Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis, Anticancer, and Antibacterial Activity of Betulinic and Betulonic Acid C-28-Triphenylphosphonium Conjugates with Variable Alkyl Linker Length

Author(s): Olga V. Tsepaeva, Andrey V. Nemtarev*, Taliya I. Salikhova, Timur I. Abdullin, Leysan R. Grigor`eva, Svetlana A. Khozyainova and Vladimir F. Mironov

Volume 20, Issue 3, 2020

Page: [286 - 300] Pages: 15

DOI: 10.2174/1871520619666191014153554

Price: $65

Abstract

Background: Conjugation of triterpenoids such as betulinic acid 1 with the Triphenylphosphonium (TPP) group is a powerful approach to generating medicinal compounds. Their development proposes structure optimization in respect of availability and activity towards target cells and organelles. Selection of 1 or its precursor betulonic acid 2 and the optimal linker is of particular importance for drug candidate identification among the TPP-triterpenoid conjugates.

Objective: In this study, new C-28-TPP conjugated derivatives of 1 and 2 with the alkyl/alkoxyalkyl linkers of variable length were synthesized and compared regarding their anticancer, antibacterial, and mitochondriatargeted effects.

Methods: The TPP conjugates of 1 and 2 [6a-f, 7a-f] were synthesized by the reaction of halogenalkyl esters [3a-f, 4a-f, 5] with triphenylphosphine in acetonitrile upon heating. Cytotoxicity (MTT assay), antibacterial activity (microdilution assay), and mitochondrial effects (flow cytofluorometry) were studied.

Results: Conjugation with the TPP group greatly increased the cytotoxicity of the triterpenoids up to 30 times. The conjugates were up to 10-17 times more active against MCF-7 (IC50 = 0.17μM, 72h, 6c) and PC-3 (IC50 = 0.14μM, 72h, 6a) cancer cells than for human skin fibroblasts. The enhanced antibacterial (bactericidal) activity of the TPP-triterpenoid conjugates with MIC for Gram-positive bacteria as low as 2μM (6a, 7a) was for the first time revealed. The conjugates were found to effectively inhibit fluorescence of 2′,7′-dichlorofluorescin probe in the cytosol upon oxidation, decrease transmembrane potential, and increase superoxide radical level in mitochondria.

Conclusion: Relationships between the effects and structure of the TPP-triterpenoid conjugates were evaluated and discussed. Based on the results, 6a can be selected for further preclinical investigation as a potential anticancer compound.

Keywords: Betulinic acid, betulonic acid, triphenylphosphonium derivatives, anticancer activity, antibacterial activity.

