002, 50(23), 6910-6916.
[http://dx.doi.org/10.1021/jf020665f] [PMID: 12405796]
[275]
Fukushima, S.; Takada, N.; Hori, T.; Wanibuchi, H. Cancer prevention by organosulfur compounds from garlic and onion. J. Cell. Biochem. Suppl., 1997, 27, 100-105.
[http://dx.doi.org/10.1002/(SICI)1097-4644(1997)27+<100:AID-JCB16>3.0.CO;2-R] [PMID: 9591199]
[276]
Hatono, S.; Jimenez, A.; Wargovich, M.J. Chemopreventive effect of S-allylcysteine and its relationship to the detoxification enzyme glutathione S-transferase. Carcinogenesis, 1996, 17(5), 1041-1044.
[http://dx.doi.org/10.1093/carcin/17.5.1041] [PMID: 8640910]
[277]
Munday, R.; Munday, C.M. Relative activities of organosulfur compounds derived from onions and garlic in increasing tissue activities of quinone reductase and glutathione transferase in rat tissues. Nutr. Cancer, 2001, 40(2), 205-210.
[http://dx.doi.org/10.1207/S15327914NC402_18] [PMID: 11962257]
[278]
Suleria, H.A.; Butt, M.S.; Anjum, F.M.; Saeed, F.; Khalid, N. Onion: nature protection against physiological threats. Crit. Rev. Food Sci. Nutr., 2015, 55(1), 50-66.
[http://dx.doi.org/10.1080/10408398.2011.646364] [PMID: 24915405]
[279]
Sankaranarayanan, R.; Varghese, C.; Duffy, S.W.; Padmakumary, G.; Day, N.E.; Nair, M.K. A case-control study of diet and lung cancer in Kerala, south India. Int. J. Cancer, 1994, 58(5), 644-649.
[http://dx.doi.org/10.1002/ijc.2910580505] [PMID: 8077047]
[280]
Hu, J.; La Vecchia, C.; Negri, E.; Chatenoud, L.; Bosetti, C.; Jia, X.; Liu, R.; Huang, G.; Bi, D.; Wang, C. Diet and brain cancer in adults: a case-control study in northeast China. Int. J. Cancer, 1999, 81(1), 20-23.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990331)81:1<20:AID-IJC4>3.0.CO;2-2] [PMID: 10077146]
[281]
Ibáñez-Redín, G.; Furuta, R.H.M.; Wilson, D.; Shimizu, F.M.; Materon, E.M.; Arantes, L.M.R.B.; Melendez, M.E.; Carvalho, A.L.; Reis, R.M.; Chaur, M.N.; Gonçalves, D.; Oliveira, O.N., Jr Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Mater. Sci. Eng. C, 2019, 99, 1502-1508.
[http://dx.doi.org/10.1016/j.msec.2019.02.065] [PMID: 30889686]
[282]
Aleksandar, P.; Dragana, M.Ć.; Nebojša, J.; Biljana, N.; Nataša, S.; Branka, V.; Jelena, K.V. Wild edible onions - Allium flavum and Allium carinatum - successfully prevent adverse effects of chemotherapeutic drug doxorubicin. Biomed. Pharmacother., 2019, 109, 2482-2491.
[http://dx.doi.org/10.1016/j.biopha.2018.11.106] [PMID: 30551509]
[283]
Zolfaghari, B.; Yazdiniapour, Z.; Sadeghi, M.; Akbari, M.; Troiano, R.; Lanzotti, V. Cinnamic acid derivatives from welsh onion (Allium fistulosum) and their antibacterial and cytotoxic activities. Phytochem. Anal., 2020.
[http://dx.doi.org/10.3892/ol.2018.7893] [PMID: 29552109]
[284]
Nile, A.; Nile, S.H.; Kim, D.H.; Keum, Y.S.; Seok, P.G.; Sharma, K. Valorization of onion solid waste and their flavonols for assessment of cytotoxicity, enzyme inhibitory and antioxidant activities. Food Chem. Toxicol., 2018, 119, 281-289.
[http://dx.doi.org/10.1016/j.fct.2018.02.056] [PMID: 29496529]
[285]
Rad, J.G.; Hoskin, D.W. Delivery of apoptosis-inducing piperine to triple-negative breast cancer cells via co-polymeric nanoparticles. Anticancer Res., 2020, 40(2), 689-694.
[286]
Sunila, E.S.; Kuttan, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J. Ethnopharmacol., 2004, 90(2-3), 339-346.
[http://dx.doi.org/10.1016/j.jep.2003.10.016] [PMID: 15013199]
[287]
Piyachaturawat, P.; Glinsukon, T.; Toskulkao, C. Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol. Lett., 1983, 16(3-4), 351-359.
[http://dx.doi.org/10.1016/0378-4274(83)90198-4] [PMID: 6857729]
[288]
Suresh, D.; Srinivasan, K. Studies on the in vitro absorption of spice principles--curcumin, capsaicin and piperine in rat intestines. Food Chem. Toxicol., 2007, 45(8), 1437-1442.
[http://dx.doi.org/10.1016/j.fct.2007.02.002] [PMID: 17524539]
[289]
Atal, N.; Bedi, K.L. Bioenhancers: Revolutionary concept to market. J. Ayurveda Integr. Med., 2010, 1(2), 96-99.
[http://dx.doi.org/10.4103/0975-9476.65073] [PMID: 21836795]
[290]
Kasibhatta, R.; Naidu, M.U. Influence of piperine on the pharmacokinetics of nevirapine under fasting conditions: a randomised, crossover, placebo-controlled study. Drugs R D., 2007, 8(6), 383-391.
[http://dx.doi.org/10.2165/00126839-200708060-00006] [PMID: 17963429]
[291]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[292]
Mittal, R.; Gupta, R.L. In vitro antioxidant activity of piperine. Methods Find. Exp. Clin. Pharmacol., 2000, 22(5), 271-274.
[http://dx.doi.org/10.1358/mf.2000.22.5.796644] [PMID: 11031726]
[293]
Kim, H.G.; Han, E.H.; Jang, W.S.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Chung, Y.C.; Jeong, H.G. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem. Toxicol., 2012, 50(7), 2342-2348.
[http://dx.doi.org/10.1016/j.fct.2012.04.024] [PMID: 22542552]
[294]
Lai, L.H.; Fu, Q.H.; Liu, Y.; Jiang, K.; Guo, Q.M.; Chen, Q.Y.; Yan, B.; Wang, Q.Q.; Shen, J.G. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin., 2012, 33(4), 523-530.
[http://dx.doi.org/10.1038/aps.2011.209] [PMID: 22388073]
[295]
Doucette, C.D.; Hilchie, A.L.; Liwski, R.; Hoskin, D.W. Piperine, a dietary phytochemical, inhibits angiogenesis. J. Nutr. Biochem., 2013, 24(1), 231-239.
[http://dx.doi.org/10.1016/j.jnutbio.2012.05.009] [PMID: 22902327]
[296]
Hwang, Y.P.; Yun, H.J.; Kim, H.G.; Han, E.H.; Choi, J.H.; Chung, Y.C.; Jeong, H.G. Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol. Lett., 2011, 203(1), 9-19.
[http://dx.doi.org/10.1016/j.toxlet.2011.02.013] [PMID: 21354279]
[297]
Pradeep, C.R.; Kuttan, G. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin. Exp. Metastasis, 2002, 19(8), 703-708.
[http://dx.doi.org/10.1023/A:1021398601388] [PMID: 12553376]
[298]
Abdelhamed, S.; Yokoyama, S.; Refaat, A.; Ogura, K.; Yagita, H.; Awale, S.; Saiki, I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res., 2014, 34(4), 1893-1899.
[PMID: 24692724]
[299]
Ouyang, D.Y.; Zeng, L.H.; Pan, H.; Xu, L.H.; Wang, Y.; Liu, K.P.; He, X.H. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol., 2013, 60, 424-430.
[http://dx.doi.org/10.1016/j.fct.2013.08.007] [PMID: 23939040]
[300]
Yaffe, P.B.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Exp. Mol. Pathol., 2013, 94(1), 109-114.
[http://dx.doi.org/10.1016/j.yexmp.2012.10.008] [PMID: 23063564]
[301]
Yaffe, P.B.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol. Carcinog., 2015, 54(10), 1070-1085.
[http://dx.doi.org/10.1002/mc.22176] [PMID: 24819444]
[302]
Fofaria, N.M.; Kim, S.H.; Srivastava, S.K. Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation. PLoS One, 2014, 9(5) e94298
[http://dx.doi.org/10.1371/journal.pone.0094298] [PMID: 24804719]
[303]
Li, S.; Lei, Y.; Jia, Y.; Li, N.; Wink, M.; Ma, Y. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine, 2011, 19(1), 83-87.
[http://dx.doi.org/10.1016/j.phymed.2011.06.031] [PMID: 21802927]
[304]
Selvendiran, K.; Banu, S.M.; Sakthisekaran, D. Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Clin. Chim. Acta, 2004, 350(1-2), 73-78.
[http://dx.doi.org/10.1016/j.cccn.2004.07.004] [PMID: 15530462]
[305]
Vellaichamy, L.; Balakrishnan, S.; Panjamurthy, K.; Manoharan, S.; Alias, L.M. Chemopreventive potential of piperine in 7,12-dimethylbenz[a]anthracene-induced skin carcinogenesis in Swiss albino mice. Environ. Toxicol. Pharmacol., 2009, 28(1), 11-18.
[http://dx.doi.org/10.1016/j.etap.2009.01.008] [PMID: 21783976]
[306]
Samykutty, A.; Shetty, A.V.; Dakshinamoorthy, G.; Bartik, M.M.; Johnson, G.L.; Webb, B.; Zheng, G.; Chen, A.; Kalyanasundaram, R.; Munirathinam, G. Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS One, 2013, 8(6) e65889
[http://dx.doi.org/10.1371/journal.pone.0065889] [PMID: 23824300]
[307]
Oliveira, M.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol., 2019, 20, 182-194.
[http://dx.doi.org/10.1016/j.redox.2018.10.006] [PMID: 30359932]
[308]
Freitas, J.A.; Sorrechia, R.; Politi, F.A.S.; Santos, A.G.; Rodrigues, E.R.; Santos, L.C.; Fusco-Almeida, A.M.; Oliveira, A.A.; Guido, R.V.C.; Pietro, R.C.L.R. In vitro bioassay guided anti-dermatophyte and cytotoxic activities from Piper umbellatum L. Miq. led to 4-nerolidylcatechol. Nat. Prod. Res., 2019, 20, 1-5.
[http://dx.doi.org/10.1080/14786419.2019.1569656] [PMID: 30784314]
[309]
Piska, K.; Koczurkiewicz, P.; Wnuk, D.; Karnas, E.; Bucki, A.; Wójcik-Pszczoła, K.; Jamrozik, M.; Michalik, M.; Kołaczkowski, M.; Pękala, E. Synergistic anticancer activity of doxorubicin and piperlongumine on DU-145 prostate cancer cells - The involvement of carbonyl reductase 1 inhibition. Chem. Biol. Interact., 2019, 300, 40-48.
[http://dx.doi.org/10.1016/j.cbi.2019.01.003] [PMID: 30611789]
[310]
Macedo, A.L.; da Silva, D.P.D.; Moreira, D.L.; de Queiroz, L.N.; Vasconcelos, T.R.A.; Araujo, G.F.; Kaplan, M.A.C.; Pereira, S.S.C.; de Almeida, E.C.P.; Valverde, A.L.; Robbs, B.K. Cytotoxicity and selectiveness of Brazilian Piper species towards oral carcinoma cells. Biomed. Pharmacother., 2019, 110, 342-352.
[http://dx.doi.org/10.1016/j.biopha.2018.11.129] [PMID: 30529767]
[311]
Sivaraj, D.; Shanmugam, S.; Rajan, M.; Sasidharan, S.P.; Sathyanarayanan, S.; Muniyandi, K.; Thangaraj, P.; de Souza Araújo, A.A. Evaluation of Aristolochia indica L. and Piper nigrum L. methanol extract against centipede Scolopendra moristans L. using Wistar albino rats and screening of bioactive compounds by high pressure liquid chromatography: a polyherbal formulation. Biomed. Pharmacother., 2018, 97, 1603-1612.
[http://dx.doi.org/10.1016/j.biopha.2017.11.114] [PMID: 29793322]
[312]
Hang, W.; Yin, Z.X.; Liu, G.; Zeng, Q.; Shen, X.F.; Sun, Q.H.; Li, D.D.; Jian, Y.P.; Zhang, Y.H.; Wang, Y.S.; Quan, C.S.; Zhao, R.X.; Li, Y.L.; Xu, Z.X. Piperlongumine and p53-reactivator APR-246 selectively induce cell death in HNSCC by targeting GSTP1. Oncogene, 2018, 37(25), 3384-3398.
[http://dx.doi.org/10.1038/s41388-017-0110-2] [PMID: 29348462]
[313]
AbouAitah, K.; Stefanek, A.; Higazy, I.M.; Janczewska, M.; Swiderska-Sroda, A.; Chodara, A.; Wojnarowicz, J.; Szałaj, U.; Shahein, S.A.; Aboul-Enein, A.M.; Abou-Elella, F.; Gierlotka, S.; Ciach, T.; Lojkowski, W. Effective targeting of colon cancer cells with piperine natural anticancer prodrug using functionalized clusters of hydroxyapatite nanoparticles. Pharmaceutics, 2020, 12(1) E70
[314]
Kim, Y.H.; Yoon, Y.J.; Lee, Y.J.; Kim, C.H.; Lee, S.; Choung, D.H.; Han, D.C.; Kwon, B.M. Piperlongumine derivative, CG-06, inhibits STAT3 activity by direct binding to STAT3 and regulating the reactive oxygen species in DU145 prostate carcinoma cells. Bioorg. Med. Chem. Lett., 2018, 28(14), 2566-2572.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.025] [PMID: 29807795]
[315]
Han, X.; Beaumont, C.; Rodriguez, D.; Bahr, T. Black pepper (Piper nigrum) essential oil demonstrates tissue remodeling and metabolism modulating potential in human cells. Phytother. Res., 2018, 32(9), 1848-1852.
[http://dx.doi.org/10.1002/ptr.6110] [PMID: 29770504]
[316]
Guha Majumdar, A.; Subramanian, M. Hydroxychavicol from Piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells. Biochem. Pharmacol., 2019, 166, 274-291.
[317]
Si, L.; Yang, R.; Lin, R.; Yang, S. Piperine functions as a tumor suppressor for human ovarian tumor growth via activation of JNK/p38 MAPK-mediated intrinsic apoptotic pathway. Biosci. Rep., 2018, 38(3) BSR20180503
[http://dx.doi.org/10.1042/BSR20180503] [PMID: 29717031]
[318]
Li, H.; Krstin, S.; Wang, S.; Wink, M. Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin. Molecules, 2018, 23(3) E557
[http://dx.doi.org/10.3390/molecules23030557] [PMID: 29498663]
[319]
Zhang, Z.; Wang, C.Z.; Wen, X.D.; Shoyama, Y.; Yuan, C.S. Role of saffron and its constituents on cancer chemoprevention. Pharm. Biol., 2013, 51(7), 920-924.
[http://dx.doi.org/10.3109/13880209.2013.771190] [PMID: 23570520]
[320]
Gutheil, W.G.; Reed, G.; Ray, A.; Anant, S.; Dhar, A. Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr. Pharm. Biotechnol., 2012, 13(1), 173-179.
[http://dx.doi.org/10.2174/138920112798868566] [PMID: 21466430]
[321]
Abdullaev, F.I.; Frenkel, G.D. Effect of saffron on cell colony formation and cellular nucleic acid and protein synthesis. Biofactors, 1992, 3(3), 201-204.
[PMID: 1376126]
[322]
Samarghandian, S.; Tavakkol Afshari, J.; Davoodi, S. Suppression of pulmonary tumor promotion and induction of apoptosis by Crocus sativus L. extraction. Appl. Biochem. Biotechnol., 2011, 164(2), 238-247.
[http://dx.doi.org/10.1007/s12010-010-9130-x] [PMID: 21153568]
[323]
Samarghandian, S.; Borji, A.; Farahmand, S.K.; Afshari, R.; Davoodi, S. Crocus sativus L. (saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. BioMed Res. Int., 2013, 2013 417928
[http://dx.doi.org/10.1155/2013/417928] [PMID: 24288678]
[324]
Amin, A.; Bajbouj, K.; Koch, A.; Gandesiri, M.; Schneider-Stock, R. Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int. J. Mol. Sci., 2015, 16(1), 1544-1561.
[http://dx.doi.org/10.3390/ijms16011544] [PMID: 25584615]
[325]
D’Alessandro, A.M.; Mancini, A.; Lizzi, A.R.; De Simone, A.; Marroccella, C.E.; Gravina, G.L.; Tatone, C.; Festuccia, C. Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutr. Cancer, 2013, 65(6), 930-942.
[http://dx.doi.org/10.1080/01635581.2013.767368] [PMID: 23909737]
[326]
Xia, D. Ovarian cancer HO-8910 cell apoptosis induced by crocin in vitro. Nat. Prod. Commun., 2015, 10(2), 249-252.
[http://dx.doi.org/10.1177/1934578X1501000208] [PMID: 25920253]
[327]
Chryssanthi, D.G.; Dedes, P.G.; Karamanos, N.K.; Cordopatis, P.; Lamari, F.N. Crocetin inhibits invasiveness of MDA-MB-231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Med., 2011, 77(2), 146-151.
[http://dx.doi.org/10.1055/s-0030-1250178] [PMID: 20803418]
[328]
Rezaee, R.; Mahmoudi, M.; Abnous, K.; Zamani Taghizadeh Rabe, S.; Tabasi, N.; Hashemzaei, M.; Karimi, G. Cytotoxic effects of crocin on MOLT-4 human leukemia cells. J. Complement. Integr. Med., 2013, 10, 10.
[http://dx.doi.org/10.1515/jcim-2013-0011] [PMID: 23934514]
[329]
Geromichalos, G.D.; Papadopoulos, T.; Sahpazidou, D.; Sinakos, Z. Safranal, a Crocus sativus L constituent suppresses the growth of K-562 cells of chronic myelogenous leukemia. In silico and in vitro study. Food Chem. Toxicol., 2014, 74, 45-50.
[http://dx.doi.org/10.1016/j.fct.2014.09.001] [PMID: 25239662]
[330]
Li, X.; Huang, T.; Jiang, G.; Gong, W.; Qian, H.; Zou, C. Synergistic apoptotic effect of crocin and cisplatin on osteosarcoma cells via caspase induced apoptosis. Toxicol. Lett., 2013, 221(3), 197-204.
[http://dx.doi.org/10.1016/j.toxlet.2013.06.233] [PMID: 23830991]
[331]
Nair, S.C.; Varghese, C.D.; Panikkar, K.R.; Kurumboor, S.K.; Parathod, R.K. Effects of Saffron on the serum vitamin A levels in mice and its antitumor activity. Int. J. Pharmacol., 1994, 32, 105.
[332]
Nair, S.C.; Pannikar, B.; Panikkar, K.R. Antitumour activity of saffron (Crocus sativus). Cancer Lett., 1991, 57(2), 109-114.
[http://dx.doi.org/10.1016/0304-3835(91)90203-T] [PMID: 2025883]
[333]
Salomi, M.J.; Nair, S.C.; Panikkar, K.R. Inhibitory effects of N. sativa and C. sativus on chemical carcinogenesis in mice. Nutr. Cancer, 1991, 16, 67.
[http://dx.doi.org/10.1080/01635589109514142] [PMID: 1923908]
[334]
Nair, S.C.; Kurumboor, S.K.; Hasegawa, J.H. Saffron chemoprevention in biology and medicine: a review. Cancer Biother., 1995, 10(4), 257-264.
[http://dx.doi.org/10.1089/cbr.1995.10.257] [PMID: 8590890]
[335]
Bathaie, S.Z.; Hoshyar, R.; Miri, H.; Sadeghizadeh, M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem. Cell Biol., 2013, 91(6), 397-403.
[http://dx.doi.org/10.1139/bcb-2013-0014] [PMID: 24219281]
[336]
Hoshyar, R.; Bathaie, S.Z.; Sadeghizadeh, M. Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA Cell Biol., 2013, 32(2), 50-57.
[http://dx.doi.org/10.1089/dna.2012.1866] [PMID: 23347444]
[337]
Giakoumettis, D.; Pourzitaki, C.; Vavilis, T.; Tsingotjidou, A.; Kyriakoudi, A.; Tsimidou, M.; Boziki, M.; Sioga, A.; Foroglou, N.; Kritis, A. Crocus sativus L. causes a non apoptotic calpain dependent death in C6 rat glioma cells, exhibiting a synergistic effect with temozolomide. Nutr. Cancer, 2018, 1, 1-17.
[PMID: 30273051]
[338]
Arzi, L.; Riazi, G.; Sadeghizadeh, M.; Hoshyar, R.; Jafarzadeh, N. A comparative study on anti-invasion, antimigration, and antiadhesion effects of the bioactive carotenoids of saffron on 4T1 breast cancer cells through their effects on Wnt/β-Catenin pathway genes. DNA Cell Biol., 2018, 37(8), 697-707.
[http://dx.doi.org/10.1089/dna.2018.4248] [PMID: 29969282]
[339]
Menghini, L.; Leporini, L.; Vecchiotti, G.; Locatelli, M.; Carradori, S.; Ferrante, C.; Zengin, G.; Recinella, L.; Chiavaroli, A.; Leone, S.; Brunetti, L.; Orlando, G. Crocus sativus L. stigmas and byproducts: Qualitative fingerprint, antioxidant potentials and enzyme inhibitory activities. Food Res. Int., 2018, 109, 91-98.
[http://dx.doi.org/10.1016/j.foodres.2018.04.028] [PMID: 29803496]
[340]
Clark, R.; Lee, S.H. Anticancer properties of capsaicin against human cancer. Anticancer Res., 2016, 36(3), 837-843.
[PMID: 26976969]
[341]
Impheng, H.; Pongcharoen, S.; Richert, L.; Pekthong, D.; Srisawang, P. The selective target of capsaicin on FASN expression and de novo fatty acid synthesis mediated through ROS generation triggers apoptosis in HepG2 cells. PLoS One, 2014, 9(9) e107842
[http://dx.doi.org/10.1371/journal.pone.0107842] [PMID: 25255125]
[342]
Chen, D.; Yang, Z.; Wang, Y.; Zhu, G.; Wang, X. Capsaicin induces cycle arrest by inhibiting cyclin-dependent-kinase in bladder carcinoma cells. Int. J. Urol., 2012, 19(7), 662-668.
[http://dx.doi.org/10.1111/j.1442-2042.2012.02981.x] [PMID: 22462738]
[343]
Ip, S.W.; Lan, S.H.; Lu, H.F.; Huang, A.C.; Yang, J.S.; Lin, J.P.; Huang, H.Y.; Lien, J.C.; Ho, C.C.; Chiu, C.F.; Wood, W.; Chung, J.G. Capsaicin mediates apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells through mitochondrial depolarization and endoplasmic reticulum stress. Hum. Exp. Toxicol., 2012, 31(6), 539-549.
[http://dx.doi.org/10.1177/0960327111417269] [PMID: 21859781]
[344]
Lau, J.K.; Brown, K.C.; Dom, A.M.; Witte, T.R.; Thornhill, B.A.; Crabtree, C.M.; Perry, H.E.; Brown, J.M.; Ball, J.G.; Creel, R.G.; Damron, C.L.; Rollyson, W.D.; Stevenson, C.D.; Hardman, W.E.; Valentovic, M.A.; Carpenter, A.B.; Dasgupta, P. Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis, 2014, 19(8), 1190-1201.
[http://dx.doi.org/10.1007/s10495-014-1007-y] [PMID: 24878626]
[345]
Wu, T.T.; Peters, A.A.; Tan, P.T.; Roberts-Thomson, S.J.; Monteith, G.R. Consequences of activating the calcium-permeable ion channel TRPV1 in breast cancer cells with regulated TRPV1 expression. Cell Calcium, 2014, 56(2), 59-67.
[http://dx.doi.org/10.1016/j.ceca.2014.04.006] [PMID: 24889371]
[346]
Kim, H.A.; Kim, M.S.; Kim, S.H.; Kim, Y.K. Pepper seed extract suppresses invasion and migration of human breast cancer cells. Nutr. Cancer, 2014, 66(1), 159-165.
[http://dx.doi.org/10.1080/01635581.2014.853814] [PMID: 24341783]
[347]
Park, S.Y.; Kim, J.Y.; Lee, S.M.; Jun, C.H.; Cho, S.B.; Park, C.H.; Joo, Y.E.; Kim, H.S.; Choi, S.K.; Rew, J.S. Capsaicin induces apoptosis and modulates MAPK signaling in human gastric cancer cells. Mol. Med. Rep., 2014, 9(2), 499-502.
[http://dx.doi.org/10.3892/mmr.2013.1849] [PMID: 24337453]
[348]
Venier, N.A.; Yamamoto, T.; Sugar, L.M.; Adomat, H.; Fleshner, N.E.; Klotz, L.H.; Venkateswaran, V. Capsaicin reduces the metastatic burden in the transgenic adenocarcinoma of the mouse prostate model. Prostate, 2015, 75(12), 1300-1311.
[http://dx.doi.org/10.1002/pros.23013] [PMID: 26047020]
[349]
Mori, A.; Lehmann, S.; O’Kelly, J.; Kumagai, T.; Desmond, J.C.; Pervan, M.; McBride, W.H.; Kizaki, M.; Koeffler, H.P. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res., 2006, 66(6), 3222-3229.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0087] [PMID: 16540674]
[350]
Lavorgna, M.; Orlo, E.; Nugnes, R.; Piscitelli, C.; Russo, C.; Isidori, M. Capsaicin in hot chili peppers: In vitro evaluation of its antiradical, antiproliferative and apoptotic activities. Plant Foods Hum. Nutr., 2019, 74(2), 164-170.
[http://dx.doi.org/10.1007/s11130-019-00722-0] [PMID: 30835044]
[351]
Zhang, S.S.; Ni, Y.H.; Zhao, C.R.; Qiao, Z.; Yu, H.X.; Wang, L.Y.; Sun, J.Y.; Du, C.; Zhang, J.H.; Dong, L.Y.; Wang, K.; Gao, J.J. Capsaicin enhances the antitumor activity of sorafenib in hepatocellular carcinoma cells and mouse xenograft tumors through increased ERK signaling. Acta Pharmacol. Sin., 2018, 39(3), 438-448.
[http://dx.doi.org/10.1038/aps.2017.156] [PMID: 29188798]
[352]
Chen, C.Y.; Yen, C.Y.; Shen, G.M.; Yu, T.J.; Liao, Y.S.; Jian, R.I.; Wang, S.C.; Tang, J.Y.; Chang, H.W. Antioxidant properties of fractions for unripe fruits of Capsicum annuum L. var. conoides. Anticancer. Agents Med. Chem., 2018, 17(14), 1971-1977.
[http://dx.doi.org/10.2174/1871520617666170419142728] [PMID: 28425857]
[353]
Attoub, S.; Sperandio, O.; Raza, H.; Arafat, K.; Al-Salam, S.; Al Sultan, M.A.; Al Safi, M.; Takahashi, T.; Adem, A. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam. Clin. Pharmacol., 2013, 27(5), 557-569.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01056.x] [PMID: 22788741]
[354]
Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol., 2015, 28(1), 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023] [PMID: 26117430]
[355]
Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pac. J. Cancer Prev., 2014, 15(2), 983-987.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.983] [PMID: 24568529]
[356]
Yang, J.; Kuang, X.R.; Lv, P.T.; Yan, X.X. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol., 2015, 36(1), 259-269.
[http://dx.doi.org/10.1007/s13277-014-2628-z] [PMID: 25238880]
[357]
Jafri, S.H.; Glass, J.; Shi, R.; Zhang, S.; Prince, M.; Kleiner-Hancock, H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29, 87.
[http://dx.doi.org/10.1186/1756-9966-29-87] [PMID: 20594324]
[358]
Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One, 2013, 8(10) e75356
[http://dx.doi.org/10.1371/journal.pone.0075356] [PMID: 24098377]
[359]
Rajput, S.; Kumar, B.N.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci., 2013, 93(21), 783-790.
[http://dx.doi.org/10.1016/j.lfs.2013.09.009] [PMID: 24044882]
[360]
Rajput, S.; Kumar, B.N.; Sarkar, S.; Das, S.; Azab, B.; Santhekadur, P.K.; Das, S.K.; Emdad, L.; Sarkar, D.; Fisher, P.B.; Mandal, M. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS One, 2013, 8(4) e61342
[http://dx.doi.org/10.1371/journal.pone.0061342] [PMID: 23613836]
[361]
Mu, G.G.; Zhang, L.L.; Li, H.Y.; Liao, Y.; Yu, H.G. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of notch1, PI3K/AKT/mTOR regulated signaling pathways in pancreatic cancer. Dig. Dis. Sci., 2015, 60(4), 1067-1080.
[http://dx.doi.org/10.1007/s10620-014-3394-x] [PMID: 25344906]
[362]
Salim, L.Z.; Mohan, S.; Othman, R.; Abdelwahab, S.I.; Kamalidehghan, B.; Sheikh, B.Y.; Ibrahim, M.Y. Thymoquinone induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro. Molecules, 2013, 18(9), 11219-11240.
[http://dx.doi.org/10.3390/molecules180911219] [PMID: 24036512]
[363]
Salim, L.Z.; Othman, R.; Abdulla, M.A.; Al-Jashamy, K.; Ali, H.M.; Hassandarvish, P.; Dehghan, F.; Ibrahim, M.Y.; Omer, F.A.; Mohan, S. Thymoquinone inhibits murine leukemia WEHI-3 cells in vivo and in vitro. PLoS One, 2014, 9(12) e115340
[http://dx.doi.org/10.1371/journal.pone.0115340] [PMID: 25531768]
[364]
Gali-Muhtasib, H.; Ocker, M.; Kuester, D.; Krueger, S.; El-Hajj, Z.; Diestel, A.; Evert, M.; El-Najjar, N.; Peters, B.; Jurjus, A.; Roessner, A.; Schneider-Stock, R. Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J. Cell. Mol. Med., 2008, 12(1), 330-342.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00095.x] [PMID: 18366456]
[365]
Abdelfadil, E.; Cheng, Y.H.; Bau, D.T.; Ting, W.J.; Chen, L.M.; Hsu, H.H.; Lin, Y.M.; Chen, R.J.; Tsai, F.J.; Tsai, C.H.; Huang, C.Y. Thymoquinone induces apoptosis in oral cancer cells through p38β inhibition. Am. J. Chin. Med., 2013, 41(3), 683-696.
[http://dx.doi.org/10.1142/S0192415X1350047X] [PMID: 23711149]
[366]
Ichwan, S.J.; Al-Ani, I.M.; Bilal, H.G.; Suriyah, W.H.; Taher, M.; Ikeda, M.A. Apoptotic activities of thymoquinone, an active ingredient of black seed (Nigella sativa), in cervical cancer cell lines. Chin. J. Physiol., 2014, 57(5), 249-255.
[http://dx.doi.org/10.4077/CJP.2014.BAB190] [PMID: 25241984]
[367]
Hasan, T.N.; Shafi, G.; Syed, N.A.; Alfawaz, M.A.; Alsaif, M.A.; Munshi, A.; Lei, K.Y.; Alshatwi, A.A. Methanolic extract of Nigella sativa seed inhibits SiHa human cervical cancer cell proliferation through apoptosis. Nat. Prod. Commun., 2013, 8(2), 213-216.
[http://dx.doi.org/10.1177/1934578X1300800221] [PMID: 23513732]
[368]
Racoma, I.O.; Meisen, W.H.; Wang, Q.E.; Kaur, B.; Wani, A.A. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One, 2013, 8(9) e72882
[http://dx.doi.org/10.1371/journal.pone.0072882] [PMID: 24039814]
[369]
Ahmad, I.; Muneer, K.M.; Tamimi, I.A.; Chang, M.E.; Ata, M.O.; Yusuf, N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol. Appl. Pharmacol., 2013, 270(1), 70-76.
[http://dx.doi.org/10.1016/j.taap.2013.03.027] [PMID: 23583630]
[370]
Peng, L.; Liu, A.; Shen, Y.; Xu, H.Z.; Yang, S.Z.; Ying, X.Z.; Liao, W.; Liu, H.X.; Lin, Z.Q.; Chen, Q.Y.; Cheng, S.W.; Shen, W.D. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol. Rep., 2013, 29(2), 571-578.
[http://dx.doi.org/10.3892/or.2012.2165] [PMID: 23232982]
[371]
Raghunandhakumar, S.; Paramasivam, A.; Senthilraja, S.; Naveenkumar, C.; Asokkumar, S.; Binuclara, J.; Jagan, S.; Anandakumar, P.; Devaki, T. Thymoquinone inhibits cell proliferation through regulation of G1/S phase cell cycle transition in N-nitrosodiethylamine-induced experimental rat hepatocellular carcinoma. Toxicol. Lett., 2013, 223(1), 60-72.
[http://dx.doi.org/10.1016/j.toxlet.2013.08.018] [PMID: 24012840]
[372]
Xu, D.; Ma, Y.; Zhao, B.; Li, S.; Zhang, Y.; Pan, S.; Wu, Y.; Wang, J.; Wang, D.; Pan, H.; Liu, L.; Jiang, H. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncol. Rep., 2014, 31(5), 2063-2070.
[http://dx.doi.org/10.3892/or.2014.3059] [PMID: 24603952]
[373]
Chen, M.C.; Lee, N.H.; Hsu, H.H.; Ho, T.J.; Tu, C.C.; Hsieh, D.J.; Lin, Y.M.; Chen, L.M.; Kuo, W.W.; Huang, C.Y. Thymoquinone induces caspase-independent, autophagic cell death in CPT-11-resistant lovo colon cancer via mitochondrial dysfunction and activation of JNK and p38. J. Agric. Food Chem., 2015, 63(5), 1540-1546.
[http://dx.doi.org/10.1021/jf5054063] [PMID: 25611974]
[374]
Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants, 2019, 8(2) E51
[http://dx.doi.org/10.3390/antiox8020051] [PMID: 30823525]
[375]
Rashid, M.; Sanjarin, F.; Sabouni, F. Thymoquinone effects on cell viability, apoptosis and VEGF-A gene expression level in AGS(CRL-1739) cell line. Anticancer. Agents Med. Chem., 2019, 19(6), 820-826.
[http://dx.doi.org/10.2174/1871520619666190206163504] [PMID: 30727919]
[376]
Tabassum, H.; Ahmad, I.Z. Evaluation of the anticancer activity of sprout extract-loaded nanoemulsion of N. sativa against hepatocellular carcinoma. J. Microencapsul., 2019, 5, 1-14.
[PMID: 30669915]
[377]
Johnson-Ajinwo, O.R.; Ullah, I.; Mbye, H.; Richardson, A.; Horrocks, P.; Li, W.W. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorg. Med. Chem. Lett., 2018, 28(7), 1219-1222.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.051] [PMID: 29519737]
[378]
Daradka, H.M.; Khabour, O.F.; Alotaibi, M.K. Potent antioxidative DNA damage of selected Saudi medicinal plants in cultured human lymphocytes. Pak. J. Pharm. Sci., 2018, 31(4(Supplementary)), 1511-1517.
[PMID: 30058543]
[379]
Assadollahi, V.; Gholami, M.; Zendedel, A. C. zeylanicum aqueous extract induced apoptosis in the human myelocytic leukemia cell line (THP-1). Bratisl. Lek Listy, 2015, 116(2), 132-135.
[http://dx.doi.org/10.4149/BLL_2015_026] [PMID: 25665482]
[380]
Zhou, L.; Lu, Y.; Yang, G.; Wu, J. Research on tumorigenicity of cinnamaldehyde in melanoma cell lines and its mechanism. Tumour Biol., 2014, 35(6), 5717-5722.
[http://dx.doi.org/10.1007/s13277-014-1757-8] [PMID: 24643680]
[381]
Yu, C.; Liu, S.L.; Qi, M.H.; Zou, X. Cinnamaldehyde/chemotherapeutic agents interaction and drug-metabolizing genes in colorectal cancer. Mol. Med. Rep., 2014, 9(2), 669-676.
[http://dx.doi.org/10.3892/mmr.2013.1830] [PMID: 24276478]
[382]
Kim, J.E.; Son, J.E.; Jeong, H.; Joon Kim, D.; Seo, S.K.; Lee, E.; Lim, T.G.; Kim, J.R.; Chen, H.; Bode, A.M.; Lee, K.W.; Dong, Z.; Dong, Z. A novel cinnamon-related natural product with pim-1 inhibitory activity inhibits leukemia and skin cancer. Cancer Res., 2015, 75(13), 2716-2728.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3655] [PMID: 25948588]
[383]
Yang, S.M.; Tsai, K.D.; Wong, H.Y.; Liu, Y.H.; Chen, T.W.; Cherng, J.; Hsu, K.C.; Ang, Y.U.; Cherng, J.M. Molecular mechanism of Cinnamomum verum component cuminaldehyde inhibits cell growth and induces cell death in human lung squamous cell carcinoma NCI-H520 cells in vitro and in vivo. J. Cancer, 2016, 7(3), 251-261.
[http://dx.doi.org/10.7150/jca.13689] [PMID: 26918037]
[384]
Wong, H.Y.; Tsai, K.D.; Liu, Y.H.; Yang, S.M.; Chen, T.W.; Cherng, J.; Chou, K.S.; Chang, C.M.; Yao, B.T.; Cherng, J.M. Cinnamomum verum component 2-methoxycinnamaldehyde: A novel anticancer agent with both anti-topoisomerase I and II activities in human lung adenocarcinoma A549 cells in vitro and in vivo. Phytother. Res., 2016, 30(2), 331-340.
[http://dx.doi.org/10.1002/ptr.5536] [PMID: 26676220]
[385]
Perng, D.S.; Tsai, Y.H.; Cherng, J.; Wang, J.S.; Chou, K.S.; Shih, C.W.; Cherng, J.M. Discovery of a novel anticancer agent with both anti-topoisomerase I and II activities in hepatocellular carcinoma SK-Hep-1 cells in vitro and in vivo: Cinnamomum verum component 2-methoxycinnamaldehyde. Drug Des. Devel. Ther., 2016, 10, 141-153.
[PMID: 26792981]
[386]
Gopalakrishnan, S.; Ediga, H.H.; Reddy, S.S.; Reddy, G.B.; Ismail, A. Procyanidin-B2 enriched fraction of cinnamon acts as a proteasome inhibitor and anti-proliferative agent in human prostate cancer cells. IUBMB Life, 2018, 70(5), 445-457.
[http://dx.doi.org/10.1002/iub.1735] [PMID: 29537730]
[387]
Vijayan, V.; Mazumder, A. In vitro inhibition of food borne mutagens induced mutagenicity by cinnamon (Cinnamomum cassia) bark extract. Drug Chem. Toxicol., 2018, 41(4), 385-393.
[http://dx.doi.org/10.1080/01480545.2018.1439056] [PMID: 29482462]
[388]
Husain, I.; Ahmad, R.; Chandra, A.; Raza, S.T.; Shukla, Y.; Mahdi, F. Phytochemical characterization and biological activity evaluation of ethanolic extract of Cinnamomum zeylanicum. J. Ethnopharmacol., 2018, 219, 110-116.
[http://dx.doi.org/10.1016/j.jep.2018.02.001] [PMID: 29408310]
[389]
Bhattacharjee, B.; Chatterjee, J. Identification of proapoptopic, anti-inflammatory, anti- proliferative, anti-invasive and anti-angiogenic targets of essential oils in cardamom by dual reverse virtual screening and binding pose analysis. Asian Pac. J. Cancer Prev., 2013, 14(6), 3735-3742.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3735] [PMID: 23886174]
[390]
Majdalawieh, A.F.; Carr, R.I. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J. Med. Food, 2010, 13(2), 371-381.
[http://dx.doi.org/10.1089/jmf.2009.1131] [PMID: 20210607]
[391]
Acharya, A.; Das, I.; Singh, S.; Saha, T. Chemopreventive properties of indole-3-carbinol, diindolylmethane and other constituents of cardamom against carcinogenesis. Recent Pat. Food Nutr. Agric., 2010, 2(2), 166-177.
[http://dx.doi.org/10.2174/1876142911002020166] [PMID: 20653562]
[392]
Jou, Y.J.; Chen, C.J.; Liu, Y.C.; Way, T.D.; Lai, C.H.; Hua, C.H.; Wang, C.Y.; Huang, S.H.; Kao, J.Y.; Lin, C.W. Quantitative phosphoproteomic analysis reveals γ-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation. Proteomics, 2015, 15(19), 3296-3309.
[http://dx.doi.org/10.1002/pmic.201400568] [PMID: 26194454]
[393]
Sengupta, A.; Ghosh, S.; Bhattacharjee, S. Dietary cardamom inhibits the formation of azoxymethane-induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon. Asian Pac. J. Cancer Prev., 2005, 6(2), 118-122.
[PMID: 16101317]
[394]
Vutakuri, N.; Somara, S. Natural and herbal medicine for breast cancer using Elettaria cardamomum (L.) Maton. Int. J. Herbal Med., 2018, 6(2), 91-96.
[395]
Das, I.; Acharya, A.; Berry, D.L.; Sen, S.; Williams, E.; Permaul, E.; Sengupta, A.; Bhattacharya, S.; Saha, T. Antioxidative effects of the spice cardamom against non-melanoma skin cancer by modulating nuclear factor erythroid-2-related factor 2 and NF-κB signalling pathways. Br. J. Nutr., 2012, 108(6), 984-997.
[http://dx.doi.org/10.1017/S0007114511006283] [PMID: 22182368]
[396]
Qiblawi, S.; Dhanarasu, S.; Faris, M.A. Chemopreventive effect of cardamom (Elettaria cardamomum L.) against benzo(alpha)pyrene-induced forestomach papillomagenesis in Swiss Albino mice. J. Environ. Pathol. Toxicol. Oncol., 2015, 34(2), 95-104.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2015010838] [PMID: 26081028]
[397]
Bhattacharjee, S.; Rana, T.; Sengupta, A. Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pac. J. Cancer Prev., 2007, 8(4), 578-582.
[PMID: 18260732]
[398]
Soshnikova, V.; Kim, Y.J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; Yang, D.C. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 108-117.
[http://dx.doi.org/10.1080/21691401.2017.1296849] [PMID: 28290213]
[399]
Song, L.; Chen, X.; Wang, P.; Gao, S.; Qu, C.; Liu, L. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 586-596.
[http://dx.doi.org/10.1093/abbs/gmy045] [PMID: 29697746]
[400]
Tang, E.L.; Rajarajeswaran, J.; Fung, S.Y.; Kanthimathi, M.S. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement. Altern. Med., 2013, 13, 347.
[http://dx.doi.org/10.1186/1472-6882-13-347] [PMID: 24517259]
[401]
Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules, 2010, 15(9), 6365-6374.
[http://dx.doi.org/10.3390/molecules15096365] [PMID: 20877228]
[402]
Jana, S.; Patra, K.; Sarkar, S.; Jana, J.; Mukherjee, G.; Bhattacharjee, S.; Mandal, D.P. Antitumorigenic potential of linalool is accompanied by modulation of oxidative stress: an in vivo study in sarcoma-180 solid tumor model. Nutr. Cancer, 2014, 66(5), 835-848.
[http://dx.doi.org/10.1080/01635581.2014.904906] [PMID: 24779766]
[403]
Iwasaki, K.; Zheng, Y.W.; Murata, S.; Ito, H.; Nakayama, K.; Kurokawa, T.; Sano, N.; Nowatari, T.; Villareal, M.O.; Nagano, Y.N.; Isoda, H.; Matsui, H.; Ohkohchi, N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J. Gastroenterol., 2016, 22(44), 9765-9774.
[http://dx.doi.org/10.3748/wjg.v22.i44.9765] [PMID: 27956800]
[404]
Chithra, V.; Leelamma, S. Coriandrum sativum--effect on lipid metabolism in 1,2-dimethyl hydrazine induced colon cancer. J. Ethnopharmacol., 2000, 71(3), 457-463.
[http://dx.doi.org/10.1016/S0378-8741(00)00182-3] [PMID: 10940583]
[405]
Zaidi, S.F.; Muhammad, J.S.; Shahryar, S.; Usmanghani, K.; Gilani, A.H.; Jafri, W.; Sugiyama, T. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J. Ethnopharmacol., 2012, 141(1), 403-410.
[http://dx.doi.org/10.1016/j.jep.2012.03.001] [PMID: 22433535]
[406]
Elmas, L.; Secme, M.; Mammadov, R.; Fahrioglu, U.; Dodurga, Y. The determination of the potential anticancer effects of Coriandrum sativum in PC-3 and LNCaP prostate cancer cell lines. J. Cell. Biochem., 2019, 120(3), 3506-3513.
[http://dx.doi.org/10.1002/jcb.27625] [PMID: 30417420]
[407]
Dias, M.I.; Barreira, J.C.; Calhelha, R.C.; Queiroz, M.J.; Oliveira, M.B.; Soković, M.; Ferreira, I.C. Two-dimensional PCA highlights the differentiated antitumor and antimicrobial activity of methanolic and aqueous extracts of Laurus nobilis L. from different origins. BioMed Res. Int., 2014, 2014 520464
[http://dx.doi.org/10.1155/2014/520464] [PMID: 24826380]
[408]
Julianti, E.; Jang, K.H.; Lee, S.; Lee, D.; Mar, W.; Oh, K.B.; Shin, J. Sesquiterpenes from the leaves of Laurus nobilis L. Phytochemistry, 2012, 80, 70-76.
[http://dx.doi.org/10.1016/j.phytochem.2012.05.013] [PMID: 22683316]
[409]
Al-Kalaldeh, J.Z.; Abu-Dahab, R.; Afifi, F.U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutr. Res., 2010, 30(4), 271-278.
[http://dx.doi.org/10.1016/j.nutres.2010.04.001] [PMID: 20534330]
[410]
Shahwar, D.; Ullah, S.; Khan, M.A.; Ahmad, N.; Saeed, A.; Ullah, S. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak. J. Pharm. Sci., 2015, 28(3), 969-972.
[411]
Rodd, A.L.; Ververis, K.; Sayakkarage, D.; Khan, A.W.; Rafehi, H.; Ziemann, M.; Loveridge, S.J.; Lazarus, R.; Kerr, C.; Lockett, T.; El-Osta, A.; Karagiannis, T.C.; Bennett, L.E. RNA sequencing supports distinct reactive oxygen species-mediated pathways of apoptosis by high and low size mass fractions of Bay leaf (Lauris nobilis) in HT-29 cells. Food Funct., 2015, 6(8), 2507-2524.
[http://dx.doi.org/10.1039/C5FO00467E] [PMID: 26114728]
[412]
Bennett, L.; Abeywardena, M.; Burnard, S.; Forsyth, S.; Head, R.; King, K.; Patten, G.; Watkins, P.; Williams, R.; Zabaras, D.; Lockett, T. Molecular size fractions of bay leaf (Laurus nobilis) exhibit differentiated regulation of colorectal cancer cell growth in vitro. Nutr. Cancer, 2013, 65(5), 746-764.
[http://dx.doi.org/10.1080/01635581.2013.796999] [PMID: 23859043]
[413]
Hibasami, H.; Yamada, Y.; Moteki, H.; Katsuzaki, H.; Imai, K.; Yoshioka, K.; Komiya, T. Sesquiterpenes (costunolide and zaluzanin D) isolated from laurel (Laurus nobilis L.) induce cell death and morphological change indicative of apoptotic chromatin condensation in leukemia HL-60 cells. Int. J. Mol. Med., 2003, 12(2), 147-151.
[http://dx.doi.org/10.3892/ijmm.12.2.147] [PMID: 12851709]
[414]
Butturini, E.; Cavalieri, E.; de Prati, A.C.; Darra, E.; Rigo, A.; Shoji, K.; Murayama, N.; Yamazaki, H.; Watanabe, Y.; Suzuki, H.; Mariotto, S. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS One, 2011, 6(5) e20174
[http://dx.doi.org/10.1371/journal.pone.0020174] [PMID: 21625597]
[415]
Hsu, Y.L.; Wu, L.Y.; Kuo, P.L. Dehydrocostuslactone, a medicinal plant-derived sesquiterpene lactone, induces apoptosis coupled to endoplasmic reticulum stress in liver cancer cells. J. Pharmacol. Exp. Ther., 2009, 329(2), 808-819.
[http://dx.doi.org/10.1124/jpet.108.148395] [PMID: 19188481]
[416]
Kuo, P.L.; Ni, W.C.; Tsai, E.M.; Hsu, Y.L. Dehydrocostuslactone disrupts signal transducers and activators of transcription 3 through up-regulation of suppressor of cytokine signaling in breast cancer cells. Mol. Cancer Ther., 2009, 8(5), 1328-1339.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0914] [PMID: 19383849]
[417]
Saeed, M.E.M.; Meyer, M.; Hussein, A.; Efferth, T. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells. J. Ethnopharmacol., 2016, 186, 209-223.
[http://dx.doi.org/10.1016/j.jep.2016.04.005] [PMID: 27058630]
[418]
Sakulnarmrat, K.; Fenech, M.; Thomas, P.; Konczak, I. Cytoprotective and pro-apoptotic activities of native Australian herbs polyphenolic-rich extracts. Food Chem., 2013, 136(1), 9-17.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.089] [PMID: 23017386]
[419]
Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Cytotoxic activity of essential oils from labiatae and lauraceae families against in vitro human tumor models. Anticancer Res., 2007, 27(5A), 3293-3299.
[PMID: 17970073]
[420]
Kaileh, M.; Vanden Berghe, W.; Boone, E.; Essawi, T.; Haegeman, G. Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J. Ethnopharmacol., 2007, 113(3), 510-516.
[http://dx.doi.org/10.1016/j.jep.2007.07.008] [PMID: 17716845]
[421]
Mnif, S.; Aifa, S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers., 2015, 12(5), 733-742.
[http://dx.doi.org/10.1002/cbdv.201400305] [PMID: 26010662]
[422]
Jayakumar, R.; Kanthimathi, M.S. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration. Food Chem., 2012, 134(3), 1580-1584.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.101] [PMID: 25005983]
[423]
Gagandeep, ; Dhanalakshmi, S.; Méndiz, E.; Rao, A.R.; Kale, R.K. Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems. Nutr. Cancer, 2003, 47(2), 171-180.
[http://dx.doi.org/10.1207/s15327914nc4702_10] [PMID: 15087270]
[424]
Reddy, A.C.; Lokesh, B.R. Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol. Cell. Biochem., 1992, 111(1-2), 117-124.
[PMID: 1588934]
[425]
Krishnakantha, T.P.; Lokesh, B.R. Scavenging of superoxide anions by spice principles. Indian J. Biochem. Biophys., 1993, 30(2), 133-134.
[PMID: 8394839]
[426]
Nalini, N.; Sabitha, K.; Viswanathan, P.; Menon, V.P. Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. J. Ethnopharmacol., 1998, 62(1), 15-24.
[http://dx.doi.org/10.1016/S0378-8741(98)00007-5] [PMID: 9720607]
[427]
Aruna, K.; Sivaramakrishnan, V.M. Anticarcinogenic effects of some Indian plant products. Food Chem. Toxicol., 1992, 30(11), 953-956.
[http://dx.doi.org/10.1016/0278-6915(92)90180-S] [PMID: 1473788]
[428]
Nalini, N.; Manju, V.; Menon, V.P. Effect of spices on lipid metabolism in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. J. Med. Food, 2006, 9(2), 237-245.
[http://dx.doi.org/10.1089/jmf.2006.9.237] [PMID: 16822210]
[429]
Sheweita, S.A.; El-Hosseiny, L.S.; Nashashibi, M.A. Protective effects of essential oils as natural antioxidants against hepatotoxicity induced by cyclophosphamide in mice. PLoS One, 2016, 11(11) e0165667
[http://dx.doi.org/10.1371/journal.pone.0165667] [PMID: 27802299]
[430]
Goodarzi, S.; Tabatabaei, M.J.; Mohammad Jafari, R.; Shemirani, F.; Tavakoli, S.; Mofasseri, M.; Tofighi, Z. Cuminum cyminum fruits as source of luteolin-7-O-glucoside, potent cytotoxic flavonoid against breast cancer cell lines. Nat. Prod. Res., 2018, 22, 1-5.
[http://dx.doi.org/10.1080/14786419.2018.1519824] [PMID: 30580606]
[431]
Yeap, S.K.; Abu, N.; Mohamad, N.E.; Beh, B.K.; Ho, W.Y.; Ebrahimi, S.; Yusof, H.M.; Ky, H.; Tan, S.W.; Alitheen, N.B. Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice. BMC Complement. Altern. Med., 2015, 15, 306.
[http://dx.doi.org/10.1186/s12906-015-0832-z] [PMID: 26335427]
[432]
Jagadeesh, S.; Sinha, S.; Pal, B.C.; Bhattacharya, S.; Banerjee, P.P. Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem. Biophys. Res. Commun., 2007, 362(1), 212-217.
[http://dx.doi.org/10.1016/j.bbrc.2007.08.005] [PMID: 17698033]
[433]
Bhattacharya, K.; Samanta, S.K.; Tripathi, R.; Mallick, A.; Chandra, S.; Pal, B.C.; Shaha, C.; Mandal, C. Apoptotic effects of mahanine on human leukemic cells are mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways. Biochem. Pharmacol., 2010, 79(3), 361-372.
[http://dx.doi.org/10.1016/j.bcp.2009.09.007] [PMID: 19751707]
[434]
Khan, B.A.; Abraham, A.; Leelamma, S. Murraya koenigii and Brassica juncea--alterations on lipid profile in 1-2 dimethyl hydrazine induced colon carcinogenesis. Invest. New Drugs, 1996, 14(4), 365-369.
[http://dx.doi.org/10.1007/BF00180812] [PMID: 9157071]
[435]
Muthumani, P.; Venkatraman, S.; Ramseshu, V.K.; Meera, R.; Devi, P.; Kameswari, B.; Eswarapriya, B. Pharmacological studies of anticancer, anti inflammatory activities of Murraya koenigii (Linn) Spreng in experimental animals. J. Pharm. Sci. Res, 2009, 1(3), 137-141.
[436]
Naik, S.K.; Mohanty, S.; Padhi, A.; Pati, R.; Sonawane, A. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages. BMC Complement. Altern. Med., 2014, 14, 87.
[http://dx.doi.org/10.1186/1472-6882-14-87] [PMID: 24597853]
[437]
Gupta, S.; Prakash, J. Studies on Indian green leafy vegetables for their antioxidant activity. Plant Foods Hum. Nutr., 2009, 64(1), 39-45.
[http://dx.doi.org/10.1007/s11130-008-0096-6] [PMID: 18985454]
[438]
Shah, A.S.; Wakade, A.S.; Juvekar, A.R. Immunomodulatory activity of methanolic extract of Murraya koenigii (L) Spreng. leaves. Indian J. Exp. Biol., 2008, 46(7), 505-509.
[PMID: 18807753]
[439]
Bhandari, P.R. Curry leaf (Murraya koenigii) or cure leaf: Review of its curative properties. J. Med. Nutr. Nutraceuticals, 2012, 1(2), 92.
[http://dx.doi.org/10.4103/2278-019X.101295]
[440]
Ito, C.; Itoigawa, M.; Nakao, K.; Murata, T.; Tsuboi, M.; Kaneda, N.; Furukawa, H. Induction of apoptosis by carbazole alkaloids isolated from Murraya koenigii. Phytomedicine, 2006, 13(5), 359-365.
[http://dx.doi.org/10.1016/j.phymed.2005.03.010] [PMID: 16635744]
[441]
Syam, S.; Abdul, A.B.; Sukari, M.A.; Mohan, S.; Abdelwahab, S.I.; Wah, T.S. The growth suppressing effects of girinimbine on HepG2 involve induction of apoptosis and cell cycle arrest. Molecules, 2011, 16(8), 7155-7170.
[http://dx.doi.org/10.3390/molecules16087155] [PMID: 21862957]
[442]
Arun, A.; Patel, O.P.S.; Saini, D.; Yadav, P.P.; Konwar, R. Anti-colon cancer activity of Murraya koenigii leaves is due to constituent murrayazoline and O-methylmurrayamine A induced mTOR/AKT downregulation and mitochondrial apoptosis. Biomed. Pharmacother., 2017, 93, 510-521.
[http://dx.doi.org/10.1016/j.biopha.2017.06.065] [PMID: 28675857]
[443]
Noolu, B.; Ajumeera, R.; Chauhan, A.; Nagalla, B.; Manchala, R.; Ismail, A. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells. BMC Complement. Altern. Med., 2013, 13, 7.
[http://dx.doi.org/10.1186/1472-6882-13-7] [PMID: 23302496]
[444]
Ahmadipour, F.; Noordin, M.I.; Mohan, S.; Arya, A.; Paydar, M.; Looi, C.Y.; Keong, Y.S.; Siyamak, E.N.; Fani, S.; Firoozi, M.; Yong, C.L.; Sukari, M.A.; Kamalidehghan, B. Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44(+)/CD24(-/low)): an in vitro study. Drug Des. Devel. Ther., 2015, 9, 1193-1208.
[PMID: 25759564]
[445]
Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A.; Devarajan, T. Evaluation of bioactive compounds, pharmaceutical quality, and anticancer activity of curry leaf (Murraya koenigii L.). Evid. Based Complement. Alternat. Med., 2014, 2014 873803
[http://dx.doi.org/10.1155/2014/873803] [PMID: 24693327]
[446]
Nagappan, T.; Ramasamy, P.; Wahid, M.E.; Segaran, T.C.; Vairappan, C.S. Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules, 2011, 16(11), 9651-9664.
[http://dx.doi.org/10.3390/molecules16119651] [PMID: 22105714]
[447]
Kamalidehghan, B.; Ghafouri-Fard, S.; Motevaseli, E.; Ahmadipour, F. Inhibition of human prostate cancer (PC-3) cells and targeting of PC-3-derived prostate cancer stem cells with koenimbin, a natural dietary compound from Murraya koenigii (L) Spreng. Drug Des. Devel. Ther., 2018, 12, 1119-1133.
[http://dx.doi.org/10.2147/DDDT.S156826] [PMID: 29765202]
[448]
Barthomeuf, C.; Lim, S.; Iranshahi, M.; Chollet, P. Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine, 2008, 15(1-2), 103-111.
[http://dx.doi.org/10.1016/j.phymed.2007.04.001] [PMID: 17689942]
[449]
Saleem, M.; Alam, A.; Sultana, S. Asafoetida inhibits early events of carcinogenesis: a chemopreventive study. Life Sci., 2001, 68(16), 1913-1921.
[http://dx.doi.org/10.1016/S0024-3205(01)00977-8] [PMID: 11292069]
[450]
Unnikrishnan, M.C.; Kuttan, R. Tumour reducing and anticarcinogenic activity of selected spices. Cancer Lett., 1990, 51(1), 85-89.
[http://dx.doi.org/10.1016/0304-3835(90)90235-P] [PMID: 2110862]
[451]
Zhang, Y.; Kim, K.H.; Zhang, W.; Guo, Y.; Kim, S.H.; Lü, J. Galbanic acid decreases androgen receptor abundance and signaling and induces G1 arrest in prostate cancer cells. Int. J. Cancer, 2012, 130(1), 200-212.
[http://dx.doi.org/10.1002/ijc.25993] [PMID: 21328348]
[452]
Oh, B.S.; Shin, E.A.; Jung, J.H.; Jung, D.B.; Kim, B.; Shim, B.S.; Yazdi, M.C.; Iranshahi, M.; Kim, S.H. Apoptotic effect of galbanic acid via activation of caspases and inhibition of Mcl-1 in H460 non-small lung carcinoma cells. Phytother. Res., 2015, 29(6), 844-849.
[http://dx.doi.org/10.1002/ptr.5320] [PMID: 25753585]
[453]
Gamal-Eldeen, A.M.; Hegazy, M.E. A crystal lapiferin derived from Ferula vesceritensis induces apoptosis pathway in MCF-7 breast cancer cells. Nat. Prod. Res., 2010, 24(3), 246-257.
[http://dx.doi.org/10.1080/14786410802685398] [PMID: 20140803]
[454]
Aldaghi, L.; Rad, A.; Arab, A.; Kasaian, J.; Iranshahi, M.; Sadr, A.S.; Soltani, F. In silico and in vitro evaluation of cytotoxic activities of farnesiferol C and microlobin on MCF-7, HeLa and KYSE cell lines. Drug Res. (Stuttg.), 2016, 66(10), 532-538.
[http://dx.doi.org/10.1055/s-0042-111200] [PMID: 27463028]
[455]
Gao, M.; Wong, S.Y.; Lau, P.M.; Kong, S.K. Ferutinin induces in vitro eryptosis/erythroptosis in human erythrocytes through membrane permeabilization and calcium influx. Chem. Res. Toxicol., 2013, 26(8), 1218-1228.
[http://dx.doi.org/10.1021/tx400127w] [PMID: 23848973]
[456]
Nemati, F.; Dehpouri, A.A.; Eslami, B.; Mahdavi, V.; Mirzanejad, S. Cytotoxic properties of some medicinal plant extracts from mazandaran, iran. Iran. Red Crescent Med. J., 2013, 15(11) e8871
[http://dx.doi.org/10.5812/ircmj.8871] [PMID: 24719689]
[457]
Lee, J.H.; Choi, S.; Lee, Y.; Lee, H.J.; Kim, K.H.; Ahn, K.S.; Bae, H.; Lee, H.J.; Lee, E.O.; Ahn, K.S.; Ryu, S.Y.; Lü, J.; Kim, S.H. Herbal compound farnesiferol C exerts antiangiogenic and antitumor activity and targets multiple aspects of VEGFR1 (Flt1) or VEGFR2 (Flk1) signaling cascades. Mol. Cancer Ther., 2010, 9(2), 389-399.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0775] [PMID: 20103598]
[458]
Kim, K.H.; Lee, H.J.; Jeong, S.J.; Lee, H.J.; Lee, E.O.; Kim, H.S.; Zhang, Y.; Ryu, S.Y.; Lee, M.H.; Lü, J.; Kim, S.H. Galbanic acid isolated from Ferula assafoetida exerts in vivo anti-tumor activity in association with anti-angiogenesis and anti-proliferation. Pharm. Res., 2011, 28(3), 597-609.
[http://dx.doi.org/10.1007/s11095-010-0311-7] [PMID: 21063754]
[459]
Chen, C.H.; deGraffenried, L.A. Anethole suppressed cell survival and induced apoptosis in human breast cancer cells independent of estrogen receptor status. Phytomedicine, 2012, 19(8-9), 763-767.
[http://dx.doi.org/10.1016/j.phymed.2012.02.017] [PMID: 22464689]
[460]
Kim, A.; Im, M.; Ma, J.Y. Anisi stellati fructus extract attenuates the in vitro and in vivo metastatic and angiogenic potential of malignant cancer cells by downregulating proteolytic activity and pro-angiogenic factors. Int. J. Oncol., 2014, 45(5), 1937-1948.
[http://dx.doi.org/10.3892/ijo.2014.2606] [PMID: 25176510]
[461]
Wang, G.W.; Hu, W.T.; Huang, B.K.; Qin, L.P. Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol., 2011, 136(1), 10-20.
[http://dx.doi.org/10.1016/j.jep.2011.04.051] [PMID: 21549817]
[462]
Sung, Y.Y.; Kim, H.K. Illicium verum extract suppresses IFN-γ-induced ICAM-1 expression via blockade of JAK/STAT pathway in HaCaT human keratinocytes. J. Ethnopharmacol., 2013, 149(3), 626-632.
[http://dx.doi.org/10.1016/j.jep.2013.07.013] [PMID: 23872327]
[463]
Sung, Y.Y.; Kim, Y.S.; Kim, H.K. Illicium verum extract inhibits TNF-α- and IFN-γ-induced expression of chemokines and cytokines in human keratinocytes. J. Ethnopharmacol., 2012, 144(1), 182-189.
[http://dx.doi.org/10.1016/j.jep.2012.08.049] [PMID: 22974545]
[464]
Ogura, M.; Cordell, G.A.; Farnsworth, N.R. Potential anticancer agents. III. Jacaranone, a novel phytoquinoid from Jacaranda caucana. Lloydia, 1976, 39(4), 255-257.
[PMID: 957918]
[465]
Itoigawa, M.; Ito, C.; Tokuda, H.; Enjo, F.; Nishino, H.; Furukawa, H. Cancer chemopreventive activity of phenylpropanoids and phytoquinoids from Illicium plants. Cancer Lett., 2004, 214(2), 165-169.
[http://dx.doi.org/10.1016/j.canlet.2004.05.005] [PMID: 15363542]
[466]
Yuan, H.; Zhu, M.; Guo, W.; Jin, L.; Chen, W.; Brunk, U.T.; Zhao, M. Mustard seeds (Sinapis Alba Linn) attenuate azoxymethane-induced colon carcinogenesis. Redox Rep., 2011, 16(1), 38-44.