Graphical Abstract
[1]
Shibuya, M.; Xiang, T.; Katsube, Y.; Otsuka, M.; Zhang, H.; Ebizuka, Y. Origin of structural diversity in natural triterpenes: direct synthesis of seco-triterpene skeletons by oxidosqualene cyclase. J. Am. Chem. Soc., 2007, 129(5), 1450-1455.
[http://dx.doi.org/10.1021/ja066873w] [PMID: 17263431]
[2]
Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep., 2006, 23(3), 394-411.
[http://dx.doi.org/10.1039/b515312n] [PMID: 16741586]
[3]
Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep., 2011, 28(6), 1087-1117.
[http://dx.doi.org/10.1039/c1np00012h] [PMID: 21528127]
[4]
Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev., 2018, 38(3), 951-976.
[http://dx.doi.org/10.1002/med.21484] [PMID: 29350407]
[5]
Rufino-Palomares, E.E.; Pérez-Jiménez, A.; Reyes-Zurita, F.J.; García-Salguero, L.; Mokhtari, K.; Herrera-Merchán, A.; Medina, P.P.; Peragón, J.; Lupiáñez, J.A. Anti-cancer and anti-angiogenic properties of various natural pentacyclic triterpenoids and some of their chemical derivatives. Curr. Org. Chem., 2015, 19, 919-947.
[http://dx.doi.org/10.2174/1385272819666150119225952]
[6]
Dioufa, P.N.; Stevanovic, T.; Boutinb, Y. The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts. Ind. Crops Prod., 2009, 30, 297-303.
[http://dx.doi.org/10.1016/j.indcrop.2009.05.008]
[7]
Liu, M.; Yang, S.; Jin, L.; Hu, D.; Wu, Z.; Yang, S. Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities. Molecules, 2012, 17(5), 6156-6169.
[http://dx.doi.org/10.3390/molecules17056156] [PMID: 22627971]
[8]
Csuk, R. Betulinic acid and its derivatives: A patent review (2008-2013). Expert Opin. Ther. Pat., 2014, 24(8), 913-923.
[http://dx.doi.org/10.1517/13543776.2014.927441] [PMID: 24909232]
[9]
Barthel, A.; Stark, S.; Csuk, R. Oxidative transformations of betulinol. Tetrahedron, 2008, 64, 9225-9229.
[http://dx.doi.org/10.1016/j.tet.2008.07.042]
[10]
Ekman, R. The suberin monomers and triterpenoids from the outer bark of Betula verrucosa ehrh. Holzforschung, 2009, 37, 205-211.
[http://dx.doi.org/10.1515/hfsg.1983.37.4.205]
[11]
Saxena, B.B.; Garcia, C.; Bohmstein, A.; Rathnam, P.; Haller, I. Betulonic derivatives for prostate cancer therapy; Chemistry and Biology Interface, 2004, pp. 21-26.
[12]
Urban, M.; Sarek, J.; Klinot, J.; Korinkova, G.; Hajduch, M. Synthesis of A-seco derivatives of betulinic acid with cytotoxic activity. J. Nat. Prod., 2004, 67(7), 1100-1105.
[http://dx.doi.org/10.1021/np049938m] [PMID: 15270560]
[13]
Baratto, L.C.; Porsani, M.V.; Pimentel, I.C.; Pereira Netto, A.B.; Paschke, R.; Oliveira, B.H. Preparation of betulinic acid derivatives by chemical and biotransformation methods and determination of cytotoxicity against selected cancer cell lines. Eur. J. Med. Chem., 2013, 68, 121-131.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.012] [PMID: 23973824]
[14]
Kommera, H.; Kaluderović, G.N.; Kalbitz, J.; Dräger, B.; Paschke, R. Small structural changes of pentacyclic lupane type triterpenoid derivatives lead to significant differences in their anticancer properties. Eur. J. Med. Chem., 2010, 45(8), 3346-3353.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.018] [PMID: 20472329]
[15]