[http://dx.doi.org/10.1179/174329211X12968219310918] [PMID: 21605497]
[467]
Liu, L.; Liu, T.; Li, G.; Wang, Q.; Ng, T. Isolation and determination of p-hydroxybenzoylcholine in traditional Chinese medicine Semen sinapis Albae. Anal. Bioanal. Chem., 2003, 376(6), 854-858.
[http://dx.doi.org/10.1007/s00216-003-1964-4] [PMID: 12811446]
[468]
Savio, A.L.; da Silva, G.N.; de Camargo, E.A.; Salvadori, D.M. Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutat. Res., 2014, 762, 40-46.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.02.006] [PMID: 24625788]
[469]
Sávio, A.L.; da Silva, G.N.; Salvadori, D.M.F. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutat. Res., 2015, 771, 29-35.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.11.004] [PMID: 25771977]
[470]
Bhattacharya, A.; Li, Y.; Wade, K.L.; Paonessa, J.D.; Fahey, J.W.; Zhang, Y. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion. Carcinogenesis, 2010, 31(12), 2105-2110.
[http://dx.doi.org/10.1093/carcin/bgq202] [PMID: 20889681]
[471]
Zhang, Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res., 2010, 54(1), 127-135.
[http://dx.doi.org/10.1002/mnfr.200900323] [PMID: 19960458]
[472]
Mazumder, A.; Dwivedi, A.; du Plessis, J. Sinigrin and its therapeutic benefits. Molecules, 2016, 21(4), 416.
[http://dx.doi.org/10.3390/molecules21040416] [PMID: 27043505]
[473]
Uhl, M.; Laky, B.; Lhoste, E.; Kassie, F.; Kundi, M.; Knasmüller, S. Effects of mustard sprouts and allylisothiocyanate on benzo(a)pyrene-induced DNA damage in human-derived cells: a model study with the single cell gel electrophoresis/Hep G2 assay. Teratog. Carcinog. Mutagen., 2003, S1(Suppl. 1), 273-282.
[http://dx.doi.org/10.1002/tcm.10051] [PMID: 12616618]
[474]
Zhu, M.; Yuan, H.; Guo, W.; Li, X.; Jin, L.; Brunk, U.T.; Han, J.; Zhao, M.; Lu, Y. Dietary mustard seeds (Sinapis alba Linn) suppress 1,2-dimethylhydrazine-induced immuno-imbalance and colonic carcinogenesis in rats. Nutr. Cancer, 2012, 64(3), 464-472.
[http://dx.doi.org/10.1080/01635581.2012.658948] [PMID: 22420317]
[475]
Bassan, P.; Bhushan, S.; Kaur, T.; Arora, R.; Arora, S.; Vig, A.P. Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya. Physiol. Mol. Biol. Plants, 2018, 24(3), 399-409.
[http://dx.doi.org/10.1007/s12298-018-0509-4] [PMID: 29692548]
[476]
Jaiswal, S.K.; Prakash, R.; Prabhu, K.S.; Tejo Prakash, N. Bioaccessible selenium sourced from Se-rich mustard cake facilitates protection from TBHP induced cytotoxicity in melanoma cells. Food Funct., 2018, 9(4), 1998-2004.
[http://dx.doi.org/10.1039/C7FO01644A] [PMID: 29644347]
[477]
Wang, N.; Sun, P.; Lv, M.; Tong, G.; Jin, X.; Zhu, X. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy. Biomater. Sci., 2017, 5(5), 1041-1050.
[http://dx.doi.org/10.1039/C7BM00133A] [PMID: 28378865]
[478]
Arora, R.; Kumar, R.; Mahajan, J.; Vig, A.P.; Singh, B.; Singh, B.; Arora, S. 3-Butenyl isothiocyanate: a hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines. J. Food Sci. Technol., 2016, 53(9), 3437-3445.
[http://dx.doi.org/10.1007/s13197-016-2316-7] [PMID: 27777449]
[479]
Narayanankutty, A.; Manalil, J.J.; Suseela, I.M.; Ramavarma, S.K.; Mathew, S.E.; Illam, S.P.; Babu, T.D.; Kuzhivelil, B.T.; Raghavamenon, A.C. Deep fried edible oils disturb hepatic redox equilibrium and heightens lipotoxicity and hepatosteatosis in male Wistar rats. Hum. Exp. Toxicol., 2017, 36(9), 919-930.
[http://dx.doi.org/10.1177/0960327116674530] [PMID: 28466662]
[480]
Kwak, Y.; Lee, J.; Ju, J. Anti-cancer activities of Brassica juncea leaves in vitro. EXCLI J., 2016, 15, 699-710.
[PMID: 28337101]
[481]
Batool, R.; Salahuddin, H.; Mahmood, T.; Ismail, M. Study of anticancer and antibacterial activities of Foeniculum vulgare, Justicia adhatoda and Urtica dioica as natural curatives. Cell. Mol. Biol., 2017, 63(9), 109-114.
[http://dx.doi.org/10.14715/cmb/2017.63.9.19] [PMID: 28980930]
[482]
Bi, X.; Soong, Y.Y.; Lim, S.W.; Henry, C.J. Evaluation of antioxidant capacity of Chinese five-spice ingredients. Int. J. Food Sci. Nutr., 2015, 66(3), 289-292.
[http://dx.doi.org/10.3109/09637486.2015.1007452] [PMID: 25666419]
[483]
Syed, F.Q.; Elkady, A.I.; Mohammed, F.A.; Mirza, M.B.; Hakeem, K.R.; Alkarim, S. Chloroform fraction of Foeniculum vulgare induced ROS mediated, mitochondria-caspase-dependent apoptotic pathway in MCF-7, human breast cancer cell line. J. Ethnopharmacol., 2018, 218, 16-26.
[http://dx.doi.org/10.1016/j.jep.2018.02.029] [PMID: 29474902]
[484]
Lall, N.; Kishore, N.; Binneman, B.; Twilley, D.; van de Venter, M.; du Plessis-Stoman, D.; Boukes, G.; Hussein, A. Cytotoxicity of syringin and 4-methoxycinnamyl alcohol isolated from Foeniculum vulgare on selected human cell lines. Nat. Prod. Res., 2015, 29(18), 1752-1756.
[http://dx.doi.org/10.1080/14786419.2014.999058] [PMID: 25588942]
[485]
Mohamad, R.H.; El-Bastawesy, A.M.; Abdel-Monem, M.G.; Noor, A.M.; Al-Mehdar, H.A.; Sharawy, S.M.; El-Merzabani, M.M. Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). J. Med. Food, 2011, 14(9), 986-1001.
[http://dx.doi.org/10.1089/jmf.2008.0255] [PMID: 21812646]
[486]
Akhbari, M.; Kord, R.; Jafari-Nodooshan, S.; Hamedi, S. Analysis and evaluation of the antimicrobial and anticancer activities of the essential oil isolated from Foeniculum vulgare from Hamedan. Iran. Nat. Prod. Res., 2018, 7, 1-4.
[PMID: 29308661]
[487]
Sharopov, F.; Valiev, A.; Satyal, P.; Gulmurodov, I.; Yusufi, S.; Setzer, W.N.; Wink, M. Cytotoxicity of the essential oil of fennel (Foeniculum vulgare) from Tajikistan. Foods, 2017, 6(9) E73
[http://dx.doi.org/10.3390/foods6090073] [PMID: 28846628]
[488]
Elkady, A.I. Anethole inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and apoptosis. Anticancer. Agents Med. Chem., 2018, 18(2), 216-236.
[http://dx.doi.org/10.2174/1871520617666170725165717] [PMID: 28745237]
[489]
Ramadan, W.S.; Sait, K.H.; Anfinan, N.M.; Sait, H. The chemosensitizing effect of aqueous extract of sweet fennel on cisplatin treated HeLa cells. Clin. Exp. Obstet. Gynecol., 2016, 43(3), 358-364.
[PMID: 27328491]
[490]
Nam, J.H.; Lee, D.U. Foeniculum vulgare extract and its constituent, trans-anethole, inhibit UV-induced melanogenesis via ORAI1 channel inhibition. J. Dermatol. Sci., 2016, 84(3), 305-313.
[http://dx.doi.org/10.1016/j.jdermsci.2016.09.017] [PMID: 27712859]
[491]
Singh, B.; Kale, R.K. Chemomodulatory action of Foeniculum vulgare (Fennel) on skin and forestomach papillomagenesis, enzymes associated with xenobiotic metabolism and antioxidant status in murine model system. Food Chem. Toxicol., 2008, 46(12), 3842-3850.
[http://dx.doi.org/10.1016/j.fct.2008.10.008] [PMID: 18976688]
[492]
Abdel-Wahab, A.; Hashem Abdel-Razik, A.R.; Abdel Aziz, R.L. Rescue effects of aqueous seed extracts of Foeniculum vulgare and Carum carvi against cadmium-induced hepatic, renal and gonadal damage in female albino rats. Asian Pac. J. Trop. Med., 2017, 10(12), 1123-1133.
[493]
Al-Amoudi, W.M. Protective effects of fennel oil extract against sodium valproate-induced hepatorenal damage in albino rats. Saudi J. Biol. Sci., 2017, 24(4), 915-924.
[http://dx.doi.org/10.1016/j.sjbs.2016.10.021] [PMID: 28490965]
[494]
Méabed, E.M.H.; El-Sayed, N.M.; Abou-Sreea, A.I.B.; Roby, M.H.H. Chemical analysis of aqueous extracts of Origanum majorana and Foeniculum vulgare and their efficacy on Blastocystis spp. cysts. Phytomedicine, 2018, 43, 158-163.
[http://dx.doi.org/10.1016/j.phymed.2018.04.017] [PMID: 29747749]
[495]
Raina, P.; Chandrasekaran, C.V.; Deepak, M.; Agarwal, A.; Ruchika, K.G. Evaluation of subacute toxicity of methanolic/aqueous preparation of aerial parts of O. sanctum in Wistar rats: Clinical, haematological, biochemical and histopathological studies. J. Ethnopharmacol., 2015, 175, 509-517.
[http://dx.doi.org/10.1016/j.jep.2015.10.015] [PMID: 26456329]
[496]
Baliga, M.; Jimmy, R.; Thilakchand, K.; Sunitha, V.; Bhat, N.; Saldanha, E.; Rao, S.; Rao, P.; Arora, R.; Palatty, P. Ocimum Sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr. Cancer, 2013, 65(sup1), 26-24.
[497]
Dhandayuthapani, S.; Azad, H.; Rathinavelu, A. Apoptosis induction by Ocimum sanctum extract in LNCaP prostate cancer cells. J. Med. Food, 2015, 18(7), 776-785.
[http://dx.doi.org/10.1089/jmf.2014.0008] [PMID: 25692494]
[498]
Sharma, P.; Prakash, O.; Shukla, A.; Rajpurohit, C.S.; Vasudev, P.G.; Luqman, S.; Srivastava, S.K.; Pant, A.B.; Khan, F. Structure-activity relationship studies on Holy Basil (Ocimum sanctum L.) based flavonoid orientin and its analogue for cytotoxic activity in liver cancer cell line HepG2. Comb. Chem. High Throughput Screen., 2016, 19(8), 656-666.
[http://dx.doi.org/10.2174/1386207319666160709192801] [PMID: 27396915]
[499]
Shivpuje, P.; Ammanangi, R.; Bhat, K.; Katti, S. Effect of Ocimum sanctum on oral cancer cell line: An in vitro study. J. Contemp. Dent. Pract., 2015, 16(9), 709-714.
[http://dx.doi.org/10.5005/jp-journals-10024-1745] [PMID: 26522595]
[500]
Singhal, S.S.; Jain, D.; Singhal, P.; Awasthi, S.; Singhal, J.; Horne, D. Targeting the mercapturic acid pathway and vicenin-2 for prevention of prostate cancer. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 167-175.
[http://dx.doi.org/10.1016/j.bbcan.2017.03.009] [PMID: 28359741]
[501]
Baruah, T.J.; Sharan, R.N.; Kma, L. Vicenin-2: a potential radiosensitizer of non-small cell lung cancer cells. Mol. Biol. Rep., 2018, 45(5), 1219-1225.
[http://dx.doi.org/10.1007/s11033-018-4275-8] [PMID: 30099686]
[502]
Baruah, T.J.; Kma, L. Vicenin-2 acts as a radiosensitizer of the non-small cell lung cancer by lowering AKT expression. Biofactors, 2019, 45(2), 200-210.
[http://dx.doi.org/10.1002/biof.1472] [PMID: 30496626]
[503]
Yang, D.; Zhang, X.; Zhang, W.; Rengarajan, T. Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. Drug Des. Devel. Ther., 2018, 12, 1303-1310.
[http://dx.doi.org/10.2147/DDDT.S149307] [PMID: 29849451]
[504]
Nguyen Thi Thanh, C.; Truong Thi Cam, M.; Pham Van, T.; Nguyen, L.; Nguyen Ha, M.; Van Meervelt, L. Synthesis, structure and in vitro cytotoxicity of platinum(II) complexes containing eugenol and a quinolin-8-ol-derived chelator. Acta Crystallogr. C Struct. Chem., 2017, 73(Pt 11), 1030-1037.
[http://dx.doi.org/10.1107/S2053229617015200] [PMID: 29111537]
[505]
Manaharan, T.; Thirugnanasampandan, R.; Jayakumar, R.; Kanthimathi, M.S.; Ramya, G.; Ramnath, M.G. Purified essential oil from Ocimum sanctum Linn. triggers the apoptotic mechanism in human breast cancer cells. Pharmacogn. Mag., 2016, 12(Suppl. 3), S327-S331.
[http://dx.doi.org/10.4103/0973-1296.185738] [PMID: 27563220]
[506]
Kumar, P.; Kale, R.K.; McLean, P.; Baquer, N.Z. Antidiabetic and neuroprotective effects of Trigonella foenum-graecum seed powder in diabetic rat brain. Prague Med. Rep., 2012, 113(1), 33-43.
[http://dx.doi.org/10.14712/23362936.2015.35] [PMID: 22373803]
[507]
Aggarwal, B.B.; Ichikawa, H.; Garodia, P.; Weerasinghe, P.; Sethi, G.; Bhatt, I.D.; Pandey, M.K.; Shishodia, S.; Nair, M.G. From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin. Ther. Targets, 2006, 10(1), 87-118.
[http://dx.doi.org/10.1517/14728222.10.1.87] [PMID: 16441231]
[508]
Das, S.; Dey, K.K.; Dey, G.; Pal, I.; Majumder, A.; MaitiChoudhury, S.; kundu, S.C.; Mandal, M. Antineoplastic and apoptotic potential of traditional medicines thymoquinone and diosgenin in squamous cell carcinoma. PLoS One, 2012, 7(10) e46641
[http://dx.doi.org/10.1371/journal.pone.0046641] [PMID: 23077516]
[509]
Khalil, M.I.; Ibrahim, M.M.; El-Gaaly, G.A.; Sultan, A.S. Trigonella foenum (Fenugreek) induced apoptosis in hepatocellular carcinoma cell line, HepG2, mediated by upregulation of p53 and proliferating cell nuclear antigen. BioMed Res. Int., 2015, 2015 914645
[http://dx.doi.org/10.1155/2015/914645] [PMID: 26557712]
[510]
Rahmati-Yamchi, M.; Ghareghomi, S.; Haddadchi, G.; Milani, M.; Aghazadeh, M.; Daroushnejad, H. Fenugreek extract diosgenin and pure diosgenin inhibit the hTERT gene expression in A549 lung cancer cell line. Mol. Biol. Rep., 2014, 41(9), 6247-6252.
[http://dx.doi.org/10.1007/s11033-014-3505-y] [PMID: 24973886]
[511]
Guo, X.; Ding, X. Dioscin suppresses the viability of ovarian cancer cells by regulating the VEGFR2 and PI3K/AKT/MAPK signaling pathways. Oncol. Lett., 2018, 15(6), 9537-9542.
[http://dx.doi.org/10.3892/ol.2018.8454] [PMID: 29805675]
[512]
Bhalke, R.D.; Anarthe, S.J.; Sasane, K.D.; Satpute, S.N.; Shinde, S.N.; Sangle, V.S. Antinociceptive activity of Trigonella foenum-graecum leaves and seeds (Fabaceae). Iran. J. Pharmacol. Therapeut., 2009, 8, 57-59.
[513]
Alsemari, A.; Alkhodairy, F.; Aldakan, A.; Al-Mohanna, M.; Bahoush, E.; Shinwari, Z.; Alaiya, A. The selective cytotoxic anti-cancer properties and proteomic analysis of Trigonella Foenum-Graecum. BMC Complement. Altern. Med., 2014, 14, 114.
[http://dx.doi.org/10.1186/1472-6882-14-114] [PMID: 24679057]
[514]
Thakur, R.S.; Ahirwar, B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. Yao Wu Shi Pin Fen Xi, 2019, 27(1), 231-239.
[http://dx.doi.org/10.1016/j.jfda.2018.05.001] [PMID: 30648576]
[515]
Kaur, P.; Robin, ; Mehta, R.G.; Singh, B.; Arora, S. Development of aqueous-based multi-herbal combination using principal component analysis and its functional significance in HepG2 cells. BMC Complement. Altern. Med., 2019, 19(1), 18.
[http://dx.doi.org/10.1186/s12906-019-2432-9] [PMID: 30646883]
[516]
Varghese, R.; Almalki, M.A.; Ilavenil, S.; Rebecca, J.; Choi, K.C. Silver nanopaticles synthesized using the seed extract of Trigonella foenum-graecum L. and their antimicrobial mechanism and anticancer properties. Saudi J. Biol. Sci., 2019, 26(1), 148-154.
[http://dx.doi.org/10.1016/j.sjbs.2017.07.001] [PMID: 30622419]
[517]
Iranmanesh, M.; Mohebbati, R.; Forouzanfar, F.; Roshan, M.K.; Ghorbani, A.; Nik, M.J.; Soukhtanloo, M. In vivo and In vitro effects of ethanolic extract of Trigonella foenum-graecum L. seeds on proliferation, angiogenesis and tube formation of endothelial cells. Res. Pharm. Sci., 2018, 13(4), 343-352.
[http://dx.doi.org/10.4103/1735-5362.235161] [PMID: 30065767]
[518]
Mahapatra, K.; Ghosh, A.K.; De, S.; Ghosh, N.; Sadhukhan, P.; Chatterjee, S.; Ghosh, R.; Sil, P.C.; Roy, S. Assessment of cytotoxic and genotoxic potentials of a mononuclear Fe(II) Schiff base complex with photocatalytic activity in Trigonella. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(3) 129503
[519]
Chatterjee, S.; Kumar, M.; Kumar, A. Chemomodulatory effect of Trigonella foenum graecum (L.) seed extract on two stage mouse skin carcinogenesis. Toxicol. Int., 2012, 19(3), 287-294.
[http://dx.doi.org/10.4103/0971-6580.103670] [PMID: 23293468]
[520]
Kumar, P.S.; Febriyanti, R.M.; Sofyan, F.F.; Luftimas, D.E.; Abdulah, R. Anticancer potential of Syzygium aromaticum L. in MCF-7 human breast cancer cell lines. Pharmacognosy Res., 2014, 6(4), 350-354.
[http://dx.doi.org/10.4103/0974-8490.138291] [PMID: 25276075]
[521]
Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif., 2006, 39(4), 241-248.
[http://dx.doi.org/10.1111/j.1365-2184.2006.00384.x] [PMID: 16872360]
[522]
Wei, J.; Liu, M.; Liu, H.; Wang, H.; Wang, F.; Zhang, Y.; Han, L.; Lin, X. Oleanolic acid arrests cell cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. J. Appl. Toxicol., 2013, 33(8), 756-765.
[http://dx.doi.org/10.1002/jat.2725] [PMID: 22678527]
[523]
Dwivedi, V.; Shrivastava, R.; Hussain, S.; Ganguly, C.; Bharadwaj, M. Comparative anticancer potential of clove (Syzygium aromaticum)--an Indian spice--against cancer cell lines of various anatomical origin. Asian Pac. J. Cancer Prev., 2011, 12(8), 1989-1993.
[PMID: 22292639]
[524]
Jaganathan, S.K.; Supriyanto, E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules, 2012, 25, 17((6), 6290-304.
[http://dx.doi.org/10.3390/molecules17066290]
[525]
Fangjun, L.; Zhijia, Y. Tumor suppressive roles of eugenol in human lung cancer cells. Thorac. Cancer, 2018, 9(1), 25-29.
[http://dx.doi.org/10.1111/1759-7714.12508]
[526]
Yan, X.; Zhang, G.; Bie, F.; Lv, Y.; Ma, Y.; Ma, M.; Wang, Y.; Hao, X.; Yuan, N.; Jiang, X. Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1β/ERRα signaling pathway in MCF10A-ras cells. Sci. Rep., 2017, 7(1), 12920.
[http://dx.doi.org/10.1038/s41598-017-13505-x] [PMID: 29018241]
[527]
Woo, J.H.; Ahn, J.H.; Jang, D.S.; Lee, K.T.; Choi, J.H. Effect of kumatakenin isolated from cloves on the apoptosis of cancer cells and the alternative activation of tumor-associated macrophages. J. Agric. Food Chem., 2017, 65(36), 7893-7899.
[http://dx.doi.org/10.1021/acs.jafc.7b01543] [PMID: 28763204]
[528]
Han, X.; Parker, T.L. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm. Biol., 2017, 55(1), 1619-1622.
[http://dx.doi.org/10.1080/13880209.2017.1314513] [PMID: 28407719]
[529]
Liu, H.; Schmitz, J.C.; Wei, J.; Cao, S.; Beumer, J.H.; Strychor, S.; Cheng, L.; Liu, M.; Wang, C.; Wu, N.; Zhao, X.; Zhang, Y.; Liao, J.; Chu, E.; Lin, X. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncol. Res., 2014, 21(5), 247-259.
[http://dx.doi.org/10.3727/096504014X13946388748910] [PMID: 24854101]
[530]
Manikandan, P.; Vinothini, G.; Vidya Priyadarsini, R.; Prathiba, D.; Nagini, S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Invest. New Drugs, 2011, 29(1), 110-117.
[http://dx.doi.org/10.1007/s10637-009-9345-2] [PMID: 19851710]
[531]
Benevides, R.O.A.; Vale, C.C.; Fontelles, J.L.L.; França, L.M.; Teófilo, T.S.; Silva, S.N.; Paes, A.M.A.; Gaspar, R.S. Syzygium cumini (L.) Skeels improves metabolic and ovarian parameters in female obese rats with malfunctioning hypothalamus-pituitary-gonadal axis. J. Ovarian Res., 2019, 12(1), 13.
[http://dx.doi.org/10.1186/s13048-019-0490-8] [PMID: 30717749]
[532]
Ezhilarasan, D.; Apoorva, V.S.; Ashok Vardhan, N. Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J. Oral Pathol. Med., 2019, 48(2), 115-121.
[PMID: 30451321]
[533]
Khan, F.A.; Akhtar, S.; Almohazey, D.; Alomari, M.; Almofty, S.A. Extracts of clove (Syzygium aromaticum) potentiate FMSP-nanoparticles induced cell death in MCF-7 cells. Int. J. Biomater., 2018, 2018 8479439
[http://dx.doi.org/10.1155/2018/8479439] [PMID: 30210543]
[534]
Kadiyala, N.K.; Mandal, B.K.; Ranjan, S.; Dasgupta, N. Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Mater. Sci. Eng. C, 2018, 93, 191-205.
[http://dx.doi.org/10.1016/j.msec.2018.07.075] [PMID: 30274051]
[535]
Ren, Y.; Anaya-Eugenio, G.D.; Czarnecki, A.A.; Ninh, T.N.; Yuan, C.; Chai, H.B.; Soejarto, D.D.; Burdette, J.E.; de Blanco, E.J.C.; Kinghorn, A.D. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorg. Med. Chem., 2018, 26(15), 4452-4460.
[http://dx.doi.org/10.1016/j.bmc.2018.07.025] [PMID: 30057155]
[536]
Das, A.; K, H.; S K, D.K.; K, H.R.; Jayaprakash, B. Evaluation of Therapeutic Potential of Eugenol-A Natural Derivative of Syzygium aromaticum on Cervical Cancer. Asian Pac. J. Cancer Prev., 2018, 19(7), 1977-1985.
[PMID: 30051686]
[537]
Liu, M.; Zhao, G.; Zhang, D.; An, W.; Lai, H.; Li, X.; Cao, S.; Lin, X. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int. J. Oncol., 2018, 53(3), 1363-1373.
[http://dx.doi.org/10.3892/ijo.2018.4465] [PMID: 30015913]
[538]
Thenmozhi, T. Functionalization of iron oxide nanoparticles with clove extract to induce apoptosis in MCF-7 breast cancer cells. 3 Biotech, 2020, 10(2), 82.
[539]
Jain, D.; Pathak, N.; Khan, S.; Raghuram, G.V.; Bhargava, A.; Samarth, R.; Mishra, P.K. Evaluation of cytotoxicity and anticarcinogenic potential of Mentha leaf extracts. Int. J. Toxicol., 2011, 30(2), 225-236.
[http://dx.doi.org/10.1177/1091581810390527] [PMID: 21300767]
[540]
Nair, B. Final report on the safety assessment of Mentha piperita (Peppermint) oil, Mentha piperita (Peppermint) leaf extract, Mentha piperita (Peppermint) leaf, and Mentha piperita (Peppermint) leaf water. Int. J. Toxicol., 2001, 20(3)(Suppl. 3), 61-73.
[PMID: 11766133]
[541]
Al-Ali, K.H.; El-Beshbishy, H.A.; El-Badry, A.A.; Alkhalaf, M. Cytotoxic activity of methanolic extract of Mentha longifolia and Ocimum basilicum against human breast cancer. Pak. J. Biol. Sci., 2013, 16(23), 1744-1750.
[http://dx.doi.org/10.3923/pjbs.2013.1744.1750] [PMID: 24506042]
[542]
Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PLoS One, 2014, 9(12) e114767
[http://dx.doi.org/10.1371/journal.pone.0114767] [PMID: 25493616]
[543]
Kasem, R.F.; Hegazy, R.H.; Arafa, M.A.; AbdelMohsen, M.M. Chemopreventive effect of Mentha piperita on dimethylbenz[a]anthracene and formaldehyde-induced tongue carcinogenesis in mice (histological and immunohistochemical study). J. Oral Pathol. Med., 2014, 43(7), 484-491.
[http://dx.doi.org/10.1111/jop.12150] [PMID: 24450492]
[544]
Yang, C.; Wang, M.; Zhou, J.; Chi, Q. Bio-synthesis of peppermint leaf extract polyphenols capped nano-platinum and their in-vitro cytotoxicity towards colon cancer cell lines (HCT 116). Mater. Sci. Eng. C, 2017, 77, 1012-1016.
[http://dx.doi.org/10.1016/j.msec.2017.04.020] [PMID: 28531972]
[545]
Akinboro, A.; Mohamed, K.B.; Asmawi, M.Z.; Othman, A.S.; Ying, T.H.; Maidin, S.M. Mutagenic and antimutagenic assessment of methanol leaf extract of Myristica fragrans (Houtt.) using in vitro and in vivo genetic assays. Drug Chem. Toxicol., 2012, 35(4), 412-422.
[http://dx.doi.org/10.3109/01480545.2011.638300] [PMID: 22149219]
[546]
Piras, A.; Rosa, A.; Marongiu, B.; Atzeri, A.; Dessì, M.A.; Falconieri, D.; Porcedda, S. Extraction and separation of volatile and fixed oils from seeds of Myristica fragrans by supercritical COĆ: Chemical composition and cytotoxic activity on Caco-2 cancer cells. J. Food Sci., 2012, 77(4), C448-C453.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02618.x] [PMID: 22429024]
[547]
Morikawa, T.; Hachiman, I.; Ninomiya, K.; Hata, H.; Sugawara, K.; Muraoka, O.; Matsuda, H. Degranulation inhibitors from the arils of Myristica fragrans in antigen-stimulated rat basophilic leukemia cells. J. Nat. Med., 2018, 72(2), 464-473.
[http://dx.doi.org/10.1007/s11418-017-1170-x] [PMID: 29336005]
[548]
Akinboro, A.; Bin Mohamed, K.; Asmawi, M.Z.; Yekeen, T.A. Antimutagenic effects of aqueous fraction of Myristica fragrans (Houtt.) leaves on Salmonella typhimurium and Mus musculus. Acta Biochim. Pol., 2014, 61(4), 779-785.
[http://dx.doi.org/10.18388/abp.2014_1846] [PMID: 25520963]
[549]
Zhang, C.; Qi, X.; Shi, Y.; Sun, Y.; Li, S.; Gao, X.; Yu, H. Estimation of trace elements in mace (Myristica fragrans Houtt) and their effect on uterine cervix cancer induced by methylcholanthrene. Biol. Trace Elem. Res., 2012, 149(3), 431-434.
[http://dx.doi.org/10.1007/s12011-012-9443-4] [PMID: 22565472]
[550]
Piaru, S.P.; Mahmud, R.; Abdul Majid, A.M.; Ismail, S.; Man, C.N. Chemical composition, antioxidant and cytotoxicity activities of the essential oils of Myristica fragrans and Morinda citrifolia. J. Sci. Food Agric., 2012, 92(3), 593-597.
[http://dx.doi.org/10.1002/jsfa.4613] [PMID: 25520982]
[551]
Chirathaworn, C.; Kongcharoensuntorn, W.; Dechdoungchan, T.; Lowanitchapat, A.; Sa-nguanmoo, P.; Poovorawan, Y. Myristica fragrans Houtt. methanolic extract induces apoptosis in a human leukemia cell line through SIRT1 mRNA downregulation. J. Med. Assoc. Thai., 2007, 90(11), 2422-2428.
[PMID: 18181330]
[552]
Kim, E.Y.; Choi, H.J.; Park, M.J.; Jung, Y.S.; Lee, S.O.; Kim, K.J.; Choi, J.H.; Chung, T.W.; Ha, K.T. Myristica fragrans suppresses tumor growth and metabolism by inhibiting lactate dehydrogenase A. Am. J. Chin. Med., 2016, 44(5), 1063-1079.
[http://dx.doi.org/10.1142/S0192415X16500592] [PMID: 27430914]
[553]
Maheswari, U.; Ghosh, K.; Sadras, S.R. Licarin A induces cell death by activation of autophagy and apoptosis in non-small cell lung cancer cells. Apoptosis, 2018, 23(3-4), 210-225.
[http://dx.doi.org/10.1007/s10495-018-1449-8] [PMID: 29468481]
[554]
Thuong, P.T.; Hung, T.M.; Khoi, N.M.; Nhung, H.T.; Chinh, N.T.; Quy, N.T.; Jang, T.S.; Na, M. Cytotoxic and anti-tumor activities of lignans from the seeds of Vietnamese nutmeg Myristica fragrans. Arch. Pharm. Res., 2014, 37(3), 399-403.
[http://dx.doi.org/10.1007/s12272-013-0185-4] [PMID: 23877238]
[555]
Paul, S.; Hwang, J.K.; Kim, H.Y.; Jeon, W.K.; Chung, C.; Han, J.S. Multiple biological properties of macelignan and its pharmacological implications. Arch. Pharm. Res., 2013, 36(3), 264-272.
[http://dx.doi.org/10.1007/s12272-013-0048-z] [PMID: 23435944]
[556]
Sohn, J.H.; Han, K.L.; Kim, J.H.; Rukayadi, Y.; Hwang, J.K. Protective Effects of macelignan on cisplatin-induced hepatotoxicity is associated with JNK activation. Biol. Pharm. Bull., 2008, 31(2), 273-277.
[http://dx.doi.org/10.1248/bpb.31.273] [PMID: 18239286]
[557]
Chumkaew, P.; Srisawat, T. New neolignans from the seeds of Myristica fragrans and their cytotoxic activities. J. Nat. Med., 2019, 73(1), 273-277.
[http://dx.doi.org/10.1007/s11418-018-1246-2] [PMID: 30168038]
[558]
DeBono, A.; Capuano, B.; Scammells, P.J. Progress toward the development of noscapine and derivatives as anticancer agents. J. Med. Chem., 2015, 58(15), 5699-5727.
[http://dx.doi.org/10.1021/jm501180v] [PMID: 25811651]
[559]
Chougule, M.B.; Patel, A.R.; Jackson, T.; Singh, M. Antitumor activity of Noscapine in combination with Doxorubicin in triple negative breast cancer. PLoS One, 2011, 6(3) e17733
[http://dx.doi.org/10.1371/journal.pone.0017733] [PMID: 21423660]
[560]
Cheriyamundath, S.; Mahaddalkar, T.; Kantevari, S.; Lopus, M. Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells. Biomed. Pharmacother., 2017, 86, 74-80.
[http://dx.doi.org/10.1016/j.biopha.2016.11.143] [PMID: 27939522]
[561]
Dwivedi, V.; Shalini, T. Review study on potential activity of Piper betle. J. Pharmacognosy Phytochem., 2014, 3(4), 93-98.
[562]
Rai, M.P.; Thilakchand, K.R.; Palatty, P.L.; Rao, P.; Rao, S.; Bhat, H.P.; Baliga, M.S. Piper betel Linn (betel vine), the maligned Southeast Asian medicinal plant possesses cancer preventive effects: time to reconsider the wronged opinion. Asian Pac. J. Cancer Prev., 2011, 12(9), 2149-2156.
[PMID: 22296348]
[563]
Gundala, S.R.; Aneja, R. Piper betel leaf: a reservoir of potential xenohormetic nutraceuticals with cancer-fighting properties. Cancer Prev. Res. (Phila.), 2014, 7(5), 477-486.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0355] [PMID: 24449055]
[564]
Paranjpe, R.; Gundala, S.R.; Lakshminarayana, N.; Sagwal, A.; Asif, G.; Pandey, A.; Aneja, R. Piper betel leaf extract: anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management. Carcinogenesis, 2013, 34(7), 1558-1566.
[http://dx.doi.org/10.1093/carcin/bgt066] [PMID: 23430955]
[565]
Iwamoto, L.H.; Vendramini-Costa, D.B.; Monteiro, P.A.; Ruiz, A.L.; Sousa, I.M.; Foglio, M.A.; de Carvalho, J.E.; Rodrigues, R.A. Anticancer and anti-inflammatory activities of a standardized dichloromethane extract from Piper umbellatum L. leaves. Evid. Based Complement. Alternat. Med., 2015, 2015 948737
[http://dx.doi.org/10.1155/2015/948737] [PMID: 25713595]
[566]
Gundala, S.R.; Yang, C.; Mukkavilli, R.; Paranjpe, R.; Brahmbhatt, M.; Pannu, V.; Cheng, A.; Reid, M.D.; Aneja, R. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol. Appl. Pharmacol., 2014, 280(1), 86-96.
[http://dx.doi.org/10.1016/j.taap.2014.07.012] [PMID: 25064160]
[567]
Yu, F.S.; Yang, J.S.; Yu, C.S.; Chiang, J.H.; Lu, C.C.; Chung, H.K.; Yu, C.C.; Wu, C.C.; Ho, H.C.; Chung, J.G. Safrole suppresses murine myelomonocytic leukemia WEHI-3 cells in vivo, and stimulates macrophage phagocytosis and natural killer cell cytotoxicity in leukemic mice. Environ. Toxicol., 2013, 28(11), 601-608.
[http://dx.doi.org/10.1002/tox.20756] [PMID: 24150866]
[568]
Yu, C.S.; Huang, A.C.; Yang, J.S.; Yu, C.C.; Lin, C.C.; Chung, H.K.; Huang, Y.P.; Chueh, F.S.; Chung, J.G. Safrole induces G0/G1 phase arrest via inhibition of cyclin E and provokes apoptosis through endoplasmic reticulum stress and mitochondrion-dependent pathways in human leukemia HL-60 cells. Anticancer Res., 2012, 32(5), 1671-1679.
[PMID: 22593445]
[569]
Hemamalini, V.; Velayutham, D.P.M.; Lakshmanan, L.; Muthusamy, K.; Sivaramakrishnan, S.; Premkumar, K. Inhibitory potential of Hydroxychavicol on Ehrlich ascites carcinoma model and in silico interaction on cancer targets. Nat. Prod. Res., 2018, 23, 1-6.
[http://dx.doi.org/10.1080/14786419.2018.1519819] [PMID: 30470141]
[570]
Atiya, A.; Sinha, B.N.; Lal, U.R. The new ether derivative of phenylpropanoid and bioactivity was investigated from the leaves of Piper betle L. Nat. Prod. Res., 2018, 31, 1-8.
[http://dx.doi.org/10.1080/14786419.2018.1495634] [PMID: 30169967]
[571]
Yang, T.Y.; Wu, M.L.; Chang, C.I.; Liu, C.I.; Cheng, T.C.; Wu, Y.J. Bornyl cis-4-Hydroxycinnamate Suppresses Cell Metastasis of Melanoma through FAK/PI3K/Akt/mTOR and MAPK signaling pathways and inhibition of the epithelial-to-mesenchymal transition. Int. J. Mol. Sci., 2018, 19(8) E2152
[http://dx.doi.org/10.3390/ijms19082152] [PMID: 30042328]
[572]
Yang, T.Y.; Wu, Y.J.; Chang, C.I.; Chiu, C.C.; Wu, M.L. The effect of bornyl cis-4-hydroxycinnamate on melanoma cell apoptosis is associated with mitochondrial dysfunction and endoplasmic reticulum stress. Int. J. Mol. Sci., 2018, 19(5) E1370
[http://dx.doi.org/10.3390/ijms19051370] [PMID: 29734677]
[573]
Atiya, A.; Sinha, B.N.; Ranjan Lal, U. New chemical constituents from the Piper betle Linn. (Piperaceae). Nat. Prod. Res., 2018, 32(9), 1080-1087.
[http://dx.doi.org/10.1080/14786419.2017.1380018] [PMID: 28978254]
[574]
Atiya, A.; Sinha, B.N.; Lal, U.R. Bioactive phenylpropanoid analogues from Piper betle L. var. birkoli leaves. Nat. Prod. Res., 2017, 31(22), 2604-2611.
[http://dx.doi.org/10.1080/14786419.2017.1285297] [PMID: 28278665]
[575]
Wu, P.F.; Tseng, H.C.; Chyau, C.C.; Chen, J.H.; Chou, F.P. Piper betle leaf extracts induced human hepatocellular carcinoma Hep3B cell death via MAPKs regulating the p73 pathway in vitro and in vivo. Food Funct., 2014, 5(12), 3320-3328.
[http://dx.doi.org/10.1039/C4FO00810C] [PMID: 25371988]
[576]
Ng, P.L.; Rajab, N.F.; Then, S.M.; Mohd Yusof, Y.A.; Wan Ngah, W.Z.; Pin, K.Y.; Looi, M.L. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells. J. Zhejiang Univ. Sci. B, 2014, 15(8), 692-700.
[http://dx.doi.org/10.1631/jzus.B1300303] [PMID: 25091987]
[577]
Tepe, B.; Cakir, A.; Sihoglu Tepe, A. Medicinal uses, phytochemistry, and pharmacology of Origanum onites (L.): A review. Chem. Biodivers., 2016, 13(5), 504-520.
[http://dx.doi.org/10.1002/cbdv.201500069] [PMID: 27062715]
[578]
Verma, R.S.; Padalia, R.C.; Chauhan, A.; Verma, R.K.; Yadav, A.K.; Singh, H.P. Chemical diversity in Indian oregano (Origanum vulgare L.). Chem. Biodivers., 2010, 7(8), 2054-2064.
[http://dx.doi.org/10.1002/cbdv.200900419] [PMID: 20730969]
[579]
Solowey, E.; Lichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Scient. World J, 2014, 2014 721402
[http://dx.doi.org/10.1155/2014/721402] [PMID: 25478599]
[580]
Elansary, H.O.; Mahmoud, E.A. Egyptian herbal tea infusions’ antioxidants and their antiproliferative and cytotoxic activities against cancer cells. Nat. Prod. Res., 2015, 29(5), 474-479.
[http://dx.doi.org/10.1080/14786419.2014.951354] [PMID: 25141946]
[581]
Khan, F.; Khan, I.; Farooqui, A.; Ansari, I.A. Carvacrol induces Reactive Oxygen Species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer cells. Nutr. Cancer, 2017, 69(7), 1075-1087.
[http://dx.doi.org/10.1080/01635581.2017.1359321] [PMID: 28872904]
[582]
Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem., 2010, 58(19), 10576-10581.
[http://dx.doi.org/10.1021/jf102042g] [PMID: 20825192]
[583]
Erenler, R.; Sen, O.; Aksit, H.; Demirtas, I.; Yaglioglu, A.S.; Elmastas, M.; Telci, İ. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities. J. Sci. Food Agric., 2016, 96(3), 822-836.
[http://dx.doi.org/10.1002/jsfa.7155] [PMID: 25721137]
[584]
Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic activity of Origanum vulgare L. on hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules, 2017, 22(9) E1435
[http://dx.doi.org/10.3390/molecules22091435] [PMID: 28867805]
[585]
Koldaş, S.; Demirtas, I.; Ozen, T.; Demirci, M.A.; Behçet, L. Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp. viride (Boiss.) Hayek, a plant of traditional usage. J. Sci. Food Agric., 2015, 95(4), 786-798.
[http://dx.doi.org/10.1002/jsfa.6903] [PMID: 25200133]
[586]
Ayesh, B.M.; Abed, A.A.; Faris, D.M. In vitro inhibition of human leukemia THP-1 cells by Origanum syriacum L. and Thymus vulgaris L. extracts. BMC Res. Notes, 2014, 7, 612.
[http://dx.doi.org/10.1186/1756-0500-7-612] [PMID: 25194985]
[587]
Türkez, H.; Aydın, E. Investigation of cytotoxic, genotoxic and oxidative properties of carvacrol in human blood cells. Toxicol. Ind. Health, 2016, 32(4), 625-633.
[http://dx.doi.org/10.1177/0748233713506771] [PMID: 24215060]
[588]
Berrington, D.; Lall, N. Anticancer activity of certain herbs and spices on the cervical epithelial carcinoma (HeLa) cell line. Evid. Based Complement. Alternat. Med., 2012, 2012 564927
[http://dx.doi.org/10.1155/2012/564927] [PMID: 22649474]
[589]
Begnini, K.R.; Nedel, F.; Lund, R.G.; Carvalho, P.H.; Rodrigues, M.R.; Beira, F.T.; Del-Pino, F.A. Composition and antiproliferative effect of essential oil of Origanum vulgare against tumor cell lines. J. Med. Food, 2014, 17(10), 1129-1133.
[http://dx.doi.org/10.1089/jmf.2013.0063] [PMID: 25230257]
[590]
García-Pérez, E.; Noratto, G.D.; García-Lara, S.; Gutiérrez-Uribe, J.A.; Mertens-Talcott, S.U. Micropropagation effect on the anti-carcinogenic activitiy of polyphenolics from Mexican oregano (Poliomintha glabrescens Gray) in human colon cancer cells HT-29. Plant Foods Hum. Nutr., 2013, 68(2), 155-162.
[http://dx.doi.org/10.1007/s11130-013-0344-2] [PMID: 23435631]
[591]
Erenler, R.; Meral, B.; Sen, O.; Elmastas, M.; Aydin, A.; Eminagaoglu, O.; Topcu, G. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm. Biol., 2017, 55(1), 1646-1653.
[http://dx.doi.org/10.1080/13880209.2017.1310906] [PMID: 28431483]
[592]
Misharina, T.A.; Burlakova, E.B.; Fatkullina, L.D.; Alinkina, E.S.; Vorob’eva, A.K.; Medvedeva, I.B.; Erokhin, V.N.; Semenov, V.A.; Nagler, L.G.; Kozachenko, A.I. [Effect of oregano essential oil on the engraftment and development of Lewis carcinoma in F1 DBA C57 black hybrid mice]. Prikl. Biokhim. Mikrobiol., 2013, 49(4), 423-428.
[PMID: 24455870]
[593]
Guimarães, A.G.; Oliveira, M.A.; Alves, R.S.; Menezes, P.P.; Serafini, M.R.; Araújo, A.A.; Bezerra, D.P.; Quintans Júnior, L.J. Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem. Biol. Interact., 2015, 227, 69-76.
[http://dx.doi.org/10.1016/j.cbi.2014.12.020] [PMID: 25557507]
[594]
Kubatka, P.; Kello, M.; Kajo, K.; Kruzliak, P.; Výbohová, D.; Mojžiš, J.; Adamkov, M.; Fialová, S.; Veizerová, L.; Zulli, A.; Péč, M.; Statelová, D.; Grančai, D.; Büsselberg, D. Oregano demonstrates distinct tumour-suppressive effects in the breast carcinoma model. Eur. J. Nutr., 2017, 56(3), 1303-1316.
[http://dx.doi.org/10.1007/s00394-016-1181-5] [PMID: 26907089]
[595]
De Santis, F.; Poerio, N.; Gismondi, A.; Nanni, V.; Di Marco, G.; Nisini, R.; Thaller, M.C.; Canini, A.; Fraziano, M. Hydroalcoholic extract from Origanum vulgare induces a combined anti-mycobacterial and anti-inflammatory response in innate immune cells. PLoS One, 2019, 14(3) e0213150
[http://dx.doi.org/10.1371/journal.pone.0213150] [PMID: 30830942]
[596]
Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement. Altern. Med., 2018, 18(1), 214.
[http://dx.doi.org/10.1186/s12906-018-2262-1] [PMID: 30005652]
[597]
Aybastıer, Ö.; Dawbaa, S.; Demir, C.; Akgün, O.; Ulukaya, E.; Arı, F. Quantification of DNA damage products by gas chromatography tandem mass spectrometry in lung cell lines and prevention effect of thyme antioxidants on oxidative induced DNA damage. Mutat. Res., 2018, 808, 1-9.
[http://dx.doi.org/10.1016/j.mrfmmm.2018.01.004] [PMID: 29366947]
[598]
Baranauskaite, J.; Kubiliene, A.; Marksa, M.; Petrikaite, V.; Vitkevičius, K.; Baranauskas, A.; Bernatoniene, J. The influence of different oregano species on the antioxidant activity determined using HPLC postcolumn DPPH method and anticancer activity of carvacrol and rosmarinic acid. BioMed Res. Int., 2017, 2017 1681392
[http://dx.doi.org/10.1155/2017/1681392] [PMID: 29181386]
[599]
Al Dhaheri, Y.; Attoub, S.; Arafat, K.; Abuqamar, S.; Viallet, J.; Saleh, A.; Al Agha, H.; Eid, A.; Iratni, R. Anti-metastatic and anti-tumor growth effects of Origanum majorana on highly metastatic human breast cancer cells: inhibition of NFκB signaling and reduction of nitric oxide production. PLoS One, 2013, 8(7) e68808
[http://dx.doi.org/10.1371/journal.pone.0068808] [PMID: 23874773]
[600]
Tuncer, E.; Unver-Saraydin, S.; Tepe, B.; Karadayi, S.; Ozer, H.; Karadayi, K.; Inan, D.; Elagoz, S.; Polat, Z.; Duman, M.; Turan, M. Antitumor effects of Origanum acutidens extracts on human breast cancer. J. BUON, 2013, 18(1), 77-85.
[PMID: 23613392]
[601]
Thoppil, R.J.; Harlev, E.; Mandal, A.; Nevo, E.; Bishayee, A. Antitumor activities of extracts from selected desert plants against HepG2 human hepatocellular carcinoma cells. Pharm. Biol., 2013, 51(5), 668-674.
[http://dx.doi.org/10.3109/13880209.2012.749922] [PMID: 23368935]
[602]
Al Dhaheri, Y.; Eid, A.; AbuQamar, S.; Attoub, S.; Khasawneh, M.; Aiche, G.; Hisaindee, S.; Iratni, R. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum majorana extract: upregulation of TNF-α and downregulation of survivin and mutant p53. PLoS One, 2013, 8(2) e56649
[http://dx.doi.org/10.1371/journal.pone.0056649] [PMID: 23451065]
[603]
Fathy, S.A.; Emam, M.A.; Abo Agwa, S.H.; Abu Zahra, F.A.; Youssef, F.S.; Sami, R.M. The antiproliferative effect of Origanum majorana on human hepatocarcinoma cell line: suppression of NF-κB. Cell. Mol. Biol., 2016, 62(10), 80-84.
[PMID: 27609479]
[604]
Abdel-Massih, R.M.; Fares, R.; Bazzi, S.; El-Chami, N.; Baydoun, E. The apoptotic and anti-proliferative activity of Origanum majorana extracts on human leukemic cell line. Leuk. Res., 2010, 34(8), 1052-1056.
[http://dx.doi.org/10.1016/j.leukres.2009.09.018] [PMID: 19853912]
[605]
Soliman, A.M.; Desouky, S.; Marzouk, M.; Sayed, A.A. Origanum majorana attenuates nephrotoxicity of cisplatin anticancer drug through ameliorating oxidative stress. Nutrients, 2016, 8(5) E264
[http://dx.doi.org/10.3390/nu8050264] [PMID: 27164131]
[606]
Ramya, N.; Priyadharshini, P.R.; Dhivya, R. Anti cancer activity of Trachyspermum ammi against MCF-cell lines mediates by p53 and Bcl-2 mRNA levels. J. of Phytopharmacol., 2017, 6(2), 78-83.
[607]
Singh, B.; Kale, R.K. Chemomodulatory effect of Trachyspermum ammi on murine skin and forestomach papillomagenesis. Nutr. Cancer, 2010, 62(1), 74-84.
[http://dx.doi.org/10.1080/01635580903191478] [PMID: 20043262]
[608]
Rathee, P.; Rathee, D.; Rathee, D.; Rathee, S. In vitro anticancer activity of stachydrine isolated from Capparis decidua on prostate cancer cell lines. Nat. Prod. Res., 2012, 26(18), 1737-1740.
[http://dx.doi.org/10.1080/14786419.2011.608673] [PMID: 21988653]
[609]
Rathee, P.; Rathee, D.; Rathee, D.; Rathee, S. In-vitro cytotoxic activity of β-Sitosterol triacontenate isolated from Capparis decidua (Forsk.) Edgew. Asian Pac. J. Trop. Med., 2012, 5(3), 225-230.
[http://dx.doi.org/10.1016/S1995-7645(12)60029-7] [PMID: 22305789]
[610]
Singh, A.; Uppal, G.K. A review on Carissa carandas- photochemistry, ethno-pharmacology, and micropropagation as conservation strategy. Asian J. Pharm. Clin. Res., 2015, 8(3), 26-30.
[611]
Kumar, S.; Gupta, P.; Gupta, K.L.V. A critical review on karamarda (Carissa carandas Linn.). Int. J. Pharm. Biol. Arch., 2013, 4, 637-642.
[612]
David, M.; Karekalammanavar, G. Spectrographic analysis and in vitro study of antibacterial, anticancer activity of aqueous ethanolic fruit extract of Carissa carandas L. J. Adv. Sci. Res., 2015, 6, 10-13.
[613]
Dua, D.; Srivastav, N.S. Anti-cancerous and antioxidant potential of aqueous extracts of Annona reticulata, Podophyllum peltatum, Psidium guajava, Ananas comosus, Carissa carandas on MCF-7 cancer cell line. Int. J. Integr. Sci. Innov. Technol. Sec., 2013, 2(4), 15-19.
[614]
Sadek, Y.B.; Choudhury, N.; Shahriar, M. Biological investigations of the leaf extracts of Carissa carandas. Int. J. Pharm. Res. Technol., 2013, 5(2), 97-105.
[615]
Verma, K.; Shrivastava, D.; Kumar, G. Antioxidant activity and DNA damage inhibition in vitro by a methanolic extract of Carissa carandas (Apocynaceae) leaves. J. Taibah. Univ. Sci., 2015, 9(1), 34-40.
[http://dx.doi.org/10.1016/j.jtusci.2014.07.001]
[616]
Khatun, M.; Habib, M.R.; Rabbi, M.A.; Amin, R.; Islam, M.F.; Nurujjaman, M.; Karim, M.R.; Rahman, M.H. Antioxidant, cytotoxic and antineoplastic effects of Carissa carandas Linn. leaves. Exp. Toxicol. Pathol., 2017, 69(7), 469-476.
[http://dx.doi.org/10.1016/j.etp.2017.03.008] [PMID: 28478952]
[617]
Singh, D.; Singh, M.; Yadav, E.; Falls, N.; Singh D, D.; Kumar, V.; Ramteke, P.W.; Verma, A. Attenuation of diethylnitrosamine (DEN) - Induced hepatic cancer in experimental model of Wistar rats by Carissa carandas embedded silver nanoparticles. Biomed. Pharmacother., 2018, 108(1), 757-765.
[618]
Fukuda, Y.; Osawa, T.; Namiki, M.; Saki, T. Studies on antioxidative substances in sesame. Agric. Biol. Chem., 1985, 49, 301-306.
[619]
Katsuzaki, H.; Kawakishi, S.; Osawa, T. Sesaminol glucosides in sesame seeds. Phytochemistry, 1994, 35(3), 773-776.
[http://dx.doi.org/10.1016/S0031-9422(00)90603-4] [PMID: 7764592]
[620]
Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Pandey, M.K.; Joy, B.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Sesamin manifests chemopreventive effects through the suppression of NF-kappa B-regulated cell survival, proliferation, invasion, and angiogenic gene products. Mol. Cancer Res., 2010, 8(5), 751-761.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0565] [PMID: 20460401]
[621]
Siriwarin, B.; Weerapreeyakul, N. Sesamol induced apoptotic effect in lung adenocarcinoma cells through both intrinsic and extrinsic pathways. Chem. Biol. Interact., 2016, 254, 109-116.
[http://dx.doi.org/10.1016/j.cbi.2016.06.001] [PMID: 27270451]
[622]
Yun, T.K.; Kim, S.H.; Lee, Y.S. Trial of a new medium-term model using benzo(a)pyrene induced lung tumor in newborn mice. Anticancer Res., 1995, 15(3), 839-845.
[PMID: 7645968]
[623]
Fang, Q.; Zhu, Y.; Wang, Q.; Song, M.; Gao, G.; Zhou, Z. Suppression of cyclooxygenase 2 increases chemosensitivity to sesamin through the Akt‑PI3K signaling pathway in lung cancer cells. Int. J. Mol. Med., 2019, 43(1), 507-516.
[PMID: 30365050]
[624]
Ben Othman, S.; Katsuno, N.; Kitayama, A.; Fujimura, M.; Kitaguchi, K.; Yabe, T. White sesame seed water-soluble fraction enhances human neuroblast cell viability via an anti-apoptotic mechanism. Nutr. Res., 2016, 36(10), 1130-1139.
[http://dx.doi.org/10.1016/j.nutres.2016.07.007] [PMID: 27865355]
[625]
Yadav, S.S.; Singh, M.K.; Singh, P.K.; Kumar, V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed. Pharmacother., 2017, 93, 1292-1302.
[http://dx.doi.org/10.1016/j.biopha.2017.07.065] [PMID: 28747010]
[626]
Zhao, T.; Sun, Q.; Marques, M.; Witcher, M. Anticancer properties of Phyllanthus emblica (Indian Gooseberry). Oxid. Med. Cell. Longev., 2015, 2015 950890
[http://dx.doi.org/10.1155/2015/950890] [PMID: 26180601]
[627]
Baliga, M.S.; Meera, S.; Mathai, B.; Rai, M.P.; Pawar, V.; Palatty, P.L. Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: a review. Chin. J. Integr. Med., 2012, 18(12), 946-954.
[http://dx.doi.org/10.1007/s11655-012-1299-x] [PMID: 23239004]
[628]
Zhu, X.; Wang, J.; Ou, Y.; Han, W.; Li, H. Polyphenol extract of Phyllanthus emblica (PEEP) induces inhibition of cell proliferation and triggers apoptosis in cervical cancer cells. Eur. J. Med. Res., 2013, 18, 46.
[http://dx.doi.org/10.1186/2047-783X-18-46] [PMID: 24245877]
[629]
Guo, X.H.; Ni, J.; Xue, J.L.; Wang, X. Phyllanthus emblica Linn. fruit extract potentiates the anticancer efficacy of mitomycin C and cisplatin and reduces their genotoxicity to normal cells in vitro. J. Zhejiang Univ. Sci. B, 2017, 18(12), 1031-1045.
[http://dx.doi.org/10.1631/jzus.B1600542] [PMID: 29204983]
[630]
Leelawat, S.; Leelawat, K. Molecular mechanisms of cholangiocarcinoma cell inhibition by medicinal plants. Oncol. Lett., 2017, 13(2), 961-966.
[http://dx.doi.org/10.3892/ol.2016.5488] [PMID: 28356985]
[631]
Sandhya, T.; Lathika, K.M.; Pandey, B.N.; Mishra, K.P. Potential of traditional ayurvedic formulation, Triphala, as a novel anticancer drug. Cancer Lett., 2006, 231(2), 206-214.
[http://dx.doi.org/10.1016/j.canlet.2005.01.035] [PMID: 15899544]
[632]
Mahata, S.; Pandey, A.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C.; Bharti, A.C. Anticancer activity of Phyllanthus emblica Linn. (Indian gooseberry): inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells. Nutr. Cancer, 2013, 65(Suppl. 1), 88-97.
[http://dx.doi.org/10.1080/01635581.2013.785008] [PMID: 23682787]
[633]
Nandi, P.; Talukder, G.; Sharma, A. Dietary chemoprevention of clastogenic effects of 3,4-benzo(a)pyrene by Emblica officinalis Gaertn. fruit extract. Br. J. Cancer, 1997, 76(10), 1279-1283.
[http://dx.doi.org/10.1038/bjc.1997.548] [PMID: 9374371]
[634]
Krishnaveni, M.; Mirunalini, S. Chemopreventive efficacy of Phyllanthus emblica L. (amla) fruit extract on 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis--a dose-response study. Environ. Toxicol. Pharmacol., 2012, 34(3), 801-810.
[http://dx.doi.org/10.1016/j.etap.2012.09.006] [PMID: 23058484]
[635]
De, A.; De, A.; Papasian, C.; Hentges, S.; Banerjee, S.; Haque, I.; Banerjee, S.K. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS One, 2013, 8(8) e72748
[http://dx.doi.org/10.1371/journal.pone.0072748] [PMID: 24133573]
[636]
Wang, C.C.; Yuan, J.R.; Wang, C.F.; Yang, N.; Chen, J.; Liu, D.; Song, J.; Feng, L.; Tan, X.B.; Jia, X.B. Anti-inflammatory effects of Phyllanthus emblica L on benzopyrene-induced precancerous lung lesion by regulating the IL-1β/miR-101/Lin28B signaling pathway. Integr. Cancer Ther., 2017, 16(4), 505-515.
[http://dx.doi.org/10.1177/1534735416659358] [PMID: 27562754]
[637]
Ngamkitidechakul, C.; Jaijoy, K.; Hansakul, P.; Soonthornchareonnon, N.; Sireeratawong, S. Antitumour effects of Phyllanthus emblica L.: induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytother. Res., 2010, 24(9), 1405-1413.
[http://dx.doi.org/10.1002/ptr.3127] [PMID: 20812284]
[638]
Purushothaman, A.; Nandhakumar, E.; Sachdanandam, P. Phytochemical analysis and anticancer capacity of Shemamruthaa, a herbal formulation against DMBA- induced mammary carcinoma in rats. Asian Pac. J. Trop. Med., 2013, 6(12), 925-933.
[http://dx.doi.org/10.1016/S1995-7645(13)60166-2] [PMID: 24144022]
[639]
Arulkumaran, S.; Ramprasath, V.R.; Shanthi, P.; Sachdanandam, P. Restorative effect of Kalpaamruthaa, an indigenous preparation, on oxidative damage in mammary gland mitochondrial fraction in experimental mammary carcinoma. Mol. Cell. Biochem., 2006, 291(1-2), 77-82.
[http://dx.doi.org/10.1007/s11010-006-9199-2] [PMID: 16953336]
[640]
Veena, K.; Shanthi, P.; Sachdanandam, P. Therapeutic efficacy of Kalpaamruthaa on reactive oxygen/nitrogen species levels and antioxidative system in mammary carcinoma bearing rats. Mol. Cell. Biochem., 2007, 294(1-2), 127-135.
[http://dx.doi.org/10.1007/s11010-006-9252-1] [PMID: 16896538]
[641]
Singh, D.; Yadav, E.; Falls, N.; Kumar, V.; Singh, M.; Verma, A. Phytofabricated silver nanoparticles of Phyllanthus emblica attenuated diethylnitrosamine-induced hepatic cancer via knock-down oxidative stress and inflammation. Inflammopharmacol, 2019, 27(5), 1037-1054.
[http://dx.doi.org/10.1007/s10787-018-0525-6]
[642]
Nguyen, T.A.; Duong, T.H.; Le Pogam, P.; Beniddir, M.A.; Nguyen, H.H.; Nguyen, T.P.; Do, T.M.; Nguyen, K.P. Two new triterpenoids from the roots of Phyllanthus emblica. Fitoterapia, 2018, 130, 140-144.
[http://dx.doi.org/10.1016/j.fitote.2018.08.022] [PMID: 30170172]
[643]
Kumnerdkhonkaen, P.; Saenglee, S.; Asgar, M.A.; Senawong, G.; Khongsukwiwat, K.; Senawong, T. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit. BMC Complement. Altern. Med., 2018, 18(1), 130.
[http://dx.doi.org/10.1186/s12906-018-2185-x] [PMID: 29642867]
[644]
Ji, Y.B.; Yu, L. N-butanol extract of Capparis spinosa L. induces apoptosis primarily through a mitochondrial pathway involving mPTP open, cytochrome C release and caspase activation. Asian Pac. J. Cancer Prev., 2014, 15(21), 9153-9157.
[http://dx.doi.org/10.7314/APJCP.2014.15.21.9153] [PMID: 25422194]
[645]
Ji, Y.B.; Yu, L. In vitro analysis of the role of the mitochondrial apoptosis pathway in CSBE therapy against human gastric cancer. Exp. Ther. Med., 2015, 10(6), 2403-2409.
[http://dx.doi.org/10.3892/etm.2015.2779] [PMID: 26668648]
[646]
Kulisic-Bilusic, T.; Schmöller, I.; Schnäbele, K.; Siracusa, L.; Ruberto, G. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem., 2012, 132(1), 261-267.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.074] [PMID: 26434289]
[647]
Fu, X.P.; Aisa, H.A.; Abdurahim, M.; Yili, A.; Aripova, S.F.; Tashkhodzhaev, B. Chemical composition of Capparis spinosa fruit. Chem. Nat. Compd., 2007, 43, 181-183.
[http://dx.doi.org/10.1007/s10600-007-0074-5]
[648]
Lam, S.K.; Han, Q.F.; Ng, T.B. Isolation and characterization of a lectin with potentially exploitable activities from caper (Capparis spinosa) seeds. Biosci. Rep., 2009, 29(5), 293-299.
[http://dx.doi.org/10.1042/BSR20080110] [PMID: 18847434]
[649]
Lam, S.K.; Ng, T.B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine, 2009, 16(5), 444-450.
[http://dx.doi.org/10.1016/j.phymed.2008.09.006] [PMID: 19019643]
[650]
Moghadamnia, Y.; Mousavi Kani, S.N.; Ghasemi-Kasman, M.; Kazemi Kani, M.T.; Kazemi, S. The Anti-cancer effects of Capparis spinosa hydroalcoholic extract. Avicenna J. Med. Biotechnol., 2019, 11(1), 43-47.
[PMID: 30800242]
[651]
Sumathi, S.; Ray, A.R. Release behaviour of drugs from tamarind seed polysaccharide tablets. J. Pharm. Pharm. Sci., 2002, 5(1), 12-18.
[PMID: 12042114]
[652]
Joseph, M.M.; Aravind, S.R.; George, S.K.; Pillai, K.R.; Mini, S.; Sreelekha, T.T. Galactoxyloglucan-modified nanocarriers of doxorubicin for improved tumor-targeted drug delivery with minimal toxicity. J. Biomed. Nanotechnol., 2014, 10(11), 3253-3268.
[http://dx.doi.org/10.1166/jbn.2014.1957] [PMID: 26000385]
[653]
Joseph, M.M.; Aravind, S.R.; George, S.K.; Raveendran Pillai, K.; Mini, S.; Sreelekha, T.T. Anticancer activity of galactoxyloglucan polysaccharide-conjugated doxorubicin nanoparticles: Mechanistic insights and interactome analysis. Eur. J. Pharm. Biopharm., 2015, 93, 183-195.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.001] [PMID: 25864443]
[654]
Aravind, S.R.; Joseph, M.M.; Varghese, S.; Balaram, P.; Sreelekha, T.T. Antitumor and immunopotentiating activity of polysaccharide PST001 isolated from the seed kernel of Tamarindus indica: an in vivo study in mice. Scient. World J., 2012, 2012 361382
[http://dx.doi.org/10.1100/2012/361382] [PMID: 22593679]
[655]
Sreelekha, T.T.; Vijayakumar, T.; Ankanthil, R.; Vijayan, K.K.; Nair, M.K. Immunomodulatory effects of a polysaccharide from Tamarindus indica. Anticancer Drugs, 1993, 4(2), 209-212.