Mukherjee, R.; Jaggi, M.; Siddiqui, M.J.A.; Srivastava, S.K.; Rajendran, P.; Vardhan, A.; Burman, A.C. Synthesis and cytotoxic activity of 3-O-acyl/3-hydrazine/2-bromo/20,29-dibromo betulinic acid derivatives. Bioorg. Med. Chem. Lett., 2004, 14(15), 4087-4091.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.034] [PMID: 15225732]
[16]
Pandey, M.K.; Sung, B.; Aggarwal, B.B. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int. J. Cancer, 2010, 127(2), 282-292.
[http://dx.doi.org/10.1002/ijc.25059] [PMID: 19937797]
[17]
Mullauer, F.B.; Kessler, J.H.; Medema, J.P. Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Apoptosis, 2009, 14(2), 191-202.
[http://dx.doi.org/10.1007/s10495-008-0290-x] [PMID: 19115109]
[18]
Halestrap, A.P.; McStay, G.P.; Clarke, S.J. The permeability transition pore complex: another view. Biochimie, 2002, 84(2-3), 153-166.
[http://dx.doi.org/10.1016/S0300-9084(02)01375-5] [PMID: 12022946]
[19]
Fulda, S.; Scaffidi, C.; Susin, S.A.; Krammer, P.H.; Kroemer, G.; Peter, M.E.; Debatin, K.M. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J. Biol. Chem., 1998, 273(51), 33942-33948.
[http://dx.doi.org/10.1074/jbc.273.51.33942] [PMID: 9852046]
[20]
Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell, 2008, 13(6), 472-482.
[http://dx.doi.org/10.1016/j.ccr.2008.05.005] [PMID: 18538731]
[21]
Carew, J.S.; Huang, P. Mitochondrial defects in cancer. Mol. Cancer, 2002, 1, 9.
[http://dx.doi.org/10.1186/1476-4598-1-9] [PMID: 12513701]
[22]
Maximchik, P.V.; Kulikov, A.V.; Zhivotovsky, B.D.; Gogvadze, V.G. Cellular energetics as a target for tumor cell elimination. Biochemistry (Mosc.), 2016, 81(2), 65-79.
[http://dx.doi.org/10.1134/S0006297916020012] [PMID: 27260387]
[23]
Modica-Napolitano, J.S.; Singh, K.K. Mitochondrial dysfunction in cancer. Mitochondrion, 2004, 4(5-6), 755-762.
[http://dx.doi.org/10.1016/j.mito.2004.07.027] [PMID: 16120430]
[24]
Galluzzi, L.; Larochette, N.; Zamzami, N.; Kroemer, G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene, 2006, 25(34), 4812-4830.
[http://dx.doi.org/10.1038/sj.onc.1209598] [PMID: 16892093]
[25]
Galluzzi, L.; Morselli, E.; Kepp, O.; Vitale, I.; Rigoni, A.; Vacchelli, E.; Michaud, M.; Zischka, H.; Castedo, M.; Kroemer, G. Mitochondrial gateways to cancer. Mol. Aspects Med., 2010, 31(1), 1-20.
[http://dx.doi.org/10.1016/j.mam.2009.08.002] [PMID: 19698742]
[26]
Chen, L.B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol., 1988, 4, 155-181.
[http://dx.doi.org/10.1146/annurev.cb.04.110188.001103] [PMID: 3058159]
[27]
Modica-Napolitano, J.S.; Aprille, J.R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv. Drug Deliv. Rev., 2001, 49(1-2), 63-70.
[http://dx.doi.org/10.1016/S0169-409X(01)00125-9] [PMID: 11377803]
[28]
Boukalova, S.; Rohlenova, K.; Rohlena, J.; Neuzil, J. Mitocans: Mitochondrially targeted anti-cancer drugs.Mitochondrial Biology and Experimental Therapeutics; Oliveira, P.J., Ed.; Springer International Publishing AG: Cham, 2018, pp. 613-635.
[http://dx.doi.org/10.1007/978-3-319-73344-9_27]
[29]
Ross, M.F.; Kelso, G.F.; Blaikie, F.H.; James, A.M.; Cochemé, H.M.; Filipovska, A.; Da Ros, T.; Hurd, T.R.; Smith, R.A.J.; Murphy, M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc.), 2005, 70(2), 222-230.
[http://dx.doi.org/10.1007/s10541-005-0104-5] [PMID: 15807662]
[30]
Chen, Z.P.; Li, M.; Zhang, L.J.; He, J.Y.; Wu, L.; Xiao, Y.Y.; Duan, J.A.; Cai, T.; Li, W.D. Mitochondria-targeted drug delivery system for cancer treatment. J. Drug Target., 2016, 24(6), 492-502.
[http://dx.doi.org/10.3109/1061186X.2015.1108325] [PMID: 26548930]
[31]
Madar, I.; Anderson, J.H.; Szabo, Z.; Scheffel, U.; Kao, P-F.; Ravert, H.T.; Dannals, R.F. Enhanced uptake of [11C]TPMP in canine brain tumor: A PET study. J. Nucl. Med., 1999, 40(7), 1180-1185.
[PMID: 10405140]
[32]
Steichen, J.D.; Weiss, M.J.; Elmaleh, D.R.; Martuza, R.L. Enhanced in vitro uptake and retention of 3H-tetraphenylphosphonium by nervous system tumor cells. J. Neurosurg., 1991, 74(1), 116-122.
[http://dx.doi.org/10.3171/jns.1991.74.1.0116] [PMID: 1984490]
[33]
Rideout, D.C.; Calogeropoulou, T.; Jaworski, J.S.; Dagnino, R., Jr; McCarthy, M.R. Phosphonium salts exhibiting selective anti-carcinoma activity in vitro. Anticancer Drug Des., 1989, 4(4), 265-280.
[PMID: 2619865]
[34]
Kim, D.S.; Pezzuto, J.M.; Pisha, E. Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorg. Med. Chem. Lett., 1998, 8(13), 1707-1712.
[http://dx.doi.org/10.1016/S0960-894X(98)00295-9] [PMID: 9873420]
[35]
Gauthier, C.; Legault, J.; Lebrun, M.; Dufour, P.; Pichette, A. Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents. Bioorg. Med. Chem., 2006, 14(19), 6713-6725.
[http://dx.doi.org/10.1016/j.bmc.2006.05.075] [PMID: 16787747]
[36]
Santos, R.C.; Salvador, J.A.; Marín, S.; Cascante, M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg. Med. Chem., 2009, 17(17), 6241-6250.
[http://dx.doi.org/10.1016/j.bmc.2009.07.050] [PMID: 19674909]
[37]
Nedopekina, D.A.; Gubaidullin, R.R.; Odinokov, V.N.; Maximchik, P.V.; Zhivotovsky, B.; Bel’skii, Y.P.; Khazanov, V.A.; Manuylova, A.V.; Gogvadze, V.; Spivak, A.Y. Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. MedChemComm, 2017, 8(10), 1934-1945.
[http://dx.doi.org/10.1039/C7MD00248C] [PMID: 30108714]
[38]
Spivak, A.Y.; Nedopekina, D.A.; Shakurova, E.R.; Khalitova, R.R.; Gubaidullin, R.R.; Odinokov, V.N.; Dzhemilev, U.M.; Bel’skii, Y.P.; Bel’skaya, N.V.; Stankevich, S.A.; Korotkaya, E.V.; Khazanov, V.A. Synthesis of lupane triterpenoids with triphenylphosphonium substituents and studies of their antitumor activity. Russ. Chem. Bull., 2013, 62, 188-198.
[http://dx.doi.org/10.1007/s11172-013-0028-y]
[39]
Spivak, A.Y.; Nedopekina, D.A.; Khalitova, R.R.; Gubaidullin, R.R.; Odinokov, V.N.; Bel’skii, Y.P.; Bel’skaya, N.V.; Khazanov, V.A. Triphenylphosphonium cations of betulinic acid derivatives: synthesis and antitumor activity. Med. Chem. Res., 2017, 26, 518-531.
[http://dx.doi.org/10.1007/s00044-016-1771-z]
[40]
Ye, Y.; Zhang, T.; Yuan, H.; Li, D.; Lou, H.; Fan, P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J. Med. Chem., 2017, 60(14), 6353-6363.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00679] [PMID: 28671831]
[41]
Tsepaeva, O.V.; Nemtarev, A.V.; Abdullin, T.I.; Grigor’eva, L.R.; Kuznetsova, E.V.; Akhmadishina, R.A.; Ziganshina, L.E.; Cong, H.H.; Mironov, V.F. Design, synthesis, and cancer cell growth inhibitory activity of triphenylphosphonium derivatives of the triterpenoid betulin. J. Nat. Prod., 2017, 80(8), 2232-2239.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00105] [PMID: 28782948]