[http://dx.doi.org/10.1097/00001813-199304000-00013] [PMID: 8490201]
[656]
Martinello, F.; Kannen, V.; Franco, J.J.; Gasparotto, B.; Sakita, J.Y.; Sugohara, A.; Garcia, S.B.; Uyemura, S.A. Chemopreventive effects of a Tamarindus indica fruit extract against colon carcinogenesis depend on the dietary cholesterol levels in hamsters. Food Chem. Toxicol, 2017, 107(Pt A), 261-269.
[657]
Bassiri-Jahromi, S. Punica granatum (Pomegranate) activity in health promotion and cancer prevention. Oncol. Rev., 2018, 12(1), 345.
[http://dx.doi.org/10.4081/oncol.2018.345] [PMID: 29441150]
[658]
Panth, N.; Manandhar, B.; Paudel, K.R. Anticancer activity of Punica granatum (Pomegranate): A review. Phytother. Res., 2017, 31(4), 568-578.
[http://dx.doi.org/10.1002/ptr.5784] [PMID: 28185340]
[659]
Weisburg, J.H.; Schuck, A.G.; Silverman, M.S.; Ovits-Levy, C.G.; Solodokin, L.J.; Zuckerbraun, H.L.; Babich, H. Pomegranate extract, a prooxidant with antiproliferative and proapoptotic activities preferentially towards carcinoma cells. Anticancer. Agents Med. Chem., 2010, 10(8), 634-644.
[http://dx.doi.org/10.2174/187152010794474000] [PMID: 21184666]
[660]
Adaramoye, O.; Erguen, B.; Nitzsche, B.; Höpfner, M.; Jung, K.; Rabien, A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chem. Biol. Interact., 2017, 274, 100-106.
[http://dx.doi.org/10.1016/j.cbi.2017.07.009] [PMID: 28709945]
[661]
Deng, Y.; Li, Y.; Yang, F.; Zeng, A.; Yang, S.; Luo, Y.; Zhang, Y.; Xie, Y.; Ye, T.; Xia, Y.; Yin, W. The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells. Biomed. Pharmacother., 2017, 93, 976-984.
[http://dx.doi.org/10.1016/j.biopha.2017.07.008] [PMID: 28724216]
[662]
Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxid. Med. Cell. Longev., 2015, 2015 938475
[http://dx.doi.org/10.1155/2015/938475] [PMID: 26180600]
[663]
Sineh Sepehr, K.; Baradaran, B.; Mazandarani, M.; Khori, V.; Shahneh, F.Z. Studies on the cytotoxic activities of Punica granatum L. var. spinosa (Apple Punice) extract on prostate cell line by induction of apoptosis. ISRN Pharm., 2012, 2012 547942
[http://dx.doi.org/10.5402/2012/547942] [PMID: 23320197]
[664]
Banerjee, N.; Talcott, S.; Safe, S.; Mertens-Talcott, S.U. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and in vivo: Potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res. Treat., 2012, 136(1), 21-34.
[http://dx.doi.org/10.1007/s10549-012-2224-0] [PMID: 22941571]
[665]
Dikmen, M.; Ozturk, N.; Ozturk, Y. The antioxidant potency of Punica granatum L. Fruit peel reduces cell proliferation and induces apoptosis on breast cancer. J. Med. Food, 2011, 14(12), 1638-1646.
[http://dx.doi.org/10.1089/jmf.2011.0062] [PMID: 21861726]
[666]
Dai, Z.; Nair, V.; Khan, M.; Ciolino, H.P. Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncol. Rep., 2010, 24(4), 1087-1091.
[PMID: 20811693]
[667]
Adams, L.S.; Zhang, Y.; Seeram, N.P.; Heber, D.; Chen, S. Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in vitro. Cancer Prev. Res. (Phila.), 2010, 3(1), 108-113.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0225] [PMID: 20051378]
[668]
Khan, G.N.; Gorin, M.A.; Rosenthal, D.; Pan, Q.; Bao, L.W.; Wu, Z.F.; Newman, R.A.; Pawlus, A.D.; Yang, P.; Lansky, E.P.; Merajver, S.D. Pomegranate fruit extract impairs invasion and motility in human breast cancer. Integr. Cancer Ther., 2009, 8(3), 242-253.
[http://dx.doi.org/10.1177/1534735409341405] [PMID: 19815594]
[669]
Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol., 2007, 109(2), 177-206.
[http://dx.doi.org/10.1016/j.jep.2006.09.006] [PMID: 17157465]
[670]
Jeune, M.A.; Kumi-Diaka, J.; Brown, J. Anticancer activities of pomegranate extracts and genistein in human breast cancer cells. J. Med. Food, 2005, 8(4), 469-475.
[http://dx.doi.org/10.1089/jmf.2005.8.469] [PMID: 16379557]
[671]
Mehta, R.; Lansky, E.P. Breast cancer chemopreventive properties of pomegranate (Punica granatum) fruit extracts in a mouse mammary organ culture. Eur. J. Cancer Prev., 2004, 13(4), 345-348.
[http://dx.doi.org/10.1097/01.cej.0000136571.70998.5a] [PMID: 15554563]
[672]
Varghese, S.; Joseph, M.M.; S R, A.; B S, U.; Sreelekha, T.T. The inhibitory effect of anti- tumor polysaccharide from Punica granatum on metastasis. Int. J. Biol. Macromol., 2017, 103, 1000-1010.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.137] [PMID: 28552725]
[673]
Yao, X.; Cheng, X.; Zhang, L.; Yu, H.; Bao, J.; Guan, H.; Lu, R. Punicalagin from pomegranate promotes human papillary thyroid carcinoma BCPAP cell death by triggering ATM-mediated DNA damage response. Nutr. Res., 2017, 47, 63-71.
[http://dx.doi.org/10.1016/j.nutres.2017.09.001] [PMID: 29241579]
[674]
Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Kim, D.S.; Saratale, G.D. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 211-222.
[http://dx.doi.org/10.1080/21691401.2017.1337031] [PMID: 28612655]
[675]
Joseph, M.M.; Aravind, S.R.; George, S.K.; Varghese, S.; Sreelekha, T.T. A galactomannan polysaccharide from Punica granatum imparts in vitro and in vivo anticancer activity. Carbohydr. Polym., 2013, 98(2), 1466-1475.
[676]
Joseph, M.M.; Aravind, S.R.; Varghese, S.; Mini, S.; Sreelekha, T.T. Evaluation of antioxidant, antitumor and immunomodulatory properties of polysaccharide isolated from fruit rind of Punica granatum. Mol. Med. Rep., 2012, 5(2), 489-496.
[PMID: 22012001]
[677]
Badawi, N.M.; Teaima, M.H.; El-Say, K.M.; Attia, D.A.; El-Nabarawi, M.A.; Elmazar, M.M. Pomegranate extract-loaded solid lipid nanoparticles: design, optimization, and in vitro cytotoxicity study. Int. J. Nanomedicine, 2018, 13, 1313-1326.
[http://dx.doi.org/10.2147/IJN.S154033] [PMID: 29563789]
[678]
Moreira, H.; Slezak, A.; Szyjka, A.; Oszmianski, J.; Gasiorowski, K. Antioxidant and cancer chemopreventive activities of cistus and pomegranate polyphenols. Acta Pol. Pharm., 2017, 74(2), 688-698.
[PMID: 29624275]
[679]
Chang, C.P.; Chan, Y.Y.; Li, C.F.; Chien, L.H.; Lee, S.T.; Wu, T.F. Deciphering the molecular mechanism underlying the inhibitory efficacy of Taiwanese local pomegranate peels against urinary bladder urothelial carcinoma. Nutrients, 2018, 10(5), 543.
[http://dx.doi.org/10.3390/nu10050543] [PMID: 29702555]
[680]
Deng, Y.L.; Li, Y.L.; Zheng, T.T.; Hu, M.X.; Ye, T.H.; Xie, Y.M.; Yin, W.Y. The Extract from Punica granatum (Pomegranate) leaves promotes apoptosis and impairs metastasis in prostate cancer cells. Sichuan Da Xue Xue Bao Yi Xue Ban, 2018, 49(1), 8-12.
[PMID: 29737081]
[681]
González-Sarrías, A.; Núñez-Sánchez, M.A.; Ávila-Gálvez, M.A.; Monedero-Saiz, T.; Rodríguez-Gil, F.J.; Martínez-Díaz, F.; Selma, M.V.; Espín, J.C. Consumption of pomegranate decreases plasma lipopolysaccharide-binding protein levels, a marker of metabolic endotoxemia, in patients with newly diagnosed colorectal cancer: a randomized controlled clinical trial. Food Funct., 2018, 9(5), 2617-2622.
[http://dx.doi.org/10.1039/C8FO00264A] [PMID: 29770393]
[682]
Chen, X.X.; Lam, K.K.; Feng, Y.B.; Xu, K.; Sze, S.C.; Tang, S.C.; Leung, G.P.; Lee, C.K.; Shi, J.; Yang, Z.J.; Li, S.T.; Zhang, Z.J.; Zhang, K.Y. Ellagitannins from pomegranate ameliorates 5-fluorouracil-induced intestinal mucositis in rats while enhancing its chemotoxicity against HT-29 colorectal cancer cells through intrinsic apoptosis induction. J. Agric. Food Chem., 2018, 66(27), 7054-7064.
[http://dx.doi.org/10.1021/acs.jafc.8b02458] [PMID: 29920075]
[683]
Bagheri, M.; Fazli, M.; Saeednia, S.; Kor, A.; Ahmadiankia, N. Pomegranate peel extract inhibits expression of β-catenin, epithelial mesenchymal transition, and metastasis in triple negative breast cancer cells. Cell. Mol. Biol., 2018, 64(7), 86-91.
[http://dx.doi.org/10.14715/cmb/2018.64.7.15] [PMID: 29974851]
[684]
Padinjarathil, H.; Joseph, M.M.; Unnikrishnan, B.S.; Preethi, G.U.; Shiji, R.; Archana, M.G.; Maya, S.; Syama, H.P.; Sreelekha, T.T. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int. J. Biol. Macromol, 2018, 118(Pt A), 1174-1182.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.194] [PMID: 30001604]
[685]
Devanesan, S.; AlSalhi, M.S.; Balaji, R.V.; Ranjitsingh, A.J.A.; Ahamed, A.; Alfuraydi, A.A.; AlQahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett., 2018, 13(1), 315.
[http://dx.doi.org/10.1186/s11671-018-2731-y] [PMID: 30288618]
[686]
Annu, A.; Ahmed, S.; Kaur, G.; Sharma, P.; Singh, S.; Ikram, S. Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles. Toxicol. Res. (Camb.), 2018, 7(5), 923-930.
[http://dx.doi.org/10.1039/C8TX00103K] [PMID: 30310669]
[687]
Kaur, P.; Mehta, R.; Singh, B.; Arora, S. Development of aqueousbased multi-herbal combination using principal component analysis and its functional significance in HepG2 cells. BMC Compl Altern. Med., 2019, 19(1), 18.
[688]
Choprae, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian medicinal plants; New CSIR Publication: Delhi, 1996, Vol. 2, .
[689]
Ghate, N.B.; Hazra, B.; Sarkar, R.; Mandal, N. Heartwood extract of Acacia catechu induces apoptosis in human breast carcinoma by altering bax/bcl-2 ratio. Pharmacogn. Mag., 2014, 10(37), 27-33.
[http://dx.doi.org/10.4103/0973-1296.126654] [PMID: 24695415]
[690]
Fotso W, G.; Na-Iya, J.; Mbaveng T, A.; Ango Yves, P.; Demirtas, I.; Kuete, V.; Samuel, Y.; Ngameni, B.; Efferth, T.; Ngadjui T, B. Polyacanthoside A, a new oleanane-type triterpenoid saponin with cytotoxic effects from the leaves of Acacia polyacantha (Fabaceae). Nat. Prod. Res., 2019, 33(24), 3521-3526.
[691]
Monga, J.; Chauhan, C.S.; Sharma, M. Human breast adenocarcinoma cytotoxicity and modulation of 7,12-dimethylbenz[a]anthracene-induced mammary carcinoma in Balb/c mice by Acacia catechu (L.f.) Wild heartwood. Integr. Cancer Ther., 2013, 12(4), 347-362.
[http://dx.doi.org/10.1177/1534735412463818] [PMID: 23142797]
[692]
Lakshmi, T.; Ezhilarasan, D.; Nagaich, U.; Vijayaragavan, R. Acacia catechu ethanolic seed extract triggers apoptosis of SCC-25 cells. Pharmacogn. Mag., 2017, 13(51)(Suppl. 3), S405-S411.
[http://dx.doi.org/10.4103/pm.pm_458_16] [PMID: 29142391]
[693]
Lakshmi, T.; Ezhilarasan, D.; Vijayaragavan, R.; Bhullar, S.K.; Rajendran, R. Acacia catechu ethanolic bark extract induces apoptosis in human oral squamous carcinoma cells. J. Adv. Pharm. Technol. Res., 2017, 8(4), 143-149.
[http://dx.doi.org/10.4103/japtr.JAPTR_73_17] [PMID: 29184846]
[694]
Morton, J.F. Lemon. Fruits of warm climates; Florida Flair Books: Miami, FL, 1987, pp. 160-168.
[695]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients, 2017, 9(7) E728
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[696]
Diab, K.A. In vitro studies on phytochemical content, antioxidant, anticancer, immunomodulatory, and antigenotoxic activities of lemon, grapefruit, and mandarin citrus peels. Asian Pac. J. Cancer Prev., 2016, 17(7), 3559-3567.
[PMID: 27510009]
[697]
Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact., 2018, 283, 97-106.
[http://dx.doi.org/10.1016/j.cbi.2018.02.007] [PMID: 29427589]
[698]
Manners, G.D. Citrus limonoids: analysis, bioactivity, and biomedical prospects. J. Agric. Food Chem., 2007, 55(21), 8285-8294.
[http://dx.doi.org/10.1021/jf071797h] [PMID: 17892257]
[699]
Hafidh, R.R.; Hussein, S.Z. MalAllah, M.Q.; Abdulamir, A.S.; Abu, B.F. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent. Curr. Cancer Drug Targets, 2018, 18(8), 807-815.
[700]
Poulose, S.M.; Harris, E.D.; Patil, B.S. Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity. J. Nutr., 2005, 135(4), 870-877.
[http://dx.doi.org/10.1093/jn/135.4.870] [PMID: 15795449]
[701]
Benavente-García, O.; Castillo, J.; Alcaraz, M.; Vicente, V.; Del Río, J.A.; Ortuño, A. Beneficial action of Citrus flavonoids on multiple cancer-related biological pathways. Curr. Cancer Drug Targets, 2007, 7(8), 795-809.
[http://dx.doi.org/10.2174/156800907783220435] [PMID: 18220529]
[702]
da Silva, E.S.; Oliveira, B.G.; Pereira, A.C.H.; Pimentel, E.F.; Pezzuto, J.M.; Lenz, D.; Kondratyuk, T.P.; Andrade, T.U.; Fronza, M.; Scherer, R.; Maia, J.F.; Romão, W.; Alves, F.L.; Ventura, J.A.; Endringer, D.C. Induction of NAD (P)H: Quinone reductase 1 (QR1) and antioxidant activities in vitro of ‘Toranja Burarama’ (Citrus maxima [Burm.] Merr.). Phytother. Res., 2018, 32(10), 2059-2068.
[http://dx.doi.org/10.1002/ptr.6149] [PMID: 29998488]
[703]
Sun, S.; Phrutivorapongkul, A.; Dibwe, D.F.; Balachandran, C.; Awale, S. Chemical constituents of Thai Citrus hystrix and their antiausterity activity against the PANC-1 human pancreatic cancer cell line. J. Nat. Prod., 2018, 81(8), 1877-1883.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00405] [PMID: 30070833]
[704]
Liu, F.; Zhang, S.; Yin, M.; Guo, L.; Xu, M.; Wang, Y. Nobiletin inhibits hypoxia-induced epithelial-mesenchymal transition in renal cell carcinoma cells. J. Cell. Biochem., 2018, 120(2), 2039-2046.
[http://dx.doi.org/10.1002/jcb.27511] [PMID: 30203502]
[705]
Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep., 2018, 8(1), 13902.
[http://dx.doi.org/10.1038/s41598-018-32308-2] [PMID: 30224635]
[706]
Pandey, P.; Sayyed, U.; Tiwari, R.K.; Siddiqui, M.H.; Pathak, N.; Bajpai, P. Hesperidin induces ROS-mediated apoptosis along with cell cycle arrest at G2/M phase in human gall bladder carcinoma. Nutr. Cancer, 2019, 71(4), 676-687.
[PMID: 30265812]
[707]
Nair, S.A.; Sr, R.K.; Nair, A.S.; Baby, S. Citrus peels prevent cancer.. Phytomedicine, 2018, 50, 231-237.
[http://dx.doi.org/10.1016/j.phymed.2017.08.011]
[708]
Nagaprashantha, L.D.; Singhal, J.; Chikara, S.; Gugiu, G.; Horne, D.; Awasthi, S.; Salgia, R.; Singhal, S.S. 2′-Hydroxyflavanone induced changes in the proteomic profile of breast cancer cells. J. Proteomics, 2019, 192, 233-245.
[http://dx.doi.org/10.1016/j.jprot.2018.09.005] [PMID: 30248461]
[709]
Cárdeno, A.; Sánchez-Hidalgo, M.; Rosillo, M.A.; Alarcón de la Lastra, C. Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1α. Nutr. Cancer, 2013, 65(1), 147-156.
[http://dx.doi.org/10.1080/01635581.2013.741758] [PMID: 23368925]
[710]
Samara, P.; Christoforidou, N.; Lemus, C.; Argyropoulou, A.; Ioannou, K.; Vougogiannopoulou, K.; Aligiannis, N.; Paronis, E.; Gaboriaud-Kolar, N.; Tsitsilonis, O.; Skaltsounis, A.L. New semi-synthetic analogs of oleuropein show improved anticancer activity in vitro and in vivo. Eur. J. Med. Chem., 2017, 137, 11-29.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.029] [PMID: 28551177]
[711]
Verschaeve, L.; Edziri, H.; Anthonissen, R.; Boujnah, D.; Skhiri, F.; Chehab, H.; Aouni, M.; Mastouri, M. In vitro toxicity and genotoxic activity of aqueous leaf extracts from four varieties of Olea europea (L). Pharmacogn. Mag., 2017, 13(49)(Suppl. 1), S63-S68.
[http://dx.doi.org/10.4103/0973-1296.203980] [PMID: 28479728]
[712]
Tunca, B.; Tezcan, G.; Cecener, G.; Egeli, U.; Ak, S.; Malyer, H.; Tumen, G.; Bilir, A. Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. J. Cancer Res. Clin. Oncol., 2012, 138(11), 1831-1844.
[http://dx.doi.org/10.1007/s00432-012-1261-8] [PMID: 22722712]
[713]
Busnena, B.A.; Foudah, A.I.; Melancon, T.; El Sayed, K.A. Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer. Bioorg. Med. Chem., 2013, 21(7), 2117-2127.
[http://dx.doi.org/10.1016/j.bmc.2012.12.050] [PMID: 23403296]
[714]
Maalej, A.; Bouallagui, Z.; Hadrich, F.; Isoda, H.; Sayadi, S. Assessment of Olea europaea L. fruit extracts: Phytochemical characterization and anticancer pathway investigation. Biomed. Pharmacother., 2017, 90, 179-186.
[http://dx.doi.org/10.1016/j.biopha.2017.03.034] [PMID: 28360012]
[715]
Owen, R.W.; Haubner, R.; Würtele, G.; Hull, E.; Spiegelhalder, B.; Bartsch, H. Olives and olive oil in cancer prevention. Eur. J. Cancer Prev., 2004, 13(4), 319-326.
[http://dx.doi.org/10.1097/01.cej.0000130221.19480.7e] [PMID: 15554560]
[716]
Solanas, M.; Grau, L.; Moral, R.; Vela, E.; Escrich, R.; Escrich, E. Dietary olive oil and corn oil differentially affect experimental breast cancer through distinct modulation of the p21Ras signaling and the proliferation-apoptosis balance. Carcinogenesis, 2010, 31(5), 871-879.
[http://dx.doi.org/10.1093/carcin/bgp243] [PMID: 19825967]
[717]
Menendez, J.A.; Vellon, L.; Colomer, R.; Lupu, R. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin) in breast cancer cells with Her-2/neu oncogene amplification. Ann. Oncol., 2005, 16(3), 359-371.
[http://dx.doi.org/10.1093/annonc/mdi090] [PMID: 15642702]
[718]
Elamin, M.H.; Elmahi, A.B.; Daghestani, M.H.; Al-Olayan, E.M.; Al-Ajmi, R.A.; Alkhuriji, A.F.; Hamed, S.S.; Elkhadragy, M.F. Synergistic anti-breast-cancer effects of combined treatment with oleuropein and doxorubicin in vivo. Altern. Ther. Health Med., 2019, 25(3), 17-24.
[PMID: 28646810]
[719]
Ruzzolini, J.; Peppicelli, S.; Andreucci, E.; Bianchini, F.; Scardigli, A.; Romani, A.; la Marca, G.; Nediani, C.; Calorini, L. Oleuropein, the main polyphenol of Olea europaea leaf extract, has an anti-cancer effect on human BRAF melanoma cells and potentiates the cytotoxicity of current chemotherapies. Nutrients, 2018, 10(12), 1950.
[http://dx.doi.org/10.3390/nu10121950] [PMID: 30544808]
[720]
Wang, B.; Qu, J.; Luo, S.; Feng, S.; Li, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Optimization of ultrasound-assisted extraction of flavonoids from Olive (Olea europaea) leaves, and evaluation of their antioxidant and anticancer activities. Molecules, 2018, 23(10), 2513.
[http://dx.doi.org/10.3390/molecules23102513] [PMID: 30274358]
[721]
Goldsmith, C.D.; Bond, D.R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. Int. J. Mol. Sci., 2018, 19(7), 1937.
[http://dx.doi.org/10.3390/ijms19071937] [PMID: 30004416]
[722]
Hernández-Corroto, E.; Marina, M.L.; García, M.C. Multiple protective effect of peptides released from Olea europaea and Prunus persica seeds against oxidative damage and cancer cell proliferation. Food Res. Int., 2018, 106, 458-467.
[http://dx.doi.org/10.1016/j.foodres.2018.01.015] [PMID: 29579948]
[723]
Sulaiman, G.M.; Tawfeeq, A.T.; Jaaffer, M.D. Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol. Prog., 2018, 34(1), 218-230.
[http://dx.doi.org/10.1002/btpr.2568] [PMID: 28960911]
[724]
Singhal, S.S.; Horne, D.; Singhal, J.; Vonderfecht, S.; Salgia, R.; Awasthi, S. Synergistic efficacy of RLIP inhibition and 2′-hydroxyflavanone against DMBA-induced mammary carcinogenesis in SENCAR mice. Mol. Carcinog., 2019, 58(8), 1438-1449.
[725]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mangifera indica (Mango). Evid. Based Complement. Alternat. Med., 2017, 2017 6949835
[726]
Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis., 2017, 16(1), 84.
[http://dx.doi.org/10.1186/s12944-017-0449-y] [PMID: 28464819]
[727]
Khurana, R.K.; Kaur, R.; Kaur, M.; Kaur, R.; Kaur, J.; Kaur, H.; Singh, B. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software. Future Sci. OA, 2017, 3(1) FSO167
[728]
Khurana, R.K.; Kaur, R.; Lohan, S.; Singh, K.K.; Singh, B. Mangiferin: a promising anticancer bioactive. Pharm. Pat. Anal., 2016, 5(3), 169-181.
[http://dx.doi.org/10.4155/ppa-2016-0003] [PMID: 27088726]
[729]
Vyas, A.; Syeda, K.; Ahmad, A.; Padhye, S.; Sarkar, F.H. Perspectives on medicinal properties of mangiferin. Mini Rev. Med. Chem., 2012, 12(5), 412-425.
[http://dx.doi.org/10.2174/138955712800493870] [PMID: 22303941]
[730]
Sellés, A.J.; Villa, D.G.; Rastrelli, L. Mango polyphenols and its protective effects on diseases associated to oxidative stress. Curr. Pharm. Biotechnol., 2015, 16(3), 272-280.
[http://dx.doi.org/10.2174/138920101603150202143532] [PMID: 25658517]
[731]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Divya, H.; Nishigaki, I. Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J. Recept. Signal Transduct. Res., 2015, 35(1), 76-84.
[http://dx.doi.org/10.3109/10799893.2014.931431] [PMID: 24984103]
[732]
Li, H.; Huang, J.; Yang, B.; Xiang, T.; Yin, X.; Peng, W.; Cheng, W.; Wan, J.; Luo, F.; Li, H.; Ren, G. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway. Toxicol. Appl. Pharmacol., 2013, 272(1), 180-190.
[http://dx.doi.org/10.1016/j.taap.2013.05.011] [PMID: 23707762]
[733]
Masibo, M.; He, Q. Major mango polyphenols and their potential significance to human health. Compr. Rev. Food Sci. Food Saf., 2008, 7, 309-319.
[http://dx.doi.org/10.1111/j.1541-4337.2008.00047.x]
[734]
Telang, M.; Dhulap, S.; Mandhare, A.; Hirwani, R. Therapeutic and cosmetic applications of mangiferin: a patent review. Expert Opin. Ther. Pat., 2013, 23(12), 1561-1580.
[http://dx.doi.org/10.1517/13543776.2013.836182] [PMID: 24066838]
[735]
Yao, Y.B.; Peng, Z.G.; Liu, Z.F.; Yang, J.; Luo, J. Effects of mangiferin on cell cycle status and CDC2/Cyclin B1 expression of HL-60 cells. Zhong Yao Cai, 2010, 33(1), 81-5.
[PMID: 20518311]
[736]
Shoji, K.; Tsubaki, M.; Yamazoe, Y.; Satou, T.; Itoh, T.; Kidera, Y.; Tanimori, Y.; Yanae, M.; Matsuda, H.; Taga, A.; Nakamura, H.; Nishida, S. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expressions and nuclear entry of NF-κB in HL-60 cells. Arch. Pharm. Res., 2011, 34(3), 469-475.
[http://dx.doi.org/10.1007/s12272-011-0316-8] [PMID: 21547680]
[737]
Peng, Z.G.; Luo, J.; Xia, L.H.; Chen, Y.; Song, S.J. [CML cell line K562 cell apoptosis induced by mangiferin]. J. Exp. Hematol, 2004, (12), 590-594.
[738]
Jung, J.S.; Jung, K.; Kim, D.H.; Kim, H.S. Selective inhibition of MMP-9 gene expression by mangiferin in PMA-stimulated human astroglioma cells: involvement of PI3K/Akt and MAPK signaling pathways. Pharmacol. Res., 2012, 66(1), 95-103.
[http://dx.doi.org/10.1016/j.phrs.2012.02.013] [PMID: 22465218]
[739]
Xiao, J.; Liu, L.; Zhong, Z.; Xiao, C.; Zhang, J. Mangiferin regulates proliferation and apoptosis in glioma cells by induction of microRNA-15b and inhibition of MMP-9 expression. Oncol. Rep., 2015, 33(6), 2815-2820.
[http://dx.doi.org/10.3892/or.2015.3919] [PMID: 25901555]
[740]
Dilshara, M.G.; Kang, C.H.; Choi, Y.H.; Kim, G.Y. Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity. BMB Rep., 2015, 48(10), 559-564.
[http://dx.doi.org/10.5483/BMBRep.2015.48.10.003] [PMID: 25739392]
[741]
Komal, K.; Singh, M.; Sharma, A.; Deshwal, V. Molecular mechanism of mangiferin-induced cytotoxicity in cervical carcinoma cells. Mol. Cancer Ther., 2009, 325(1-2), 107-119.
[742]
Núñez Selles, A.J.; Daglia, M.; Rastrelli, L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors, 2016, 42(5), 475-491.
[http://dx.doi.org/10.1002/biof.1299] [PMID: 27219221]
[743]
García-Rivera, D.; Delgado, R.; Bougarne, N.; Haegeman, G.; Berghe, W.V. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett., 2011, 305(1), 21-31.
[http://dx.doi.org/10.1016/j.canlet.2011.02.011] [PMID: 21420233]
[744]
Rajeshkumar, S.; Kumar, S.V.; Ramaiah, A.; Agarwal, H.; Lakshmi, T.; Roopan, S.M. Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb. Technol., 2018, 117, 91-95.
[http://dx.doi.org/10.1016/j.enzmictec.2018.06.009] [PMID: 30037558]
[745]
Tan, H.Y.; Wang, N.; Li, S.; Hong, M.; Guo, W.; Man, K.; Cheng, C.S.; Chen, Z.; Feng, Y. Repression of WT1-mediated LEF1 transcription by mangiferin governs β-catenin-independent Wnt signalling inactivation in hepatocellular carcinoma. Cell. Physiol. Biochem., 2018, 47(5), 1819-1834.
[http://dx.doi.org/10.1159/000491063] [PMID: 29953980]
[746]
Bai, X.; Lai, T.; Zhou, T.; Li, Y.; Li, X.; Zhang, H. In vitro antioxidant activities of phenols and oleanolic acid from mango peel and their cytotoxic effect on A549 cell line. Molecules, 2018, 23(6), 1395.
[http://dx.doi.org/10.3390/molecules23061395] [PMID: 29890672]
[747]
Vimalraj, S.; Ashokkumar, T.; Saravanan, S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed. Pharmacother., 2018, 105, 440-448.
[http://dx.doi.org/10.1016/j.biopha.2018.05.151] [PMID: 29879628]
[748]
Deng, Q.; Tian, Y.X.; Liang, J. Mangiferin inhibits cell migration and invasion through Rac1/WAVE2 signalling in breast cancer. Cytotechnology, 2018, 70(2), 593-601.
[http://dx.doi.org/10.1007/s10616-017-0140-1] [PMID: 29455393]
[749]
Velderrain-Rodríguez, G.R.; Torres-Moreno, H.; Villegas-Ochoa, M.A.; Ayala-Zavala, J.F.; Robles-Zepeda, R.E.; Wall-Medrano, A.; González-Aguilar, G.A. Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘Ataulfo’ mango peel on LS180 cells. Molecules, 2018, 23(3), 695.
[http://dx.doi.org/10.3390/molecules23030695] [PMID: 29562699]
[750]
Behera, A.K.; Swamy, M.M.; Natesh, N.; Kundu, T.K. Garcinol and its role in chronic diseases. Adv. Exp. Med. Biol, 2016, 928, 435-452.
[http://dx.doi.org/10.1007/978-3-319-41334-1_18] [PMID: 27671827]
[751]
Saadat, N.; Gupta, S.V. Potential role of garcinol as an anticancer agent. J. Oncol., 2012, 2012 647206
[http://dx.doi.org/10.1155/2012/647206] [PMID: 22745638]
[752]
Farhan, M.; Malik, A.; Ullah, M.F.; Afaq, S.; Faisal, M.; Farooqi, A.A.; Biersack, B.; Schobert, R.; Ahmad, A. Garcinol sensitizes NSCLC cells to standard therapies by regulating EMT-modulating miRNAs. Int. J. Mol. Sci., 2019, 20(4) E800
[http://dx.doi.org/10.3390/ijms20040800] [PMID: 30781783]
[753]
Kim, S.; Seo, S.U.; Min, K.J.; Woo, S.M.; Nam, J.O.; Kubatka, P.; Kim, S.; Park, J.W.; Kwon, T.K. Garcinol enhances TRAIL-induced apoptotic cell death through Up-regulation of DR5 and down-regulation of c-FLIP expression. Molecules, 2018, 23(7) E1614
[http://dx.doi.org/10.3390/molecules23071614] [PMID: 30004456]
[754]
Duan, Y.T.; Yang, X.A.; Fang, L.Y.; Wang, J.H.; Liu, Q. Anti-proliferative and anti-invasive effects of garcinol from Garcinia indica on gallbladder carcinoma cells. Pharmazie, 2018, 73(7), 413-417.
[PMID: 30001777]
[755]
Huang, W.C.; Kuo, K.T.; Adebayo, B.O.; Wang, C.H.; Chen, Y.J.; Jin, K.; Tsai, T.H.; Yeh, C.T. Garcinol inhibits cancer stem cell-like phenotype via suppression of the Wnt/β-catenin/STAT3 axis signalling pathway in human non-small cell lung carcinomas. J. Nutr. Biochem., 2018, 54, 140-150.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.008] [PMID: 29414668]
[756]
Liu, H.; Lee, P.; Bamodu, O.; Su, Y.; Fong, I.; Yeh, C.; Chien, M.H.; Kan, I.H.; Lin, C.M. Enhanced Hsa-miR-181d/p-STAT3 and Hsa-miR-181d/p-STAT5A ratios mediate the anticancer effect of garcinol in STAT3/5A-addicted glioblastoma. Cancers, 2019, 11(12), 1888.
[757]
Zhou, X.Y.; Cao, J.; Han, C.M.; Li, S.W.; Zhang, C.; Du, Y.D.; Zhou, Q.Q.; Zhang, X.Y.; Chen, X. The C8 side chain is one of the key functional group of Garcinol for its anti-cancer effects. Bioorg. Chem., 2017, 71, 74-80.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.013] [PMID: 28169002]
[758]
Aggarwal, S.; Das, S.N. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer. Tumour Biol., 2016, 37(6), 7175-7184.
[http://dx.doi.org/10.1007/s13277-015-4583-8] [PMID: 26662963]
[759]
Wang, Y.; Tsai, M.L.; Chiou, L.Y.; Ho, C.T.; Pan, M.H. Antitumor activity of Garcinol in human prostate cancer cells and xenograft mice. J. Agric. Food Chem., 2015, 63(41), 9047-9052.
[http://dx.doi.org/10.1021/acs.jafc.5b03851] [PMID: 26442822]
[760]
Ye, X.; Yuan, L.; Zhang, L.; Zhao, J.; Zhang, C.M.; Deng, H.Y. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol. Asian Pac. J. Cancer Prev., 2014, 15(12), 5001-5007.
[http://dx.doi.org/10.7314/APJCP.2014.15.12.5001] [PMID: 24998578]
[761]
Yu, S.Y.; Liao, C.H.; Chien, M.H.; Tsai, T.Y.; Lin, J.K.; Weng, M.S. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer. J. Agric. Food Chem., 2014, 62(9), 2085-2095.
[http://dx.doi.org/10.1021/jf4037722] [PMID: 24533688]
[762]
Li, F.; Shanmugam, M.K.; Chen, L.; Chatterjee, S.; Basha, J.; Kumar, A.P.; Kundu, T.K.; Sethi, G. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev. Res. (Phila.), 2013, 6(8), 843-854.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0070] [PMID: 23803415]
[763]
Tsai, M.L.; Chiou, Y.S.; Chiou, L.Y.; Ho, C.T.; Pan, M.H. Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Mol. Nutr. Food Res., 2014, 58(9), 1820-1829.
[http://dx.doi.org/10.1002/mnfr.201400149] [PMID: 24981158]
[764]
Liu, C.; Ho, P.C.; Wong, F.C.; Sethi, G.; Wang, L.Z.; Goh, B.C. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett., 2015, 362(1), 8-14.
[http://dx.doi.org/10.1016/j.canlet.2015.03.019] [PMID: 25796441]
[765]
Ahmad, A.; Sarkar, S.H.; Aboukameel, A.; Ali, S.; Biersack, B.; Seibt, S.; Li, Y.; Bao, B.; Kong, D.; Banerjee, S.; Schobert, R.; Padhye, S.B.; Sarkar, F.H. Anticancer action of garcinol in vitro and in vivo is in part mediated through inhibition of STAT-3 signaling. Carcinogenesis, 2012, 33(12), 2450-2456.
[http://dx.doi.org/10.1093/carcin/bgs290] [PMID: 22971573]
[766]
Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of apigenin from apiin-rich parsley in humans. Ann. Nutr. Metab., 2006, 50(3), 167-172.
[http://dx.doi.org/10.1159/000090736] [PMID: 16407641]
[767]
Schröder, L.; Koch, J.; Mahner, S.; Kost, B.P.; Hofmann, S.; Jeschke, U.; Haumann, J.; Schmedt, J.; Richter, D.U. The effects of Petroselinum crispum on estrogen receptor-positive benign and malignant mammary cells (MCF12A/MCF7). Anticancer Res., 2017, 37(1), 95-102.
[http://dx.doi.org/10.21873/anticanres.11294] [PMID: 28011479]
[768]
Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2). Asian Pac. J. Cancer Prev., 2014, 15(16), 6633-6638.
[http://dx.doi.org/10.7314/APJCP.2014.15.16.6633] [PMID: 25169500]
[769]
Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells. Asian Pac. J. Cancer Prev., 2013, 14(10), 5719-5723.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5719] [PMID: 24289568]
[770]
Tang, E.L.; Rajarajeswaran, J.; Fung, S.; Kanthimathi, M.S. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J. Sci. Food Agric., 2015, 95(13), 2763-2771.
[http://dx.doi.org/10.1002/jsfa.7078] [PMID: 25582089]
[771]
Danciu, C.; Zupko, I.; Bor, A.; Schwiebs, A.; Radeke, H.; Hancianu, M.; Cioanca, O.; Alexa, E.; Oprean, C.; Bojin, F.; Soica, C.; Paunescu, V.; Dehelean, C.A. Botanical therapeutics: Phytochemical screening and biological assessment of chamomile, parsley and celery extracts against A375 human melanoma and dendritic cells. Int. J. Mol. Sci., 2018, 19(11), 3624.
[http://dx.doi.org/10.3390/ijms19113624] [PMID: 30453564]
[772]
Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci., 2015, 457, 329-338.
[http://dx.doi.org/10.1016/j.jcis.2015.07.012] [PMID: 26196716]
[773]
Zou, X.; Liu, S.L.; Zhou, J.Y.; Wu, J.; Ling, B.F.; Wang, R.P. Beta-asarone induces LoVo colon cancer cell apoptosis by up-regulation of caspases through a mitochondrial pathway in vitro and in vivo. Asian Pac. J. Cancer Prev., 2012, 13(10), 5291-5298.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5291] [PMID: 23244151]
[774]
Nakkala, J.R.; Mata, R.; Raja, K.; Khub Chandra, V.; Sadras, S.R. Green synthesized silver nanoparticles: Catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater. Sci. Eng. C, 2018, 91, 372-381.
[http://dx.doi.org/10.1016/j.msec.2018.05.048] [PMID: 30033267]
[775]
Chourasiya, S.S.; Sreedhar, E.; Babu, K.S.; Shankaraiah, N.; Nayak, V.L.; Ramakrishna, S.; Sravani, S.; Basaveswara Rao, M.V. Isolation, synthesis and biological evaluation of phenylpropanoids from the rhizomes of Alpania galanga. Nat. Prod. Commun., 2013, 8(12), 1741-1746.
[http://dx.doi.org/10.1177/1934578X1300801222] [PMID: 24555288]
[776]
Chudiwal, A.K.; Jain, D.P.; Somani, R.S. Alpinia galanga Willd-An overview on phyto-pharmacological properties. Indian J. Nat. Prod. Resour., 2010, 1, 143-149.
[777]
Awang, K.; Azmi, M.N.; Aun, L.I.; Aziz, A.N.; Ibrahim, H.; Nagoor, N.H. The apoptotic effect of 1‘s-1’-acetoxychavicol acetate from Alpinia conchigera on human cancer cells. Molecules, 2010, 15(11), 8048-8059.
[http://dx.doi.org/10.3390/molecules15118048] [PMID: 21063268]
[778]
Zeng, Q.H.; Lu, C.L.; Zhang, X.W.; Jiang, J.G. Isolation and identification of ingredients inducing cancer cell death from the seeds of Alpinia galanga, a Chinese spice. Food Funct., 2015, 6(2), 431-443.
[http://dx.doi.org/10.1039/C4FO00709C] [PMID: 25464007]
[779]
Song, W.; Yan, C.Y.; Zhou, Q.Q.; Zhen, L.L. Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK. Biomed. Pharmacother., 2017, 89, 845-856.
[http://dx.doi.org/10.1016/j.biopha.2017.01.062] [PMID: 28282786]
[780]
Yu, S.; Gong, L.S.; Li, N.F.; Pan, Y.F.; Zhang, L. Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomed. Pharmacother., 2018, 97, 213-224.
[http://dx.doi.org/10.1016/j.biopha.2017.10.059] [PMID: 29091869]
[781]
Reid, K.; Wright, V.; Omoregie, S. Anticancer properties of Alpinia officinarum (lesser galangal) – a mini review. Int. J. Adv. Res. (Indore), 2016, 4(5), 300-306.
[http://dx.doi.org/10.21474/IJAR01/380]
[782]
Basri, A.M.; Taha, H.; Ahmad, N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacogn. Rev., 2017, 11(21), 43-56.
[http://dx.doi.org/10.4103/phrev.phrev_55_16] [PMID: 28503054]
[783]
Pillai, M.K.; Young, D.J.; Bin Hj Abdul Majid, H.M.; Abdul-Majid, H.M. Therapeutic potential of Alpinia officinarum. Mini Rev. Med. Chem., 2018, 18(14), 1220-1232.
[http://dx.doi.org/10.2174/1389557517666171002154123] [PMID: 28969549]
[784]
Turk, S.; Malkan, U.Y.; Ghasemi, M.; Hocaoglu, H.; Mutlu, D.; Gunes, G.; Aksu, S.; Haznedaroglu, I.C. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines. SAGE Open Med., 2017, 52050312116689519
[http://dx.doi.org/10.1177/2050312116689519] [PMID: 28293423]
[785]
Omoregie, S.N.; Omoruyi, F.O.; Wright, V.F.; Jones, L.; Zimba, P.V. Antiproliferative activities of lesser galangal (Alpinia officinarum Hance Jam1), turmeric (Curcuma longa L.), and ginger (Zingiber officinale Rosc.) against acute monocytic leukemia. J. Med. Food, 2013, 16(7), 647-655.
[http://dx.doi.org/10.1089/jmf.2012.0254] [PMID: 23819642]
[786]
Ghil, S. Antiproliferative activity of Alpinia officinarum extract in the human breast cancer cell line MCF-7. Mol. Med. Rep., 2013, 7(4), 1288-1292.
[http://dx.doi.org/10.3892/mmr.2013.1305] [PMID: 23404367]
[787]
Tabata, K.; Yamazaki, Y.; Okada, M.; Fukumura, K.; Shimada, A.; Sun, Y.; Yasukawa, K.; Suzuki, T. Diarylheptanoids derived from Alpinia officinarum induce apoptosis, S-phase arrest and differentiation in human neuroblastoma cells. Anticancer Res., 2009, 29(12), 4981-4988.
[PMID: 20044605]
[788]
An, N.; Zou, Z.M.; Tian, Z.; Luo, X.Z.; Yang, S.L.; Xu, L.Z. Diarylheptanoids from the rhizomes of Alpinia officinarum and their anticancer activity. Fitoterapia, 2008, 79(1), 27-31.
[http://dx.doi.org/10.1016/j.fitote.2007.07.001] [PMID: 17916414]
[789]
Wang, H.X.; Tang, C. Galangin suppresses human laryngeal carcinoma via modulation of caspase-3 and AKT signaling pathways. Oncol. Rep., 2017, 38(2), 703-714.
[http://dx.doi.org/10.3892/or.2017.5767] [PMID: 28677816]
[790]
Chien, S.T.; Shi, M.D.; Lee, Y.C.; Te, C.C.; Shih, Y.W. Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int., 2015, 15, 15.
[http://dx.doi.org/10.1186/s12935-015-0168-2] [PMID: 25698902]
[791]
Cao, J.; Wang, H.; Chen, F.; Fang, J.; Xu, A.; Xi, W.; Zhang, S.; Wu, G.; Wang, Z. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Mol. Med. Rep., 2016, 13(5), 4238-4244.
[http://dx.doi.org/10.3892/mmr.2016.5042] [PMID: 27035542]
[792]
Ren, K.; Zhang, W.; Wu, G.; Ren, J.; Lu, H.; Li, Z.; Han, X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother., 2016, 84, 1748-1759.
[http://dx.doi.org/10.1016/j.biopha.2016.10.111] [PMID: 27876206]
[793]
Zou, W.; Xu, S Galangin inhibits the cell progression and induces cell apoptosis through activating PTEN and Caspase-3 pathways in retinoblastoma. Biomed. Pharmacother., 2018, 97, 851-863.
[794]
Abass, S.A.; Abdel-Hamid, N.M.; Abouzed, T.K.; El-Shishtawy, M.M. Chemosensitizing effect of Alpinia officinarum rhizome extract in cisplatin-treated rats with hepatocellular carcinoma. Biomed. Pharmacother., 2018, 101, 710-718.
[http://dx.doi.org/10.1016/j.biopha.2018.02.128] [PMID: 29524879]
[795]
Li, N.; Zhang, Q.; Jia, Z.; Yang, X.; Zhang, H.; Luo, H. Volatile oil from alpinia officinarum promotes lung cancer regression in vitro and in vivo. Food Funct., 2018, 9(9), 4998-5006.
[http://dx.doi.org/10.1039/C8FO01151F] [PMID: 30187896]
[796]
Köken, T.; Koca, B.; Özkurt, M.; Erkasap, N.; Kuş, G.; Karalar, M. Apium graveolens extract inhibits cell proliferation and expression of vascular endothelial growth factor and induces apoptosis in the human prostatic carcinoma cell line LNCaP. J. Med. Food, 2016, 19(12), 1166-1171.
[http://dx.doi.org/10.1089/jmf.2016.0061] [PMID: 27982754]
[797]
Gao, L.L.; Feng, L.; Yao, S.T.; Jiao, P.; Qin, S.C.; Zhang, W.; Zhang, Y.B.; Li, F.R. Molecular mechanisms of celery seed extract induced apoptosis via s phase cell cycle arrest in the BGC-823 human stomach cancer cell line. Asian Pac. J. Cancer Prev., 2011, 12(10), 2601-2606.
[PMID: 22320960]
[798]
Peng, Y.; Hu, Y.; Xu, S.; Li, P.; Li, J.; Lu, L.; Yang, H.; Feng, N.; Wang, L.; Wang, X. L-3-n-butylphthalide reduces tau phosphorylation and improves cognitive deficits in AβPP/PS1-Alzheimer’s transgenic mice. J. Alzheimers Dis., 2012, 29(2), 379-391.
[http://dx.doi.org/10.3233/JAD-2011-111577] [PMID: 22233765]
[799]
Zheng, G.Q.; Kenney, P.M.; Zhang, J.; Lam, L.K. Chemoprevention of benzo[a]pyrene-induced forestomach cancer in mice by natural phthalides from celery seed oil. Nutr. Cancer, 1993, 19(1), 77-86.
[http://dx.doi.org/10.1080/01635589309514238] [PMID: 8446516]
[800]
Yang, M.; Dang, R.; Xu, P.; Guo, Y.; Han, W.; Liao, D.; Jiang, P. Dl-3-n-Butylphthalide improves lipopolysaccharide-induced depressive-like behavior in rats: involvement of Nrf2 and NF-κB pathways. Psychopharmacology (Berl.), 2018, 235(9), 2573-2585.
[http://dx.doi.org/10.1007/s00213-018-4949-x] [PMID: 29943092]
[801]
Ajazuddin; Alexander, A.; Qureshi, A.; Kumari, L.; Vaishnav, P.; Sharma, M.; Saraf, S.; Saraf, S. Role of herbal bioactives as a potential bioavailability enhancer for active pharmaceutical ingredients. Fitoterapia, 2014, 97, 1-14.
[http://dx.doi.org/10.1016/j.fitote.2014.05.005] [PMID: 24862064]
[802]
Aydın, E.; Türkez, H.; Keleş, M.S. Potential anticancer activity of carvone in N2a neuroblastoma cell line. Toxicol. Ind. Health, 2015, 31(8), 764-772.
[http://dx.doi.org/10.1177/0748233713484660] [PMID: 23552268]
[803]
Sutton, K.M.; Greenshields, A.L.; Hoskin, D.W. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutr. Cancer, 2014, 66(3), 408-418.
[http://dx.doi.org/10.1080/01635581.2013.878739] [PMID: 24579801]
[804]
Allameh, A.; Dadkhah, A.; Rahbarizadeh, F.; Ashrafi-Helan, J.; Fatemi, F. Effect of dietary caraway essential oils on expression of β-catenin during 1,2-dimethylhydrazine-induced colonic carcinogenesis. J. Nat. Med., 2013, 67(4), 690-697.
[http://dx.doi.org/10.1007/s11418-012-0650-2] [PMID: 22418855]
[805]
Kamaleeswari, M.; Nalini, N. Dose-response efficacy of caraway (Carum carvi L.) on tissue lipid peroxidation and antioxidant profile in rat colon carcinogenesis. J. Pharm. Pharmacol., 2006, 58(8), 1121-1130.
[http://dx.doi.org/10.1211/jpp.58.8.0014] [PMID: 16872560]
[806]
Mohammed, F.A.; Elkady, A.I.; Syed, F.Q.; Mirza, M.B.; Hakeem, K.R.; Alkarim, S. Anethum graveolens (dill) - A medicinal herb induces apoptosis and cell cycle arrest in HepG2 cell line. J. Ethnopharmacol., 2018, 219, 15-22.
[http://dx.doi.org/10.1016/j.jep.2018.03.008] [PMID: 29530611]
[807]
Zheng, G.Q.; Kenney, P.M.; Lam, L.K. Anethofuran, carvone, and limonene: potential cancer chemopreventive agents from dill weed oil and caraway oil. Planta Med., 1992, 58(4), 338-341.
[http://dx.doi.org/10.1055/s-2006-961480] [PMID: 1438594]
[808]
Bailer, J.; Aichinger, T.; Hackl, G.; de Hueber, K.; Dachler, M. Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind. Crops Prod., 2001, 14(3), 229-239.
[http://dx.doi.org/10.1016/S0926-6690(01)00088-7]
[809]
Dhalwal, K.; Shinde, V.M.; Mahadik, K.R. Efficient and sensitive method for quantitative determination and validation of umbelliferone, carvone and myristicin in Anethum graveolens and Carum carvi seed. Chromatographia, 2008, 67(1-2), 163-167.
[http://dx.doi.org/10.1365/s10337-007-0473-6]
[810]
Semenov, V.V.; Tsyganov, D.V.; Semenova, M.N.; Chuprov-Netochin, R.N.; Raihstat, M.M.; Konyushkin, L.D.; Volynchuk, P.B.; Marusich, E.I.; Nazarenko, V.V.; Leonov, S.V.; Kiselyov, A.S. Efficient synthesis of glaziovianin A isoflavone series from dill and parsley extracts and their in vitro/in vivo antimitotic activity. J. Nat. Prod., 2016, 79(5), 1429-1438.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00173] [PMID: 27100701]
[811]
Tsyganov, D.V.; Konyushkin, L.D.; Karmanova, I.B.; Firgang, S.I.; Strelenko, Y.A.; Semenova, M.N.; Kiselyov, A.S.; Semenov, V.V. cis-Restricted 3-aminopyrazole analogues of combretastatins: synthesis from plant polyalkoxybenzenes and biological evaluation in the cytotoxicity and phenotypic sea urchin embryo assays. J. Nat. Prod., 2013, 76(8), 1485-1491.
[http://dx.doi.org/10.1021/np400310m] [PMID: 23924236]
[812]
Taddeo, V.A.; Epifano, F.; Preziuso, F.; Fiorito, S.; Caron, N.; Rives, A.; de Medina, P.; Poirot, M.; Silvente-Poirot, S.; Genovese, S. HPLC analysis and skin whitening effects of umbelliprenin-containing extracts of Anethum Graveolens, Pimpinella Anisum, and Ferulago Campestris. Molecules, 2019, 24(3), 501.
[http://dx.doi.org/10.3390/molecules24030501] [PMID: 30704124]
[813]
Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M.Ι.; Galanis, A.; Kourkoutas, Y.; Chlichlia, K.; Pappa, A. Phytochemical profile and evaluation of the biological activities of essential oils derived from the Greek aromatic plant species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules, 2016, 21(8) E1069
[http://dx.doi.org/10.3390/molecules21081069] [PMID: 27537869]
[814]
Ma, G.; Tabanca, N.; Husnu Can Baser, K.; Kirimer, N.; Pasco, D.S.; Khan, I.A.; Khan, S.I. Inhibition of NF-kappaB-mediated transcription and induction of apoptosis in human breast cancer cells by epoxypseudoisoeugenol-2-methyl butyrate. Cancer Chemother. Pharmacol., 2009, 63(4), 673-680.
[http://dx.doi.org/10.1007/s00280-008-0784-9] [PMID: 18597088]
[815]
Jamshidzadeh, A.; Heidari, R.; Razmjou, M.; Karimi, F.; Moein, M.R.; Farshad, O.; Akbarizadeh, A.R.; Shayesteh, M.R.H. An in vivo and in vitro investigation on hepatoprotective effects of Pimpinella anisum seed essential oil and extracts against carbon tetrachloride-induced toxicity. Iran. J. Basic Med. Sci., 2015, 18(2), 205-211.
[PMID: 25825639]
[816]
Srinual, S.; Chanvorachote, P.; Pongrakhananon, V. Suppression of cancer stem-like phenotypes in NCI-H460 lung cancer cells by vanillin through an Akt-dependent pathway. Int. J. Oncol., 2017, 50(4), 1341-1351.
[http://dx.doi.org/10.3892/ijo.2017.3879] [PMID: 28259926]
[817]
Murakami, A.; Ohigashi, H.; Koshimizu, K. Possible anti-tumour promoting properties of traditional Thai food items and some of their active constituents. Asia Pac. J. Clin. Nutr., 1994, 3(4), 185-191.
[PMID: 24351329]
[818]
Thangam, R.; Suresh, V.; Kannan, S. Optimized extraction of polysaccharides from Cymbopogon citratus and its biological activities. Int. J. Biol. Macromol., 2014, 65, 415-423.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.033] [PMID: 24508090]
[819]
Bao, X.L.; Yuan, H.H.; Wang, C.Z.; Fan, W.; Lan, M.B. Polysaccharides from Cymbopogon citratus with antitumor and immunomodulatory activity. Pharm. Biol., 2015, 53(1), 117-124.
[http://dx.doi.org/10.3109/13880209.2014.911921] [PMID: 25255928]
[820]
Thangam, R.; Sathuvan, M.; Poongodi, A.; Suresh, V.; Pazhanichamy, K.; Sivasubramanian, S.; Kanipandian, N.; Ganesan, N.; Rengasamy, R.; Thirumurugan, R.; Kannan, S. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr. Polym., 2014, 107, 138-150.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.039] [PMID: 24702929]
[821]
Halabi, M.F.; Sheikh, B.Y. Anti-proliferative effect and phytochemical analysis of Cymbopogon citratus extract. BioMed Res. Int., 2014, 2014906239
[http://dx.doi.org/10.1155/2014/906239] [PMID: 24791006]
[822]
Bidinotto, L.T.; Costa, C.A.; Costa, M.; Rodrigues, M.A.; Barbisan, L.F. Modifying effects of lemongrass essential oil on specific tissue response to the carcinogen N-methyl-N-nitrosurea in female BALB/c mice. J. Med. Food, 2012, 15(2), 161-168.
[http://dx.doi.org/10.1089/jmf.2010.0278] [PMID: 22082069]
[823]
Bidinotto, L.T.; Costa, C.A.; Salvadori, D.M.; Costa, M.; Rodrigues, M.A.; Barbisan, L.F. Protective effects of lemongrass (Cymbopogon citratus STAPF) essential oil on DNA damage and carcinogenesis in female Balb/C mice. J. Appl. Toxicol., 2011, 31(6), 536-544.
[http://dx.doi.org/10.1002/jat.1593] [PMID: 21089157]
[824]
Puatanachokchai, R.; Kishida, H.; Denda, A.; Murata, N.; Konishi, Y.; Vinitketkumnuen, U.; Nakae, D. Inhibitory effects of lemon grass (Cymbopogon citratus, Stapf) extract on the early phase of hepatocarcinogenesis after initiation with diethylnitrosamine in male Fischer 344 rats. Cancer Lett., 2002, 183(1), 9-15.
[825]
Philion, C.; Ma, D.; Ruvinov, I.; Mansour, F.; Pignanelli, C.; Noel, M.; Saleem, A.; Arnason, J.; Rodrigues, M.; Singh, I.; Ropat, J.; Pandey, S. Cymbopogon citratus and Camellia sinensis extracts selectively induce apoptosis in cancer cells and reduce growth of lymphoma xenografts in vivo. Oncotarget, 2017, 8(67), 110756-110773.
[http://dx.doi.org/10.18632/oncotarget.22502] [PMID: 29340014]
[826]
Bayala, B.; Bassole, I.H.N.; Maqdasy, S.; Baron, S.; Simpore, J.; Lobaccaro, J.A. Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. Biochimie, 2018, 153, 162-170.
[http://dx.doi.org/10.1016/j.biochi.2018.02.013] [PMID: 29501481]
[827]
Mediesse, F.; Boudjeko, T.; Hasitha, A.; Gangadhar, M.; Mbacham, W.; Yogeeswari, P. Inhibition of lipopolysaccharide (LPS)-induced neuroinflammatory response by polysaccharide fractions of Khaya grandifoliola (C.D.C.) stem bark, Cryptolepis sanguinolenta (Lindl.) Schltr and Cymbopogon citratus Stapf leaves in raw 264.7 macrophages and U87 glioblastoma cells. BMC Complement. Altern. Med., 2018, 18(1), 86.
[828]
Ku, K.M.; Jeffery, E.H.; Juvik, J.A.; Kushad, M.M. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots. J. Agric. Food Chem., 2015, 63(11), 2947-2955.
[http://dx.doi.org/10.1021/jf505591z] [PMID: 25684599]
[829]
Dekić, M.S.; Radulović, N.S.; Stojanović, N.M.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Najman, S.; Stojanović, S. Spasmolytic, antimicrobial and cytotoxic activities of 5-phenylpentyl isothiocyanate, a new glucosinolate autolysis product from horseradish (Armoracia rusticana P. Gaertn., B. Mey. & Scherb., Brassicaceae). Food Chem., 2017, 232, 329-339.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.150] [PMID: 28490082]
[830]
Weil, M.J.; Zhang, Y.; Nair, M.G. Tumor cell proliferation and cyclooxygenase inhibitory constituents in horseradish (Armoracia rusticana) and Wasabi (Wasabia japonica). J. Agric. Food Chem., 2005, 53(5), 1440-1444.
[http://dx.doi.org/10.1021/jf048264i] [PMID: 15740020]
[831]
Matthes, T.; Schmidt, K. Carcinolytic effect of Cochlearia armoracia in Ehrlich’s ascites cancer in mouse, in Jensen sarcoma in rat and in cancer of the skin in humans. Arztl. Forsch, 1955, 9(8), I-, 358-363.
[PMID: 13258396]
[832]
Cho, Y.M.; Hasumura, M.; Imai, T.; Takami, S.; Nishikawa, A.; Ogawa, K. Horseradish extract promotes urinary bladder carcinogenesis when administered to F344 rats in drinking water. J. Appl. Toxicol., 2017, 37(7), 853-862.
[http://dx.doi.org/10.1002/jat.3434] [PMID: 28165151]
[833]
Popović, M.; Maravić, A.; Čikeš Čulić, V.; Đulović, A.; Burčul, F.; Blažević, I. Biological effects of glucosinolate degradation products from Horseradish: A Horse that Wins the Race. Biomolecules, 2020, 10(2) E343
[834]
Downs, B.W.; Bagchi, M.; Subbaraju, G.V.; Shara, M.A.; Preuss, H.G.; Bagchi, D. Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid. Mutat. Res., 2005, 579(1-2), 149-162.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.02.021] [PMID: 16055158]
[835]
Joyal, S.V. A perspective on the current strategies for the treatment of obesity. Curr. Drug Targets CNS Neurol. Disord., 2004, 3(5), 341-356.
[http://dx.doi.org/10.2174/1568007043336978] [PMID: 15544444]
[836]
Mazzio, E.A.; Soliman, K.F. In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother. Res., 2009, 23(3), 385-398.
[http://dx.doi.org/10.1002/ptr.2636] [PMID: 18844256]
[837]
Wang, J.; Wang, L.; Ho, C.T.; Zhang, K.; Liu, Q.; Zhao, H. Garcinol from Garcinia indica downregulates cancer stem-like cell biomarker ALDH1A1 in nonsmall cell lung cancer A549 cells through DDIT3 activation. J. Agric. Food Chem., 2017, 65(18), 3675-3683.
[http://dx.doi.org/10.1021/acs.jafc.7b00346] [PMID: 28420235]
[838]
Tu, S.H.; Chiou, Y.S.; Kalyanam, N.; Ho, C.T.; Chen, L.C.; Pan, M.H. Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct., 2017, 8(3), 1067-1079.
[http://dx.doi.org/10.1039/C6FO01588C] [PMID: 28145547]
[839]
Ranjbarnejad, T.; Saidijam, M.; Tafakh, M.S.; Pourjafar, M.; Talebzadeh, F.; Najafi, R. Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Hum. Exp. Toxicol., 2017, 36(7), 692-700.
[http://dx.doi.org/10.1177/0960327116660865] [PMID: 27481098]
[840]
Zhang, G.; Fu, J.; Su, Y.; Zhang, X. Opposite effects of garcinol on tumor energy metabolism in oral qquamous cell carcinoma cells. Nutr. Cancer, 2019, 71(8), 1403-1411.
[841]
Dong, H.T.; Cao, J.; Han, C.M.; Su, Y.; Zhang, X.Y.; Chen, X. Role of 8-allyl garcinol in the chemoprevention of oral squamous cell carcinoma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2019, 41(1), 1-10.
[842]
Pieme, C.A.; Ambassa, P.; Yankep, E.; Saxena, A.K. Epigarcinol and isogarcinol isolated from the root of Garcinia ovalifolia induce apoptosis of human promyelocytic leukemia (HL-60 cells). BMC Res. Notes, 2015, 8, 700.
[http://dx.doi.org/10.1186/s13104-015-1596-8] [PMID: 26592743]
[843]
Zhao, J.; Yang, T.; Ji, J.; Li, C.; Li, Z.; Li, L. Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin. Biomed. Pharmacother., 2018, 107, 957-966.
[844]
Huang, C.C.; Lin, C.M.; Huang, Y.J.; Wei, L.; Ting, L.L.; Kuo, C.C.; Hsu, C.; Chiou, J.F.; Wu, A.T.H.; Lee, W.H. Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells. Biotechnol. Appl. Biochem., 2017, 64(2), 165-173.
[http://dx.doi.org/10.1002/bab.1446] [PMID: 26400206]
[845]
Ahmad, A.; Li, Y.; Sarkar, F.H. The bounty of nature for changing the cancer landscape. Mol. Nutr. Food Res., 2016, 60(6), 1251-1263.
[http://dx.doi.org/10.1002/mnfr.201500867] [PMID: 26799714]
[846]
Han, C.M.; Zhou, X.Y.; Cao, J.; Zhang, X.Y.; Chen, X. 13,14-Dihydroxy groups are critical for the anti-cancer effects of garcinol. Bioorg. Chem., 2015, 60, 123-129.
[http://dx.doi.org/10.1016/j.bioorg.2015.04.010] [PMID: 26000492]
[847]
Schobert, R.; Biersack, B. Chemical and biological aspects of garcinol and isogarcinol: Recent developments. Chem. Biodivers., 2019, 16(9) e1900366
[848]
Shen, K.; Lu, F.; Xie, J.; Wu, M.; Cai, B.; Liu, Y.; Zhang, H.; Tan, H.; Pan, Y.; Xu, H. Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget, 2016, 7(31), 50596-50611.
[http://dx.doi.org/10.18632/oncotarget.10585] [PMID: 27418140]
[849]
Fathiazad, F.; Mazandarani, M.; Hamedeyazdan, S. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran. Adv. Pharm. Bull., 2011, 1(2), 63-67.
[PMID: 24312758]
[850]
Nile, S.H.; Nile, A.S.; Keum, Y.S. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech, 2017, 7(1), 76.
[851]
Höferl, M.; Stoilova, I.; Schmidt, E.; Wanner, J.; Jirovetz, L.; Trifonova, D.; Krastev, L.; Krastanov, A. Chemical composition and antioxidant properties of Juniper Berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants, 2014, 3(1), 81-98.
[http://dx.doi.org/10.3390/antiox3010081] [PMID: 26784665]
[852]
Vasilijević, B.; Knežević-Vukčević, J.; Mitić-Ćulafić, D.; Orčić, D.; Francišković, M.; Srdic-Rajic, T.; Jovanović, M.; Nikolić, B. Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem. Toxicol., 2018, 112, 118-125.
[http://dx.doi.org/10.1016/j.fct.2017.12.044] [PMID: 29287791]
[853]
Hajjar, D.; Kremb, S.; Sioud, S.; Emwas, A.H.; Voolstra, C.R.; Ravasi, T. Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS One, 2017, 12(6) e0177316
[http://dx.doi.org/10.1371/journal.pone.0177316] [PMID: 28609451]
[854]
Kuo, Z.K.; Lin, M.W.; Lu, I.H.; Yao, H.J.; Wu, H.C.; Wang, C.C.; Lin, S.H.; Wu, S.Y.; Tong, T.S.; Cheng, Y.C.; Yen, J.H.; Ko, C.H.; Chiou, S.J.; Pan, I.H.; Tseng, H.W. Antiangiogenic and antihepatocellular carcinoma activities of the Juniperus chinensis extract. BMC Complement. Altern. Med., 2016, 16, 277.
[http://dx.doi.org/10.1186/s12906-016-1250-6] [PMID: 27502492]
[855]
Lantto, T.A.; Laakso, I.; Dorman, H.J.; Mauriala, T.; Hiltunen, R.; Kõks, S.; Raasmaja, A. Cellular stress and p53-associated apoptosis by Juniperus communis L. Berry extract treatment in the human SH-SY5Y neuroblastoma cells. Int. J. Mol. Sci., 2016, 17(7) E1113
[http://dx.doi.org/10.3390/ijms17071113] [PMID: 27420050]
[856]
Pollio, A.; Zarrelli, A.; Romanucci, V.; Di Mauro, A.; Barra, F.; Pinto, G.; Crescenzi, E.; Roscetto, E.; Palumbo, G. Polyphenolic profile and targeted bioactivity of methanolic extracts from mediterranean ethnomedicinal plants on human cancer cell lines. Molecules, 2016, 21(4), 395.
[http://dx.doi.org/10.3390/molecules21040395] [PMID: 27023497]
[857]
Huyan, T.; Li, Q.; Wang, Y.L.; Li, J.; Zhang, J.Y.; Liu, Y.X.; Shahid, M.R.; Yang, H.; Li, H.Q. Anti-tumor effect of hot aqueous extracts from Sonchus oleraceus (L.) L. and Juniperus sabina L - Two traditional medicinal plants in China. J. Ethnopharmacol., 2016, 185, 289-299.
[http://dx.doi.org/10.1016/j.jep.2016.03.044] [PMID: 27001625]
[858]
Rafieian-Kopaei, M.; Suleimani Dehkordi, I.; Ghanadian, M.; Shokrollahi, A.; Aghaei, M.; Syed Majid, A.; Choudhary, M.I. Bioactivity-guided isolation of new antiproliferative compounds from Juniperus foetidissima Willd. Nat. Prod. Res., 2016, 30(17), 1927-1933.
[http://dx.doi.org/10.1080/14786419.2015.1101106] [PMID: 26506268]
[859]
Jin, S.; Yun, H.J.; Jeong, H.Y.; Oh, Y.N.; Park, H.J.; Yun, S.G.; Kim, B.W.; Kwon, H.J. Widdrol, a sesquiterpene isolated from Juniperus chinensis, inhibits angiogenesis by targeting vascular endothelial growth factor receptor 2 signaling. Oncol. Rep., 2015, 34(3), 1178-1184.
[http://dx.doi.org/10.3892/or.2015.4075] [PMID: 26133679]
[860]
Och, M.; Och, A.; Cieśla, Ł.; Kubrak, T.; Pecio, Ł.; Stochmal, A.; Kocki, J.; Bogucka-Kocka, A. Study of cytotoxic activity, podophyllotoxin, and deoxypodophyllotoxin content in selected Juniperus species cultivated in Poland. Pharm. Biol., 2015, 53(6), 831-837.
[http://dx.doi.org/10.3109/13880209.2014.943246] [PMID: 25720974]
[861]
Benzina, S.; Harquail, J.; Jean, S.; Beauregard, A.P.; Colquhoun, C.D.; Carroll, M.; Bos, A.; Gray, C.A.; Robichaud, G.A. Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer. Agents Med. Chem., 2015, 15(1), 79-88.
[http://dx.doi.org/10.2174/1871520614666140608150448] [PMID: 24913660]
[862]
Saab, A.M.; Guerrini, A.; Sacchetti, G.; Maietti, S.; Zeino, M.; Arend, J.; Gambari, R.; Bernardi, F.; Efferth, T. Phytochemical analysis and cytotoxicity towards multidrug-resistant leukemia cells of essential oils derived from Lebanese medicinal plants. Planta Med., 2012, 78(18), 1927-1931.
[http://dx.doi.org/10.1055/s-0032-1327896] [PMID: 23154840]
[863]
Kang, M.R.; Park, S.K.; Lee, C.W.; Cho, I.J.; Jo, Y.N.; Yang, J.W.; Kim, J.A.; Yun, J.; Lee, K.H.; Kwon, H.J.; Kim, B.W.; Lee, K.; Kang, J.S.; Kim, H.M. Widdrol induces apoptosis via activation of AMP-activated protein kinase in colon cancer cells. Oncol. Rep., 2012, 27(5), 1407-1412.
[PMID: 22266984]
[864]
Moujir, L.M.; Seca, A.M.; Araujo, L.; Silva, A.M.; Barreto, M.C. A new natural spiro heterocyclic compound and the cytotoxic activity of the secondary metabolites from Juniperus brevifolia leaves. Fitoterapia, 2011, 82(2), 225-229.
[http://dx.doi.org/10.1016/j.fitote.2010.10.001] [PMID: 20933587]
[865]
Shokrzadeh, M.; Azadbakht, M.; Ahangar, N.; Naderi, H.; Saeedi Saravi, S.S. Comparison of the cytotoxic effects of Juniperus sabina and Zataria multiflora extracts with Taxus baccata extract and Cisplatin on normal and cancer cell lines. Pharmacogn. Mag., 2010, 6(22), 102-105.
[http://dx.doi.org/10.4103/0973-1296.62894] [PMID: 20668574]
[866]
Muto, N.; Tomokuni, T.; Haramoto, M.; Tatemoto, H.; Nakanishi, T.; Inatomi, Y.; Murata, H.; Inada, A. Isolation of apoptosis- and differentiation-inducing substances toward human promyelocytic leukemia HL-60 cells from leaves of Juniperus taxifolia. Biosci. Biotechnol. Biochem., 2008, 72(2), 477-484.
[http://dx.doi.org/10.1271/bbb.70570] [PMID: 18256464]
[867]
Van Slambrouck, S.; Daniels, A.L.; Hooten, C.J.; Brock, S.L.; Jenkins, A.R.; Ogasawara, M.A.; Baker, J.M.; Adkins, G.; Elias, E.M.; Agustin, V.J.; Constantine, S.R.; Pullin, M.J.; Shors, S.T.; Kornienko, A.; Steelant, W.F. Effects of crude aqueous medicinal plant extracts on growth and invasion of breast cancer cells. Oncol. Rep., 2007, 17(6), 1487-1492.
[http://dx.doi.org/10.3892/or.17.6.1487] [PMID: 17487409]
[868]
Bayazit, V. Cytotoxic effects of some animal and vegetable extracts and some chemicals on liver and colon carcinoma and myosarcoma. Saudi Med. J., 2004, 25(2), 156-163.
[PMID: 14968209]
[869]
Wang, W.S.; Li, E.W.; Jia, Z.J. Terpenes from Juniperus przewalskii and their antitumor activities. Pharmazie, 2002, 57(5), 343-345.
[PMID: 12061261]
[870]
Yaman, T.; Uyar, A.; Kömüroğlu, A.U.; Keleş, Ö.F.; Yener, Z. Chemopreventive efficacy of juniper berry oil (Juniperus communis L.) on azoxymethane-induced colon carcinogenesis in rat. Nutr. Cancer, 2019, 16, 1-14.
[871]
Maurya, A.K.; Devi, R.; Kumar, A.; Koundal, R.; Thakur, S.; Sharma, A.; Kumar, D.; Kumar, R.; Padwad, Y.S.; Chand, G.; Singh, B.; Agnihotri, V.K. Chemical composition, cytotoxic and antibacterial activities of essential oils of cultivated clones of Juniperus communis and wild Juniperus species. Chem. Biodivers., 2018, 15(9) e1800183
[http://dx.doi.org/10.1002/cbdv.201800183] [PMID: 29956891]
[872]
Tsai, N.M.; Chang, K.F.; Wang, J.C. Juniperus Communis extract exerts antitumor effects in human glioblastomas through blood-brain barrier. Cell. Physiol. Biochem., 2018, 49(6), 2443-2462.
[http://dx.doi.org/10.1159/000493842] [PMID: 30261501]
[873]
Ben Mrid, R.; Bouchmaa, N.; Bouargalne, Y.; Ramdan, B.; Karrouchi, K.; Kabach, I.; El Karbane, M.; Idir, A.; Zyad, A.; Nhiri, M. Phytochemical characterization, antioxidant and in vitro cytotoxic activity evaluation of Juniperus oxycedrus Subsp. oxycedrus needles and berries. Molecules, 2019, 24(3), 502.
[http://dx.doi.org/10.3390/molecules24030502] [PMID: 30704127]
[874]
Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res., 2011, 31(1), 185-191.
[PMID: 21273597]
[875]
Lotfian Sargazi, M.; Saravani, R.; Shahraki, A. Hydroalcoholic extract of Levisticum officinale increases cGMP signaling pathway by down-regulating PDE5 expression and induction of apoptosis in MCF-7 and MDA-MB-468 breast cancer cell lines. Iran. Biomed. J., 2019, 23(4), 280-286.
[http://dx.doi.org/10.29252/ibj.23.4.280] [PMID: 30388886]
[876]
Marzouk, M.S.; Moharram, F.A.; Mohamed, M.A.; Gamal-Eldeen, A.M.; Aboutabl, E.A. Anticancer and antioxidant tannins from Pimenta dioica leaves. Z. Natforsch. C J. Biosci., 2007, 62(7-8), 526-536.
[http://dx.doi.org/10.1515/znc-2007-7-811] [PMID: 17913067]
[877]
Shamaladevi, N.; Lyn, D.A.; Shaaban, K.A.; Zhang, L.; Villate, S.; Rohr, J.; Lokeshwar, B.L. Ericifolin: a novel antitumor compound from allspice that silences androgen receptor in prostate cancer. Carcinogenesis, 2013, 34(8), 1822-1832.
[http://dx.doi.org/10.1093/carcin/bgt123] [PMID: 23568956]
[878]
Zhang, L.; Shamaladevi, N.; Jayaprakasha, G.K.; Patil, B.S.; Lokeshwar, B.L. Polyphenol-rich extract of Pimenta dioica berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice. Oncotarget, 2015, 6(18), 16379-16395.
[http://dx.doi.org/10.18632/oncotarget.3834] [PMID: 25945840]
[879]
Zhang, L.; Lokeshwar, B.L. Medicinal properties of the Jamaican pepper plant Pimenta dioica and Allspice. Curr. Drug Targets, 2012, 13(14), 1900-1906.
[http://dx.doi.org/10.2174/138945012804545641] [PMID: 23140298]
[880]
Doyle, B.J.; Lawal, T.O.; Locklear, T.D.; Hernandez, L.; Perez, A.L.; Patel, U.; Patel, S.; Mahady, G.B. Isolation and identification of three new chromones from the leaves of Pimenta dioica with cytotoxic, oestrogenic and anti-oestrogenic effects. Pharm. Biol., 2018, 56(1), 235-244.
[http://dx.doi.org/10.1080/13880209.2018.1448873] [PMID: 29564971]
[881]
González-Vallinas, M.; Reglero, G.; Ramírez de Molina, A. Rosemary (Rosmarinus officinalis L.) extract as a potential complementary agent in anticancer Therapy. Nutr. Cancer, 2015, 67(8), 1221-1229.
[http://dx.doi.org/10.1080/01635581.2015.1082110] [PMID: 26452641]
[882]
González-Vallinas, M.; Molina, S.; Vicente, G.; Sánchez-Martínez, R.; Vargas, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells. Electrophoresis, 2014, 35(11), 1719-1727.
[http://dx.doi.org/10.1002/elps.201400011] [PMID: 24615943]
[883]
Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine, 2012, 19(5), 436-443.
[http://dx.doi.org/10.1016/j.phymed.2011.12.012] [PMID: 22325591]
[884]
Moore, J.; Yousef, M.; Tsiani, E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients, 2016, 8(11) E731
[http://dx.doi.org/10.3390/nu8110731] [PMID: 27869665]
[885]
Cattaneo, L.; Cicconi, R.; Mignogna, G.; Giorgi, A.; Mattei, M.; Graziani, G.; Ferracane, R.; Grosso, A.; Aducci, P.; Schininà, M.E.; Marra, M. Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells. PLoS One, 2015, 10(7) e0132439
[http://dx.doi.org/10.1371/journal.pone.0132439] [PMID: 26176704]
[886]
González-Vallinas, M.; Molina, S.; Vicente, G.; Zarza, V.; Martín-Hernández, R.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. PLoS One, 2014, 9(6) e98556
[http://dx.doi.org/10.1371/journal.pone.0098556] [PMID: 24892299]
[887]
Cheung, S.; Tai, J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol. Rep., 2007, 17(6), 1525-1531.
[http://dx.doi.org/10.3892/or.17.6.1525] [PMID: 17487414]
[888]
Chun, K.S.; Kundu, J.; Chae, I.G.; Kundu, J.K. Carnosol: a phenolic diterpene with cancer chemopreventive potential. J. Cancer Prev., 2014, 19(2), 103-110.
[http://dx.doi.org/10.15430/JCP.2014.19.2.103] [PMID: 25337578]
[889]
Offord, E.A.; Macé, K.; Ruffieux, C.; Malnoë, A.; Pfeifer, A.M. Rosemary components inhibit benzo[a]pyrene-induced genotoxicity in human bronchial cells. Carcinogenesis, 1995, 16(9), 2057-2062.
[890]
Scheckel, K.A.; Degner, S.C.; Romagnolo, D.F. Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J. Nutr., 2008, 138(11), 2098-2105.
[http://dx.doi.org/10.3945/jn.108.090431] [PMID: 18936204]
[891]
Huang, M.T.; Ho, C.T.; Wang, Z.Y.; Ferraro, T.; Lou, Y.R.; Stauber, K.; Ma, W.; Georgiadis, C.; Laskin, J.D.; Conney, A.H. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res., 1994, 54(3), 701-708.
[PMID: 8306331]
[892]
Valdés, A.; García-Cañas, V.; Pérez-Sánchez, A.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Artemenko, K.A.; Micol, V.; Bergquist, J.; Cifuentes, A. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment. J. Chromatogr. A, 2017, 1499, 90-100.
[http://dx.doi.org/10.1016/j.chroma.2017.03.072] [PMID: 28389096]
[893]
Amar, Y.; Meddah, B.; Bonacorsi, I.; Costa, G.; Pezzino, G.; Saija, A.; Cristani, M.; Boussahel, S.; Ferlazzo, G.; Meddah, A.T. Phytochemicals, antioxidant and antiproliferative properties of Rosmarinus officinalis L on U937 and CaCo-2 cells. Iran. J. Pharm. Res., 2017, 16(1), 315-327.
[PMID: 28496485]
[894]
Karimi, N.; Rashedi, J.; Mahdavi Poor, B.; Arabi, S.; Ghorbani, M.; Tahmasebpour, N.; Asgharzadeh, M. Cytotoxic effect of rosemary extract on gastric adenocarcinoma (AGS) and esophageal squamous cell carcinoma (KYSE30) cell lines. Gastroenterol. Hepatol. Bed Bench, 2017, 10(2), 102-107.
[PMID: 28702133]
[895]
Jardak, M.; Elloumi-Mseddi, J.; Aifa, S.; Mnif, S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis., 2017, 16(1), 190.
[http://dx.doi.org/10.1186/s12944-017-0580-9] [PMID: 28969677]
[896]
Lo, Y.C.; Lin, Y.C.; Huang, Y.F.; Hsieh, C.P.; Wu, C.C.; Chang, I.L.; Chen, C.L.; Cheng, C.H.; Chen, H.Y. Carnosol-induced ROS inhibits cell viability of human osteosarcoma by apoptosis and autophagy. Am. J. Chin. Med., 2017, 45(8), 1761-1772.
[http://dx.doi.org/10.1142/S0192415X17500951] [PMID: 29121803]
[897]
Ozdemir, M.; Gokturk, D. The effect of Rosmarinus officinalis and chemotherapeutic etoposide on glioblastoma (u87 mg) cell culture; Turkish Neurosur, 2017.
[http://dx.doi.org/10.5137/1019-5149.JTN.20401-17.3]
[898]
Levine, C.B.; Bayle, J.; Biourge, V.; Wakshlag, J.J. Cellular effects of a turmeric root and rosemary leaf extract on canine neoplastic cell lines. BMC Vet. Res., 2017, 13(1), 388.
[http://dx.doi.org/10.1186/s12917-017-1302-2] [PMID: 29237458]
[899]
Lin, K.I.; Lin, C.C.; Kuo, S.M.; Lai, J.C.; Wang, Y.Q.; You, H.L.; Hsu, M.L.; Chen, C.H.; Shiu, L.Y. Carnosic acid impedes cell growth and enhances anticancer effects of carmustine and lomustine in melanoma. Biosci. Rep., 2018, 38(4) BSR20180005
[http://dx.doi.org/10.1042/BSR20180005] [PMID: 29789400]
[900]
Liu, D.; Wang, B.; Zhu, Y.; Yan, F.; Dong, W. Carnosic acid regulates cell proliferation and invasion in chronic myeloid leukemia cancer cells via suppressing microRNA-708. J. BUON, 2018, 23(3), 741-746.
[PMID: 30003745]
[901]
Acunha, T.; García-Cañas, V.; Valdés, A.; Cifuentes, A.; Simó, C. Metabolomics study of early metabolic changes in hepatic HepaRG cells in response to rosemary diterpenes exposure. Anal. Chim. Acta, 2018, 1037, 140-151.
[http://dx.doi.org/10.1016/j.aca.2017.12.006] [PMID: 30292288]
[902]
Jang, Y.G.; Hwang, K.A.; Choi, K.C. Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients, 2018, 10(11), 1784.
[http://dx.doi.org/10.3390/nu10111784] [PMID: 30453545]
[903]
Liu, W.; Wu, T.C.; Hong, D.M.; Hu, Y.; Fan, T.; Guo, W.J.; Xu, Q. Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells. Chin. J. Nat. Med., 2018, 16(12), 907-915.
[http://dx.doi.org/10.1016/S1875-5364(18)30132-8] [PMID: 30595215]
[904]
Pérez-Sánchez, A.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Agulló-Chazarra, L.; Herranz-López, M.; Valdés, A.; Cifuentes, A.; Micol, V. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci. Rep., 2019, 9(1), 808.
[http://dx.doi.org/10.1038/s41598-018-37173-7] [PMID: 30692565]
[905]
Maham, M.; Moslemzadeh, H.; Jalilzadeh-Amin, G. Antinociceptive effect of the essential oil of tarragon (Artemisia dracunculus). Pharm. Biol., 2014, 52(2), 208-212.
[http://dx.doi.org/10.3109/13880209.2013.824007] [PMID: 24074293]
[906]
Choi, E.; Kim, G. Effect of artemisia species on cellular proliferation and apoptosis in human breast cancer cells via estrogen receptor-related pathway. J. Tradit. Chin. Med., 2013, 33(5), 658-663.
[http://dx.doi.org/10.1016/S0254-6272(14)60038-8] [PMID: 24660592]
[907]
Hajdú, Z.; Hohmann, J.; Forgo, P.; Máthé, I.; Molnár, J.; Zupkó, I. Antiproliferative activity of Artemisia asiatica extract and its constituents on human tumor cell lines. Planta Med., 2014, 80(18), 1692-1697.
[http://dx.doi.org/10.1055/s-0034-1383146] [PMID: 25295671]
[908]
Choi, E.; Park, H.; Lee, J.; Kim, G. Anticancer, antiobesity, and anti-inflammatory activity of Artemisia species in vitro. J. Tradit. Chin. Med., 2013, 33(1), 92-97.
[http://dx.doi.org/10.1016/S0254-6272(13)60107-7] [PMID: 23596819]
[909]
Martins, A.; Mignon, R.; Bastos, M.; Batista, D.; Neng, N.R.; Nogueira, J.M.; Vizetto-Duarte, C.; Custódio, L.; Varela, J.; Rauter, A.P. In vitro antitumoral activity of compounds isolated from Artemisia gorgonum Webb. Phytother. Res., 2014, 28(9), 1329-1334.
[http://dx.doi.org/10.1002/ptr.5133] [PMID: 24633846]
[910]
Hong, L.; Ying, S.H. Ethanol extract and isolated constituents from artemisia dracunculus inhibit esophageal squamous cell carcinoma and induce apoptotic cell death. Drug Res. (Stuttg.), 2015, 62(2), 101-106.
[911]
Tsui, K.H.; Chang, Y.L.; Feng, T.H.; Hou, C.P.; Lin, Y.H.; Yang, P.S.; Lee, B.W.; Juang, H.H. Capillarisin blocks prostate-specific antigen expression on activation of androgen receptor in prostate carcinoma cells. Prostate, 2018, 78(4), 242-249.
[http://dx.doi.org/10.1002/pros.23463] [PMID: 29164633]
[912]
Tayarani-Najaran, Z.; Akaberi, M.; Hassanzadeh, B.; Shirazi, N.; Asili, J.; Al-Najjar, H.; Sahebkar, A.; Emami, S Analysis of the essential oils of five Artemisia species and evaluation of their cytotoxic and proapoptotic effects. Mini Rev. Med. Chem., 2019, 19(11), 902-912.
[http://dx.doi.org/10.2174/1389557519666190311155021] [PMID: 30864526]
[913]
Qadir, M.; Maurya, A.; Waza, A.; Agnihotri, V.; Shah, W. Chemical composition, antioxidant and cytotoxic activity of Artemisia gmelinii essential oil growing wild in Kashmir valley. Nat. Prod. Res., 2019, 8, 1-6.
[http://dx.doi.org/10.1080/14786419.2018.1557178] [PMID: 30618281]
[914]
Rassias, D.J.; Weathers, P.J. Dried leaf Artemisia annua efficacy against non-small cell lung cancer. Phytomedicine, 2019, 52, 247-253.
[http://dx.doi.org/10.1016/j.phymed.2018.09.167] [PMID: 30599905]
[915]
Xue, G.M.; Zhu, D.R.; Han, C.; Wang, X.B.; Luo, J.G.; Kong, L.Y. Artemisianins A-D, new stereoisomers of seco-guaianolide involved heterodimeric [4+2] adducts from Artemisia argyi induce apoptosis via enhancement of endoplasmic reticulum stress. Bioorg. Chem., 2019, 84, 295-301.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.013] [PMID: 30529847]
[916]
Fard, N.; Noorbazargan, H.; Mirzaie, A.; Hedayati Ch, M.; Moghimiyan, Z.; Rahimi, A. Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer. Artif. Cells, Nanomed., Biotech, 2018, 46(sup3), S1047-S1058.
[http://dx.doi.org/10.1080/21691401.2018.1528983]
[917]
Al-Menhali, A.; Al-Rumaihi, A.; Al-Mohammed, H.; Al-Mazrooey, H.; Al-Shamlan, M.; AlJassim, M.; Al-Korbi, N.; Eid, A.H. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells. J. Med. Food, 2015, 18(1), 54-59.
[http://dx.doi.org/10.1089/jmf.2013.3121] [PMID: 25379783]
[918]
Kassi, E.; Chinou, I.; Spilioti, E.; Tsiapara, A.; Graikou, K.; Karabournioti, S.; Manoussakis, M.; Moutsatsou, P. A monoterpene, unique component of thyme honeys, induces apoptosis in prostate cancer cells via inhibition of NF-κB activity and IL-6 secretion. Phytomedicine, 2014, 21(11), 1483-1489.
[http://dx.doi.org/10.1016/j.phymed.2014.04.032] [PMID: 24932974]
[919]
Abaza, M.S.; Orabi, K.Y.; Al-Quattan, E.; Al-Attiyah, R.J. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int., 2015, 15, 46.
[http://dx.doi.org/10.1186/s12935-015-0194-0] [PMID: 26074733]
[920]
Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T. Cytotoxicity of Thymus vulgaris essential oil towards human oral cavity squamous cell carcinoma. Anticancer Res., 2011, 31(1), 81-87.
[PMID: 21273584]
[921]
Bozkurt, E.; Atmaca, H.; Kisim, A.; Uzunoglu, S.; Uslu, R.; Karaca, B. Effects of Thymus serpyllum extract on cell proliferation, apoptosis and epigenetic events in human breast cancer cells. Nutr. Cancer, 2012, 64(8), 1245-1250.
[http://dx.doi.org/10.1080/01635581.2012.719658] [PMID: 23163852]
[922]
Wu, S.; Wei, F.X.; Li, H.Z.; Liu, X.G.; Zhang, J.H.; Liu, J.X. [Chemical composition of essential oil from Thymus citriodorus and its toxic effect on liver cancer cells]. Zhong Yao Cai, 2013, 36(5), 756-759.
[PMID: 24218968]
[923]
Esmaeili-Mahani, S.; Falahi, F.; Yaghoobi, M.M. Proapoptotic and antiproliferative effects of Thymus caramanicus on human breast cancer cell line (MCF-7) and its interaction with anticancer drug vincristine. Evid. Based Complement. Alternat. Med., 2014, 2014893247
[http://dx.doi.org/10.1155/2014/893247] [PMID: 24812569]
[924]
Fekrazad, R.; Afzali, M.; Pasban-Aliabadi, H.; Esmaeili-Mahani, S.; Aminizadeh, M.; Mostafavi, A. Cytotoxic effect of Thymus caramanicus jalas on human oral epidermoid carcinoma KB cells. Braz. Dent. J., 2017, 28(1), 72-77.
[http://dx.doi.org/10.1590/0103-6440201700737] [PMID: 28301021]
[925]
Esmaeilbeig, M.; Kouhpayeh, S.A.; Amirghofran, Z. An investigation of the growth inhibitory capacity of several medicinal plants from Iran on tumor cell lines. Iran. J. Cancer Prev., 2015, 8(5)e4032
[http://dx.doi.org/10.17795/ijcp-4032] [PMID: 26634114]
[926]
Oliviero, M.; Romilde, I.; Beatrice, M.M.; Matteo, V.; Giovanna, N.; Consuelo, A.; Claudio, C.; Giorgio, S.; Filippo, M.; Massimo, N. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line. Chem. Biol. Interact., 2016, 256, 125-133.
[http://dx.doi.org/10.1016/j.cbi.2016.06.024] [PMID: 27369807]
[927]
Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules, 2010, 15(5), 3200-3210.
[http://dx.doi.org/10.3390/molecules15053200] [PMID: 20657472]
[928]
Desta, K.T.; Kim, G.S.; Abd El-Aty, A.M.; Raha, S.; Kim, M.B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H.C.; Shim, J.H.; Shin, S.C. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC-ESI-MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1053, 1-8.
[http://dx.doi.org/10.1016/j.jchromb.2017.03.035] [PMID: 28411462]
[929]
Erdoğan, A. Evaluation of cytotoxic, membrane, and DNA damaging effects of Thymus revolutus Célak essential oil on different cancer cells. Turk. J. Med. Sci., 2017, 47, 702-714.
[930]
Hassan, S.T.S.; Berchová-Bímová, K.; Šudomová, M.; Malaník, M.; Šmejkal, K.; Rengasamy, K.R.R. In vitro study of multi-therapeutic properties of Thymus bovei Benth. Essential oil and its main component for promoting their use in clinical practice. J. Clin. Med., 2018, 7(9), 283.
[http://dx.doi.org/10.3390/jcm7090283] [PMID: 30223562]
[931]
Caprioli, G.; Maggi, F.; Bendif, H.; Miara, M.D.; Cinque, B.; Lizzi, A.R.; Brisdelli, F.; Celenza, G. Thymus lanceolatus ethanolic extract protects human cells from t-BHP induced oxidative damage. Food Funct., 2018, 9(7), 3665-3672.
[http://dx.doi.org/10.1039/C8FO00568K] [PMID: 29932202]
[932]
Heidari, Z.; Salehzadeh, A.; Sadat Shandiz, S.; Tajdoost, S. Pharmacological properties of Salvia officinalis and its components J. Tradit. Complement. Med., 2018, 7(4), 433-440.
[933]
Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med., 2017, 7(4), 433-440.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.014] [PMID: 29034191]
[934]
Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem., 2013, 136(1), 120-129.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.091] [PMID: 23017402]
[935]
Keshavarz, M.; Mostafaie, A.; Mansouri, K.; Bidmeshkipour, A.; Motlagh, H.R.; Parvaneh, S. In vitro and ex vivo antiangiogenic activity of Salvia officinalis. Phytother. Res., 2010, 24(10), 1526-1531.
[http://dx.doi.org/10.1002/ptr.3168] [PMID: 20878705]
[936]
Xavier, C.P.; Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr. Cancer, 2009, 61(4), 564-571.
[http://dx.doi.org/10.1080/01635580802710733] [PMID: 19838929]
[937]
Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T. [Anticancer activity of Salvia officinalis essential oil against HNSCC cell line (UMSCC1)]. HNO, 2011, 59(12), 1203-1208.
[http://dx.doi.org/10.1007/s00106-011-2274-3] [PMID: 21894557]
[938]
Kadioglu, O.; Efferth, T. Pharmacogenomic characterization of cytotoxic compounds from Salvia officinalis in cancer cells. J. Nat. Prod., 2015, 78(4), 762-775.
[http://dx.doi.org/10.1021/np501007n] [PMID: 25713926]
[939]
Jedinák, A.; Mucková, M.; Kost’álová, D.; Maliar, T.; Masterova, I. Antiprotease and antimetastatic activity of ursolic acid isolated from Salvia officinalis. Z. Natforsch. C J. Biosci., 2006, 61(11-12), 777-782.
[http://dx.doi.org/10.1515/znc-2006-11-1203] [PMID: 17294686]
[940]
Deeb, S.J.; El-Baba, C.O.; Hassan, S.B.; Larsson, R.L.; Gali-Muhtasib, H.U. Sage components enhance cell death through nuclear factor kappa-B signaling. Front. Biosci. (Elite Ed.), 2011, 3, 410-420.
[PMID: 21196321]
[941]
Slamenová, D.; Masterová, I.; Lábaj, J.; Horváthová, E.; Kubala, P.; Jakubíková, J.; Wsólová, L. Cytotoxic and DNA-damaging effects of diterpenoid quinones from the roots of Salvia officinalis L. on colonic and hepatic human cells cultured in vitro. Basic Clin. Pharmacol. Toxicol., 2004, 94(6), 282-290.
[http://dx.doi.org/10.1111/j.1742-7843.2004.pto940605.x] [PMID: 15228500]
[942]
Jiang, Y.; Zhang, L.; Rupasinghe, H.P. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed. Pharmacother., 2017, 85, 57-67.
[http://dx.doi.org/10.1016/j.biopha.2016.11.113] [PMID: 27930987]
[943]
Zare Shahneh, F.; Valiyari, S.; Baradaran, B.; Abdolalizadeh, J.; Bandehagh, A.; Azadmehr, A.; Hajiaghaee, R. Inhibitory and cytotoxic activities of salvia officinalis L. Extract on human lymphoma and leukemia cells by induction of apoptosis. Adv. Pharm. Bull., 2013, 3(1), 51-55.
[PMID: 24312812]
[944]
Bauer, J.; Kuehnl, S.; Rollinger, J.M.; Scherer, O.; Northoff, H.; Stuppner, H.; Werz, O.; Koeberle, A. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther., 2012, 342(1), 169-176.
[http://dx.doi.org/10.1124/jpet.112.193847] [PMID: 22511203]
[945]
Lampronti, I.; Saab, A.M.; Gambari, R. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Int. J. Oncol., 2006, 29(4), 989-995.
[http://dx.doi.org/10.3892/ijo.29.4.989] [PMID: 16964395]
[946]
Kundaković, T.; Stanojković, T.; Kolundzija, B.; Marković, S.; Sukilović, B.; Milenković, M.; Lakusić, B. Cytotoxicity and antimicrobial activity of the essential oil from Satureja montana subsp. pisidica (Lamiceae). Nat. Prod. Commun., 2014, 9(4), 569-572.
[http://dx.doi.org/10.1177/1934578X1400900437] [PMID: 24868886]
[947]
Grosso, C.; Oliveira, A.C.; Mainar, A.M.; Urieta, J.S.; Barroso, J.G.; Palavra, A.M. Antioxidant activities of the supercritical and conventional Satureja montana extracts. J. Food Sci., 2009, 74(9), C713-C717.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01376.x] [PMID: 20492105]
[948]
Fitsiou, E.; Anestopoulos, I.; Chlichlia, K.; Galanis, A.; Kourkoutas, I.; Panayiotidis, M.I.; Pappa, A. Antioxidant and antiproliferative properties of the essential oils of Satureja thymbra and Satureja parnassica and their major constituents. Anticancer Res., 2016, 36(11), 5757-5763.
[http://dx.doi.org/10.21873/anticanres.11159] [PMID: 27793897]
[949]
Narchin, F.; Larijani, K.; Rustaiyan, A.; Nejad Ebrahimi, S.; Tafvizi, F. Phytochemical synthesis of silver nanoparticles by two techniques using Saturaja rechengri Jamzad extract: Identifying and comparing in vitro anti-proliferative activities. Adv. Pharm. Bull., 2018, 8(2), 235-244.
[http://dx.doi.org/10.15171/apb.2018.028] [PMID: 30023325]
[950]
Esmaeili-Mahani, S.; Samandari-Bahraseman, M.R.; Yaghoobi, M.M. In vitro anti-proliferative and pro-apoptotic properties of Sutureja Khuzestanica on human breast cancer cell line (MCF-7) and its synergic effects with anticancer drug vincristine. Iran. J. Pharm. Res., 2018, 17(1), 343-352.
[PMID: 29755565]
[951]
Shukla, R.; Sharma, D.C.; Baig, M.H.; Bano, S.; Roy, S.; Provazník, I.; Kamal, M.A. Antioxidant, antimicrobial activity and medicinal properties of Grewia asiatica L. Med. Chem., 2016, 12(3), 211-216.
[http://dx.doi.org/10.2174/1573406411666151030110530] [PMID: 26516779]
[952]
Paul, S. Pharmacological actions and potential uses of Grewia asiatica: A review. Int. J. of App. Res., 2015, 1(9), 222-228.
[953]
Patil, P.; Patel, M.M.; Bhavsar, C.J. Preliminary phytochemical and hypoglycemic activity of leaves of Grewia Asiatica L. Res. J. Pharm. Biol. Chem. Sci., 2011, 2(1), 516-520.
[954]
Ullah, W.; Uddin, G.; Siddiqui, B.S. Ethnic uses, pharmacological and phytochemical profile of genus Grewia. J. Asian Nat. Prod. Res., 2012, 14(2), 186-195.
[http://dx.doi.org/10.1080/10286020.2011.639764] [PMID: 22296161]
[955]
Marya, B.; Dattani, K.H.; Patel, D.D.; Patel, P.D.; Patel, D.; Suthar, M.P.; Patel, V.P.; Bothra, S.B. In vitro cytotoxicity evaluatin of aqueous fruit and leaf extracts of Grewia asiatica using MTT Assay. Pharma Chem., 2011, 3(3), 282-287.
[956]
Dattani, K.H.; Patel, D.D.; Marya, B.; Patel, P.D.; Patel, D.; Suthar, M.P.; Patel, V.P.; Bothra, S.B. In vitro cytotoxicity evaluation of methanolic fruit extract of Grewia asiatica using MTT Assay; Inventi; Impact-Ethnopharmacology, 2011.
[957]
Kakoti, B.B.; Selvan, V.T.; Manikandan, L.; Gupta, M.; Mazumder, U.K.; Das, B. Antitumor and in vitro activity of Grewia asiatica Linn. against Ehlrich’s ascites carcinoma cell lines. Pharmacologyonline, 2011, 3, 956-960.
[958]
Lou, Z.Q.; Qin, B. Species systematization and quality evaluation of commonly used chinese traditional drugs; Beijing University Medical Press: Beijing, China, 1995, Vol. 1, .
[959]
Park, G.H.; Song, H.M.; Park, S.B.; Son, H.J.; Um, Y.; Kim, H.S.; Jeong, J.B. Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells. BMC Complement. Altern. Med., 2018, 18(1), 28.
[http://dx.doi.org/10.1186/s12906-018-2096-x] [PMID: 29554905]
[960]
ElKady, A.I.; Ramadan, W.S. The aqueous extract of cinnamon bark ameliorated cisplatin-induced cytotoxicity in vero cells without compromising the anticancer efficiency of cisplatin. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2016, 160(3), 363-371.
[http://dx.doi.org/10.5507/bp.2016.034] [PMID: 27465514]
[961]
Ng, L.T.; Wu, S.J. Antiproliferative activity of Cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 cells. Evid. Based Complement. Alternat. Med., 2011, 2011492148
[http://dx.doi.org/10.1093/ecam/nep220] [PMID: 20038571]
[962]
Ka, H.; Park, H.J.; Jung, H.J.; Choi, J.W.; Cho, K.S.; Ha, J.; Lee, K.T. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett., 2003, 196(2), 143-152.
[http://dx.doi.org/10.1016/S0304-3835(03)00238-6] [PMID: 12860272]
[963]
Shin, S.H.; Lee, S.R.; Lee, E.; Kim, K.H.; Byun, S. Caffeic acid phenethyl ester from the twigs of Cinnamomum cassia inhibits malignant cell transformation by inducing c-Fos degradation. J. Nat. Prod., 2017, 80(7), 2124-2130.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00433] [PMID: 28682072]
[964]
Avila-Carrasco, L.; Majano, P.; Sánchez-Toméro, J.A.; Selgas, R.; López-Cabrera, M.; Aguilera, A.; González Mateo, G. Natural plant compounds as modulators of epithelial-to-mesenchymal transition. Front. Pharmacol., 2019, 10, 715.
[965]
Wu, C.; Zhuang, Y.; Jiang, S.; Tian, F.; Teng, Y.; Chen, X.; Zheng, P.; Liu, S.; Zhou, J.; Wu, J.; Wang, R.; Zou, X. Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. Int. J. Biochem. Cell Biol., 2017, 84, 58-74.
[http://dx.doi.org/10.1016/j.biocel.2017.01.005] [PMID: 28093328]
[966]
Sandhiutami, N.M.; Moordiani, M.; Laksmitawati, D.R.; Fauziah, N.; Maesaroh, M.; Widowati, W. In vitro assesment of anti-inflammatory activities of coumarin and Indonesian cassia extract in RAW264.7 murine macrophage cell line. Iran. J. Basic Med. Sci., 2017, 20(1), 99-106.
[PMID: 28133531]
[967]
Lin, C.Y.; Hsieh, Y.H.; Yang, S.F.; Chu, S.C.; Chen, P.N.; Hsieh, Y.S. Cinnamomum cassia extracts reverses TGF-β1-induced epithelial-mesenchymal transition in human lung adenocarcinoma cells and suppresses tumor growth in vivo. Environ. Toxicol., 2017, 32(7), 1878-1887.
[http://dx.doi.org/10.1002/tox.22410] [PMID: 28258635]
[968]
Sun, L.; Liu, L.N.; Li, J.C.; Lv, Y.Z.; Zong, S.B.; Zhou, J.; Wang, Z.Z.; Kou, J.P.; Xiao, W. The essential oil from the twigs of Cinnamomum cassia Presl inhibits oxytocin-induced uterine contraction in vitro and in vivo. J. Ethnopharmacol., 2017, 206(206), 107-114.
[http://dx.doi.org/10.1016/j.jep.2017.05.023] [PMID: 28532683]
[969]
Tian, F.; Yu, C.T.; Ye, W.D.; Wang, Q. Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2017, 493(3), 1260-1266.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.136] [PMID: 28958934]
[970]
Chang, B.Y.; Kim, D.S.; Kim, H.S.; Kim, S.Y. Evaluation of estrogenic potential by herbal formula, HPC 03 for in vitro and in vivo. Reproduction, 2018, 155(2), 105-115.
[http://dx.doi.org/10.1530/REP-17-0530] [PMID: 29326134]
[971]
Wu, H.C.; Horng, C.T.; Lee, Y.L.; Chen, P.N.; Lin, C.Y.; Liao, C.Y.; Hsieh, Y.S.; Chu, S.C. Cinnamomum cassia extracts suppress human lung cancer cells invasion by reducing u-PA/MMP expression through the FAK to ERK pathways. Int. J. Med. Sci., 2018, 15(2), 115-123.
[http://dx.doi.org/10.7150/ijms.22293] [PMID: 29333095]
[972]
Patra, K.; Jana, S.; Sarkar, A.; Mandal, D.P.; Bhattacharjee, S. The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway. Biofactors, 2019, 45(3), 401-415.
[973]
Yu, C.H.; Chu, S.C.; Yang, S.F.; Hsieh, Y.S.; Lee, C.Y.; Chen, P.N. Induction of apoptotic but not autophagic cell death by Cinnamomum cassia extracts on human oral cancer cells. J. Cell. Physiol., 2019, 234(4), 5289-5303.
[http://dx.doi.org/10.1002/jcp.27338] [PMID: 30317581]
[974]
Lee, E.J.; Chung, T.W.; Lee, J.H.; Kim, B.S.; Kim, E.Y.; Lee, S.O.; Ha, K.T. Water-extracted branch of Cinnamomum cassia promotes lung cancer cell apoptosis by inhibiting pyruvate dehydrogenase kinase activity. J. Pharmacol. Sci., 2018, 138(2), 146-154.
[http://dx.doi.org/10.1016/j.jphs.2018.10.005] [PMID: 30392804]
[975]
Yoon, Y.J.; Kim, Y.H.; Lee, Y.J.; Choi, J.; Kim, C.H.; Han, D.C.; Kwon, B.M. 2′-Hydroxycinnamaldehyde inhibits proliferation and induces apoptosis via signal transducer and activator of transcription 3 inactivation and reactive oxygen species generation. Cancer Sci., 2019, 110(1), 366-378.
[http://dx.doi.org/10.1111/cas.13852] [PMID: 30375708]
[976]
Garcia-Cairasco, N.; Moyses-Neto, M.; Del Vecchio, F.; Oliveira, J.A.; dos Santos, F.L.; Castro, O.W.; Arisi, G.M.; Dantas, M.; Carolino, R.O.; Coutinho-Netto, J.; Dagostin, A.L.; Rodrigues, M.C.; Leão, R.M.; Quintiliano, S.A.; Silva, L.F., Jr; Gobbo-Neto, L.; Lopes, N.P. Elucidating the neurotoxicity of the star fruit. Angew. Chem. Int. Ed. Engl., 2013, 52(49), 13067-13070.
[http://dx.doi.org/10.1002/anie.201305382] [PMID: 24281890]
[977]
Saghir, S.A.; Sadikun, A.; Al-Suede, F.S.; Majid, A.M.; Murugaiyah, V. Antihyperlipidemic, antioxidant and cytotoxic activities of methanolic and aqueous extracts of different parts of star fruit. Curr. Pharm. Biotechnol., 2016, 17(10), 915-925.
[http://dx.doi.org/10.2174/1389201017666160603013434] [PMID: 27262321]
[978]
Ronpirin, C.; Pattarachotanant, N.; Tencomnao, T. Protective effect of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. extracts against ultraviolet B-induced damage in human keratinocytes. Evid. Based Complement. Alternat. Med, 2016, 1684794.
[http://dx.doi.org/10.1155/2016/1684794] [PMID: 27057195]
[979]
Gao, Y.; Huang, R.; Gong, Y.; Park, H.S.; Wen, Q.; Almosnid, N.M.; Chippada-Venkata, U.D.; Hosain, N.A.; Vick, E.; Farone, A.; Altman, E. The antidiabetic compound 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione, isolated from Averrhoa carambola L., demonstrates significant antitumor potential against human breast cancer cells. Oncotarget, 2015, 6(27), 24304-24319.
[http://dx.doi.org/10.18632/oncotarget.4475] [PMID: 26203774]
[980]
Singh, R.; Sharma, J.; Goyal, P.K. Prophylactic role of Averrhoa carambola (Star Fruit) extract against chemically induced hepatocellular carcinoma in swiss albino mice. Adv. Pharmacol. Sci., 2014, 2014158936
[http://dx.doi.org/10.1155/2014/158936] [PMID: 24696677]
[981]
Yang, D.P.; Liu, X.; Teng, C.P.; Owh, C.; Win, K.Y.; Lin, M.; Loh, X.J.; Wu, Y.L.; Li, Z.; Ye, E. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale, 2017, 9(41), 15753-15759.
[http://dx.doi.org/10.1039/C7NR06286A] [PMID: 28994849]
[982]
Suluvoy, J.K.; Sakthivel, K.M.; Guruvayoorappan, C.; Berlin Grace, V.M. Protective effect of Averrhoa bilimbi L. fruit extract on ulcerative colitis in wistar rats via regulation of inflammatory mediators and cytokines. Biomed. Pharmacother., 2017, 91, 1113-1121.
[http://dx.doi.org/10.1016/j.biopha.2017.05.057] [PMID: 28531922]
[983]
Ip, B.C.; Wang, X.D. Non-alcoholic steatohepatitis and hepatocellular carcinoma: implications for lycopene intervention. Nutrients, 2013, 6(1), 124-162.
[http://dx.doi.org/10.3390/nu6010124] [PMID: 24379011]
[984]
Silberstein, T.; Silberstein, E.; Saphier, O. [Lycopene and tomatoes--their effect on prevention of prostatic cancer]. Harefuah, 2013, 152(8), 461-463, 499.
[PMID: 24167930]
[985]
Aydemir, G.; Kasiri, Y.; Birta, E.; Béke, G.; Garcia, A.L.; Bartók, E.M.; Rühl, R. Lycopene-derived bioactive retinoic acid receptors/retinoid-X receptors-activating metabolites may be relevant for lycopene’s anti-cancer potential. Mol. Nutr. Food Res., 2013, 57(5), 739-747.
[http://dx.doi.org/10.1002/mnfr.201200548] [PMID: 23378045]
[986]
Teodoro, A.J.; Oliveira, F.L.; Martins, N.B.; Maia, Gde.A.; Martucci, R.B.; Borojevic, R. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines. Cancer Cell Int., 2012, 12(1), 36.
[http://dx.doi.org/10.1186/1475-2867-12-36] [PMID: 22866768]
[987]
Lee, S.T.; Wong, P.F.; Hooper, J.D.; Mustafa, M.R. Alpha-tomatine synergises with paclitaxel to enhance apoptosis of androgen-independent human prostate cancer PC-3 cells in vitro and in vivo. Phytomedicine, 2013, 20(14), 1297-1305.
[http://dx.doi.org/10.1016/j.phymed.2013.07.002] [PMID: 23920276]
[988]
Chen, P.; Zhang, W.; Wang, X.; Zhao, K.; Negi, D.S.; Zhuo, L.; Qi, M.; Wang, X.; Zhang, X. Lycopene and risk of prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore), 2015, 94(33)e1260
[http://dx.doi.org/10.1097/MD.0000000000001260] [PMID: 26287411]
[989]
Khuda-Bukhsh, A.R.; Das, S.; Saha, S.K. Molecular approaches toward targeted cancer prevention with some food plants and their products: inflammatory and other signal pathways. Nutr. Cancer, 2014, 66(2), 194-205.
[http://dx.doi.org/10.1080/01635581.2014.864420] [PMID: 24377653]
[990]
Nahum, A.; Hirsch, K.; Danilenko, M.; Watts, C.K.; Prall, O.W.; Levy, J.; Sharoni, Y. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27(Kip1) in the cyclin E-cdk2 complexes. Oncogene, 2001, 20(26), 3428-3436.
[http://dx.doi.org/10.1038/sj.onc.1204452] [PMID: 11423993]
[991]
Kapoor, S.; Dharmesh, S.M. Pectic Oligosaccharide from tomato exhibiting anticancer potential on a gastric cancer cell line: Structure-function relationship. Carbohydr. Polym., 2017, 160, 52-61.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.046] [PMID: 28115100]
[992]
Kolberg, M.; Pedersen, S.; Bastani, N.E.; Carlsen, H.; Blomhoff, R.; Paur, I. Tomato paste alters NF-κB and cancer-related mRNA expression in prostate cancer cells, xenografts, and xenograft microenvironment. Nutr. Cancer, 2015, 67(2), 305-315.
[http://dx.doi.org/10.1080/01635581.2015.990575] [PMID: 25664890]
[993]
Conlon, L.E.; Wallig, M.A.; Erdman, J.W., Jr Low-lycopene containing tomato powder diet does not protect against prostate cancer in TRAMP mice. Nutr. Res., 2015, 35(10), 882-890.
[http://dx.doi.org/10.1016/j.nutres.2015.07.003] [PMID: 26255194]
[994]
Arathi, B.P.; Raghavendra-Rao Sowmya, P.; Kuriakose, G.C.; Shilpa, S.; Shwetha, H.J.; Kumar, S.; Raju, M.; Baskaran, V.; Lakshminarayana, R. Fractionation and characterization of lycopene-oxidation products by LC-MS/MS (ESI)+: Elucidation of the chemopreventative potency of oxidized lycopene in breast-cancer cell lines. J. Agric. Food Chem., 2018, 66(43), 11362-11371.
[http://dx.doi.org/10.1021/acs.jafc.8b04850] [PMID: 30259736]
[995]
Mbaveng, A.T.; Manekeng, H.T.; Nguenang, G.S.; Dzotam, J.K.; Kuete, V.; Efferth, T. Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multi-factorial drug resistant cancer cells. J. Ethnopharmacol., 2018, 222, 21-33.
[http://dx.doi.org/10.1016/j.jep.2018.04.036] [PMID: 29709646]
[996]
Li, C.C.; Liu, C.; Fu, M.; Hu, K.Q.; Aizawa, K.; Takahashi, S.; Hiroyuki, S.; Cheng, J.; von Lintig, J.; Wang, X.D. Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adiponectin function independent of carotenoid cleavage enzymes in mice. Mol. Nutr. Food Res., 2018, 62(8)e1700738
[http://dx.doi.org/10.1002/mnfr.201700738] [PMID: 29266812]
[998]
Abdull Razis, A.F.; Ibrahim, M.D.; Kntayya, S.B. Health benefits of Moringa oleifera. Asian Pac. J. Cancer Prev., 2014, 15(20), 8571-8576.
[http://dx.doi.org/10.7314/APJCP.2014.15.20.8571] [PMID: 25374169]
[999]
Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R.W. Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam. J. Med. Food, 2010, 13(3), 710-716.
[http://dx.doi.org/10.1089/jmf.2009.0057] [PMID: 20521992]
[1000]
Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci., 2015, 16(6), 12791-12835.
[http://dx.doi.org/10.3390/ijms160612791] [PMID: 26057747]
[1001]
Nibret, E.; Wink, M. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine, 2010, 17(12), 911-920.
[http://dx.doi.org/10.1016/j.phymed.2010.02.009] [PMID: 20359874]
[1002]
Tiloke, C.; Anand, K.; Gengan, R.M.; Chuturgoon, A.A. Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomed. Pharmacother., 2018, 108, 457-466.
[http://dx.doi.org/10.1016/j.biopha.2018.09.060] [PMID: 30241049]
[1003]
Antonini, E.; Iori, R.; Ninfali, P.; Scarpa, E.S. A combination of Moringin and Avenanthramide 2f inhibits the proliferation of Hep3B Liver cancer cells inducing intrinsic and extrinsic Apoptosis. Nutr. Cancer, 2018, 70(7), 1159-1165.
[http://dx.doi.org/10.1080/01635581.2018.1497672] [PMID: 30204484]
[1004]
Karim, N.A.; Ibrahim, M.D.; Kntayya, S.B.; Rukayadi, Y.; Hamid, H.A.; Razis, A.F. Moringa oleifera Lam: Targeting chemoprevention. Asian Pac. J. Cancer Prev., 2016, 17(8), 3675-3686.
[PMID: 27644601]
[1005]
Michl, C.; Vivarelli, F.; Weigl, J.; De Nicola, G.R.; Canistro, D.; Paolini, M.; Iori, R.; Rascle, A. The chemopreventive phytochemical moringin isolated from Moringa oleifera seeds inhibits JAK/STAT signaling. PLoS One, 2016, 11(6) e0157430
[http://dx.doi.org/10.1371/journal.pone.0157430] [PMID: 27304884]
[1006]
Jaafaru, M.S.; Abd-Karim, NA.; Mohamed-Eliaser, E.; Maitalata, W.; Ahmed, H.; Mustapha-Barau, M.; Kong, L.; Abdull-Razis, A.F. Nontoxic Glucomoringin-Isothiocyanate (GMG-ITC) rich soluble extract induces apoptosis and inhibits proliferation of human prostate adenocarcinoma cells (PC-3). Nutrients, 2018. 10pii, E1174
[1007]
Paikra, B.K.; Dhongade, H.K.J.; Gidwani, B. Phytochemistry and pharmacology of Moringa oleifera Lam. J. Pharmacopuncture, 2017, 20(3), 194-200.
[http://dx.doi.org/10.3831/KPI.2017.20.022] [PMID: 30087795]
[1008]
Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients, 2018, 10, pii, E343.
[1009]
Hasan, A.K.M.; Chakrabortty, A.; Zaman, S.; Islam, S.S.; Ahmed, F.R.S.; Kabir, K.M.A.; Nurujjaman, M.; Uddin, M.B.; Alam, M.T.; Shaha, R.K.; Kabir, S.R. Moringa oleifera seed lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of Bak and NF-κB gene expression. Int. J. Biol. Macromol, 2018, 107, 1936-1944.
[1010]
de Andrade Luz, L.; Rossato, F.A.; Costa, R.A.P.E.; Napoleão, T.H.; Paiva, P.M.G.; Coelho, L.C.B.B. Cytotoxicity of the coagulant Moringa oleifera lectin (cMoL) to B16-F10 melanoma cells. Toxicol. In Vitro, 2017, 44, 94-99.
[http://dx.doi.org/10.1016/j.tiv.2017.06.019] [PMID: 28645635]
[1011]
Araújo, L.C.; Aguiar, J.S.; Napoleão, T.H.; Mota, F.V.; Barros, A.L.; Moura, M.C.; Coriolano, M.C.; Coelho, L.C.; Silva, T.G.; Paiva, P.M. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PLoS One, 2013, 9(12) e81973
[http://dx.doi.org/10.1371/journal.pone.0081973]
[1012]
Giacoppo, S.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment. BMC Complement. Altern. Med., 2017, 17(1), 362.
[http://dx.doi.org/10.1186/s12906-017-1876-z] [PMID: 28705212]
[1013]
Rajan, T.S.; De Nicola, G.R.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia, 2016, 110, 1-7.
[http://dx.doi.org/10.1016/j.fitote.2016.02.007] [PMID: 26882972]
[1014]
Maiyo, F.C.; Moodley, R.; Singh, M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O glucoside and 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anticancer. Agents Med. Chem., 2016, 16(5), 648-656.
[http://dx.doi.org/10.2174/1871520615666151002110424] [PMID: 26428271]
[1015]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem., 2014, 86, 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.011] [PMID: 25147152]
[1016]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[1017]
Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One, 2015, 10(8)e0135814
[http://dx.doi.org/10.1371/journal.pone.0135814] [PMID: 26288313]
[1018]
Jafarain, A.; Asghari, G.; Ghassami, E. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells. Adv. Biomed. Res., 2014, 23(3), 194.
[1019]
Gismondi, A.; Canuti, L.; Impei, S.; Di Marco, G.; Kenzo, M.; Colizzi, V.; Canini, A. Antioxidant extracts of African medicinal plants induce cell cycle arrest and differentiation in B16F10 melanoma cells. Int. J. Oncol., 2013, 43(3), 956-964.
[http://dx.doi.org/10.3892/ijo.2013.2001] [PMID: 23817892]
[1020]
Bose, C.K. Possible role of Moringa oleifera Lam. root in epithelial ovarian cancer. MedGenMed, 2007, 9(1), 26.
[PMID: 17435633]
[1021]
Abd-Rabou, A.A.; Abdalla, A.M.; Ali, N.A.; Zoheir, K.M. Moringa oleifera root induces cancer apoptosis more effectively than leave nanocomposites and its free counterpart. Asian Pac. J. Cancer Prev., 2017, 18(8), 2141-2149.
[PMID: 28843248]
[1022]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother., 2017, 89, 1067-1077.
[http://dx.doi.org/10.1016/j.biopha.2017.02.101] [PMID: 28292015]
[1023]
Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Maaza, M.; Ayeshamariam, A.; Kennedy, L.J. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B, 2016, 164, 352-360.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.003] [PMID: 27728880]
[1024]
Tiloke, C.; Phulukdaree, A.; Anand, K.; Gengan, R.M.; Chuturgoon, A.A. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J. Cell. Biochem., 2016, 117(10), 2302-2314.
[http://dx.doi.org/10.1002/jcb.25528] [PMID: 26923760]
[1025]
Wang, C.; Wu, R.; Sargsyan, D.; Zheng, M.; Li, S.; Yin, R.; Su, S.; Raskin, I.; Kong, A.N. CpG methyl-seq and RNA-seq epigenomic and transcriptomic studies on the preventive effects of Moringa isothiocyanate in mouse epidermal JB6 cells induced by the tumor promoter TPA. J. Nutr. Biochem., 2019, 68, 69-78.
[1026]
Vasanth, K.; Ilango, K.; MohanKumar, R.; Agrawal, A.; Dubey, G.P. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B Biointerfaces, 2014, 117, 354-359.
[1027]
Jung, I.L. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS One, 2014, 9(4)e95492
[http://dx.doi.org/10.1371/journal.pone.0095492]
[1028]
Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med., 2013, 16, 226.
[http://dx.doi.org/10.1186/1472-6882-13-226]
[1029]
Jung, I.L.; Lee, J.H.; Kang, S.C. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncol. Lett., 2015, 10(3), 1597-1604.
[http://dx.doi.org/10.3892/ol.2015.3482] [PMID: 26622717]
[1030]
Sreelatha, S.; Jeyachitra, A.; Padma, P.R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol., 2011, 49(6), 1270-1275.
[http://dx.doi.org/10.1016/j.fct.2011.03.006] [PMID: 21385597]
[1031]
Madi, N.; Dany, M.; Abdoun, S.; Usta, J. Moringa oleifera’s Nutritious aqueous leaf extract has anticancerous effects by compromising mitochondrial viability in an ROS-dependent manner. J. Am. Coll. Nutr., 2016, 35(7), 604-613.
[http://dx.doi.org/10.1080/07315724.2015.1080128] [PMID: 27314649]
[1032]
Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on human esophageal cancer cells. J. Med. Food, 2016, 19(4), 398-403.
[http://dx.doi.org/10.1089/jmf.2015.0113] [PMID: 27074620]
[1033]
Berkovich, L.; Earon, G.; Ron, I.; Rimmon, A.; Vexler, A.; Lev-Ari, S. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med., 2013, 13, 212.
[http://dx.doi.org/10.1186/1472-6882-13-212] [PMID: 23957955]
[1034]
Diab, K.A.; Guru, S.K.; Bhushan, S.; Saxena, A.K. In Vitro anticancer activities of Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleifera indian plants. Asian Pac. J. Cancer Prev., 2015, 16(15), 6423-6428.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6423] [PMID: 26434854]
[1035]
Adebayo, I.A.; Arsad, H.; Samian, M.R. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 282-287.
[http://dx.doi.org/10.21010/ajtcam.v14i2.30] [PMID: 28573245]
[1036]
Moghe, A.; Fernandes, E.; Pulwale, A.; Patil, G. Probing regenerative potential of Moringa oleifera aqueous extracts using in vitro cellular assays. Pharmacognosy Res., 2016, 8(4), 231.
[1037]
Krishnamurthy, P.T.; Vardarajalu, A.; Wadhwani, A.; Patel, V. Identification and characterization of a potent anticancer fraction from the leaf extracts of Moringa oleifera L. Indian J. Exp. Biol., 2015, 53(2), 98-103.
[PMID: 25757240]
[1038]
Abd-Rabou, A.A.; A Zoheir, KhM.; Kishta, M.S.; Shalby, A.B.; Ezzo, M.I. Nano-micelle of Moringa oleifera seed oil triggers mitochondrial cancer cell apoptosis. Asian Pac. J. Cancer Prev., 2016, 17(11), 4929-4933.
[PMID: 28032498]
[1039]
Elsayed, E.A.; Sharaf-Eldin, M.A.; Wadaan, M. In vitro evaluation of cytotoxic activities of essential oil from Moringa oleifera seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 cell lines. Asian Pac. J. Cancer Prev., 2015, 16(11), 4671-4675.
[http://dx.doi.org/10.7314/APJCP.2015.16.11.4671] [PMID: 26107222]
[1040]
Förster, N.; Mewis, I.; Glatt, H.; Haack, M.; Brigelius-Flohé, R.; Schreiner, M.; Ulrichs, C. Characteristic single glucosinolates from Moringa oleifera: Induction of detoxifying enzymes and lack of genotoxic activity in various model systems. Food Funct., 2016, 7(11), 4660-4674.
[http://dx.doi.org/10.1039/C6FO01231K] [PMID: 27775133]
[1041]
Cuellar-Nuñez, M.L.; Luzardo-Ocampo, I.; Campos-Vega, R.; Gallegos-Corona, M.A.; González de Mejía, E.; Loarca-Piña, G. Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Res. Int., 2018, 105, 159-168.
[http://dx.doi.org/10.1016/j.foodres.2017.11.004] [PMID: 29433203]
[1042]
Sadek, K.M.; Abouzed, T.K.; Abouelkhair, R.; Nasr, S. The chemo-prophylactic efficacy of an ethanol Moringa oleifera leaf extract against hepatocellular carcinoma in rats. Pharm. Biol., 2017, 55(1), 1458-1466.
[http://dx.doi.org/10.1080/13880209.2017.1306713] [PMID: 28345375]
[1043]
Akanni, E.O.; Adedeji, A.L.; Adedosu, O.T.; Olaniran, O.I.; Oloke, J.K. Chemopreventive and anti-leukemic effects of ethanol extracts of Moringa oleifera leaves on wistar rats bearing benzene induced leukemia. Curr. Pharm. Biotechnol., 2014, 15(6), 563-568.
[http://dx.doi.org/10.2174/1389201015666140717090755] [PMID: 25051949]
[1044]
Sharma, V.; Paliwal, R.; Janmeda, P.; Sharma, S. Chemopreventive efficacy of Moringa oleifera pods against 7, 12-dimethylbenz[a]anthracene induced hepatic carcinogenesis in mice. Asian Pac. J. Cancer Prev., 2012, 13(6), 2563-2569.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2563] [PMID: 22938421]
[1045]
Atawodi, S.E. Nigerian foodstuffs with prostate cancer chemopreventive polyphenols. Infect. Agent. Cancer, 2011, 6(Suppl. 2), S9.
[http://dx.doi.org/10.1186/1750-9378-6-S2-S9] [PMID: 21992488]
[1046]
Budda, S.; Butryee, C.; Tuntipopipat, S.; Rungsipipat, A.; Wangnaithum, S.; Lee, J.S.; Kupradinun, P. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac. J. Cancer Prev., 2011, 12(12), 3221-3228.
[PMID: 22471457]
[1047]
Tiloke, C.; Phulukdaree, A.; Gengan, R.M.; Chuturgoon, A.A. Moringa oleifera aqueous leaf extract induces cell-cycle arrest and apoptosis in human liver hepatocellular carcinoma cells. Nutr. Cancer, 2019, 71(7), 1165-1174.
[http://dx.doi.org/10.1080/01635581.2019.1597136] [PMID: 30945951]
[1048]
Hagoel, L.; Vexler, A.; Kalich-Philosoph, L.; Earon, G.; Ron, I.; Shtabsky, A.; Marmor, S.; Lev-Ari, S. Combined effect of Moringa oleifera and ionizing radiation on survival and metastatic activity of pancreatic cancer cells. Integr. Cancer Ther., 2019, 181534735419828829
[http://dx.doi.org/10.1177/1534735419828829] [PMID: 30862207]
[1049]
Paul, S.; Basak, P.; Maity, N.; Guha, C.; Jana, N.K. Bis (Isothiocyanatomethyl) benzene, a plant derived anti-neoplastic compound: Purified from Moringa oleifera leaf extract. Anticancer. Agents Med. Chem., 2019, 19(5), 677-686.
[http://dx.doi.org/10.2174/1871520619666190206164137] [PMID: 30727916]
[1050]
Mansour, M.; Mohamed, M.F.; Elhalwagi, A.; El-Itriby, H.A.; Shawki, H.H.; Abdelhamid, I.A. Moringa peregrina leaves extracts induce apoptosis and cell cycle arrest of hepatocellular carcinoma. BioMed Res. Int., 2019, 20192698570
[http://dx.doi.org/10.1155/2019/2698570] [PMID: 30713850]
[1051]
Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci., 2017, 74(21), 3863-3881.
[http://dx.doi.org/10.1007/s00018-017-2609-7] [PMID: 28864909]
[1052]
Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H.B. Dietary sources and bioactivities of melatonin. Nutrients, 2017, 9(4)E367
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Published on: 23 April, 2020
Page: [122 - 236]
Pages: 115
DOI: 10.2174/1871520619666191015103712
Price: $65

Article Metrics

PDF: 72
HTML: 7
EPUB: 1