[42]
Jara, J.A.; Castro-Castillo, V.; Saavedra-Olavarría, J.; Peredo, L.; Pavanni, M.; Jaña, F.; Letelier, M.E.; Parra, E.; Becker, M.I.; Morello, A.; Kemmerling, U.; Maya, J.D.; Ferreira, J. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J. Med. Chem., 2014, 57(6), 2440-2454.
[http://dx.doi.org/10.1021/jm500174v] [PMID: 24568614]
[43]
Kanazawa, A.; Ikeda, T.; Endo, T. Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various lengths. Antimicrob. Agents Chemother., 1994, 38(5), 945-952.
[http://dx.doi.org/10.1128/AAC.38.5.945] [PMID: 8067774]
[44]
Khailova, L.S.; Nazarov, P.A.; Sumbatyan, N.V.; Korshunova, G.A.; Rokitskaya, T.I.; Dedukhova, V.I.; Antonenko, Y.N.; Skulachev, V.P. Uncoupling and toxic action of alkyltriphenylphosphonium cations on mitochondria and the bacterium Bacillus subtilis as a function of alkyl chain length. Biochemistry (Mosc.), 2015, 80(12), 1589-1597.
[http://dx.doi.org/10.1134/S000629791512007X] [PMID: 26638684]
[45]
Kamalov, M.I.; Đặng, T.; Petrova, N.V.; Laikov, A.V.; Luong, D.; Akhmadishina, R.A.; Lukashkin, A.N.; Abdullin, T.I. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy. Colloids Surf. B Biointerfaces, 2018, 164, 78-88.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.014] [PMID: 29413623]
[46]
Akhmadishina, R.A.; Kuznetsova, E.V.; Sadrieva, G.R.; Sabirzyanova, L.R.; Nizamov, I.S.; Akhmedova, G.R.; Nizamov, I.D.; Abdullin, T.I. Glutathione salts of O,O-diorganyl dithiophosphoric acids: Synthesis and study as redox modulating and antiproliferative compounds. Peptides, 2018, 99, 179-188.
[http://dx.doi.org/10.1016/j.peptides.2017.10.002] [PMID: 28993278]
[47]
Akhmadishina, R.A.; Garifullin, R.; Petrova, N.V.; Kamalov, M.I.; Abdullin, T.I. Triphenylphosphonium moiety modulates proteolytic stability and potentiates neuroprotective activity of antioxidant tetrapeptides in vitro. Front. Pharmacol., 2018, 9, 115.
[http://dx.doi.org/10.3389/fphar.2018.00115] [PMID: 29520232]
[48]
Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard M7-A4, 9th ed; Clinical and Laboratory Standards Institute: Wayne, 1997, Vol. 26, pp. 9-16.
[49]
Kim, D.S.H.L.; Chen, Z.; Nguyen, T.; Pezzuto, J.M.; Qiu, S.; Lu, Z.Z. A concise semi-synthetic approach to betulinic acid from betulin. Synth. Commun., 1997, 27, 1607-1612.
[http://dx.doi.org/10.1080/00397919708006099]
[50]
Liu, J.H.; Tang, J.; Zhu, Z.F.; Chen, L. Design, synthesis, and anti-tumor activity of novel betulinic acid derivatives. J. Asian Nat. Prod. Res., 2014, 16(1), 34-42.
[http://dx.doi.org/10.1080/10286020.2013.870998] [PMID: 24350921]
[51]
Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis., 2004, 38(6), 864-870.
[http://dx.doi.org/10.1086/381972] [PMID: 14999632]
[52]
Bleier, L.; Dröse, S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim. Biophys. Acta, 2013, 1827(11-12), 1320-1331.
[http://dx.doi.org/10.1016/j.bbabio.2012.12.002] [PMID: 23269318]
[53]
Fulda, S. Betulinic acid for cancer treatment and prevention. Int. J. Mol. Sci., 2008, 9(6), 1096-1107.
[http://dx.doi.org/10.3390/ijms9061096] [PMID: 19325847]
[54]
Mullauer, F.B.; Kessler, J.H.; Medema, J.P. Betulinic acid, a natural compound with potent anticancer effects. Anticancer Drugs, 2010, 21(3), 215-227.
[http://dx.doi.org/10.1097/CAD.0b013e3283357c62] [PMID: 20075711]
[55]
Ali-Seyed, M.; Jantan, I.; Vijayaraghavan, K.; Bukhari, S.N.A. Betulinic acid: Recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem. Biol. Drug Des., 2016, 87(4), 517-536.
[http://dx.doi.org/10.1111/cbdd.12682] [PMID: 26535952]
[56]
Härmä, V.; Haavikko, R.; Virtanen, J.; Ahonen, I.; Schukov, H-P.; Alakurtti, S.; Purev, E.; Rischer, H.; Yli-Kauhaluoma, J.; Moreira, V.M.; Nees, M.; Oksman-Caldentey, K-M. Optimization of invasion-specific effects of betulin derivatives on prostate cancer cells through lead development. PLoS One, 2015, 10(5) e0126111
[http://dx.doi.org/10.1371/journal.pone.0126111] [PMID: 25965345]
[57]
Saxena, B.B.; Zhu, L.; Hao, M.; Kisilis, E.; Katdare, M.; Oktem, O.; Bomshteyn, A.; Rathnam, P. Boc-lysinated-betulonic acid: A potent, anti-prostate cancer agent. Bioorg. Med. Chem., 2006, 14(18), 6349-6358.
[http://dx.doi.org/10.1016/j.bmc.2006.05.048] [PMID: 16777417]
[58]
Fontanay, S.; Grare, M.; Mayer, J.; Finance, C.; Duval, R.E. Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes. J. Ethnopharmacol., 2008, 120(2), 272-276.
[http://dx.doi.org/10.1016/j.jep.2008.09.001] [PMID: 18835348]
[59]
Schühly, W.; Heilmann, J.; Calis, I.; Sticher, O. New triterpenoids with antibacterial activity from Zizyphus joazeiro. Planta Med., 1999, 65(8), 740-743.
[http://dx.doi.org/10.1055/s-1999-14054] [PMID: 10630117]
[60]
Chue, K.T.; Chang, M.S.; Ten, L.N. Synthesis and antibacterial activity of betulin esters. Chem. Nat. Compd., 2011, 47, 583-586.
[http://dx.doi.org/10.1007/s10600-011-0001-7]
[61]
Kurek, A.; Grudniak, A.M.; Szwed, M.; Klicka, A.; Samluk, L.; Wolska, K.I.; Janiszowska, W.; Popowska, M. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie van Leeuwenhoek, 2010, 97(1), 61-68.
[http://dx.doi.org/10.1007/s10482-009-9388-6] [PMID: 19894138]
[62]
Wolska, K.I.; Grudniak, A.M.; Fiecek, B.; Kraczkiewicz-Dowjat, A.; Kurek, A. Antibacterial activity of oleanolic and ursolic acids and their derivatives. Cent. Eur. J. Biol., 2010, 5, 543-553.
[63]
Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci., 2006, 29(1), 1-13.
[http://dx.doi.org/10.1016/j.ejps.2006.04.006] [PMID: 16716572]
[64]
Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer, 2012, 12(10), 685-698.
[http://dx.doi.org/10.1038/nrc3365] [PMID: 23001348]
[65]
DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; Scrimieri, F.; Winter, J.M.; Hruban, R.H.; Iacobuzio-Donahue, C.; Kern, S.E.; Blair, I.A.; Tuveson, D.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475(7354), 106-109.
[http://dx.doi.org/10.1038/nature10189] [PMID: 21734707]
[66]
Murphy, M.P. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol., 1997, 15, 326-330.
[67]
Preston, T.J.; Abadi, A.; Wilson, L.; Singh, G. Mitochondrial contributions to cancer cell physiology: Potential for drug development. Adv. Drug Deliv. Rev., 2001, 49(1-2), 45-61.
[http://dx.doi.org/10.1016/S0169-409X(01)00127-2] [PMID: 11377802]
[68]
Weinberg, S.E.; Chandel, N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol., 2015, 11(1), 9-15.
[http://dx.doi.org/10.1038/nchembio.1712] [PMID: 25517383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy