In silico Characterization of a Candidate Protein from Aphid Gelling Saliva with Potential for Aphid Control in Plants

Author(s): Rao Sohail Ahmad Khan*, Zainab Ali, Adnan Khan Niazi, James C. Carolan, Thomas L. Wilkinson*

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Sheath or gelling saliva, secreted during feeding by aphids, is a hard material that supports the piercing mouthparts and remains in the plant after feeding. Solidification or gelling of the saliva might be due to the composition of amino acids in the constituent proteins, many of which probably interact with plant defenses.

Objective: The complete complement of proteins in the gelling saliva are still unknown, although one sheath protein (SHP) has previously been identified as a potential candidate protein to control aphid feeding, but its structure and its physiochemical role remains obscure. The current study provides structural information and biochemical properties of the aphid sheath protein.

Methods: The Sheath protein encoding gene was amplified from cDNA of the pea aphid (Acyrthosiphon pisum) through PCR using specific gene primers. Sequence was in silico characterized by using EXPASY, Berkeley Drosophila Genome Project (BDGP) Neural Network Promoter Prediction, BioEdit, Mega7, ProtParam, Phyre server, 3D LigandSite SMART, MEME and GSDS programs, available online.

Results: BLASTp analysis revealed that the sequenced gene was identical (100%) to the sequence from Acyrthosiphon pisum, with 87% identity to Metpolophium dirhodum and 84% identity to Sitobion avenae. Phylogenetically monocot feeders such as M. dirhodum and S. avenae are in a sister taxa to dicot feeders. In silico analysis of the sequence revealed that sheath protein has a molecular weight of 144 kDa and 50% of the protein is composed of only six amino acids, i.e., threonine, serine, aspartic acid, glutamic acid, isoleucine and tyrosine. The computed IP value revealed that sheath protein is acidic in nature. Ligand binding sites for sheath protein were predicted on residues 1123 and 1125 (isoleucine and glutamine, respectively). Metallic heterogens are also present in sheath protein that are iron, zinc and magnesium, respectively.

Conclusion: It is conceivable that variation in the salivary gene sequences may reveal important biological information of relevance to the insect-plant interaction. Further exploration of insect salivary proteins, their composition and structure will provide powerful information, especially when these proteins are interacting with plant proteins, and specific information about the sheath protein, which is interacting with plants at a molecular/cellular level, will be important to progress strategies aimed specifically against sucking pests such as aphids.

Keywords: Aphid, saliva, sheath, gel, protein, in silico.

Harmel, N.; Létocart, E.; Cherqui, A.; Giordanengo, P.; Mazzucchelli, G.; Guillonneau, F.; De Pauw, E.; Haubruge, E.; Francis, F. Identification of aphid salivary proteins: A proteomic investigation of Myzus persicae. Insect Mol. Biol., 2008, 17(2), 165-174.
[] [PMID: 18353105]
Tjallingii, W.F. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot., 2006, 57(4), 739-745.
[] [PMID: 16467410]
Miles, P.W.; McLean, D.L.; Kinsey, M.G. Evidence that two species of aphid ingest food through an open stylet sheath. Experientia, 1964, 20(10), 582.
[] [PMID: 5859228]
Carolan, J.C.; Fitzroy, C.I.J.; Ashton, P.D.; Douglas, A.E.; Wilkinson, T.L. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics, 2009, 9(9), 2457-2467.
[] [PMID: 19402045]
Carolan, J.C.; Caragea, D.; Reardon, K.T.; Mutti, N.S.; Dittmer, N.; Pappan, K.; Cui, F.; Castaneto, M.; Poulain, J.; Dossat, C.; Tagu, D.; Reese, J.C.; Reeck, G.R.; Wilkinson, T.L.; Edwards, O.R. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. J. Proteome Res., 2011, 10(4), 1505-1518.
[] [PMID: 21226539]
Rao, S.A.K.; Carolan, J.C.; Wilkinson, T.L. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One, 2013, 8(2)e57413
[] [PMID: 23460852]
Will, T.; Steckbauer, K.; Hardt, M.; van Bel, A.J.E. Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-tip milieu. PLoS One, 2012, 7(10)e46903
[] [PMID: 23056521]
Gao, L-L.; Klingler, J.P.; Anderson, J.P.; Edwards, O.R.; Singh, K.B. Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol., 2008, 146(3), 996-1009.
[] [PMID: 18184733]
van Bel, A.J.E.; Will, T. Functional evaluation of proteins in watery and gel saliva of aphids. Front. Plant Sci., 2016, 7, 1840.
[] [PMID: 28018380]
Miles, P.W. Aphid saliva. Biol. Rev., 1999, 74(1), 41-85.
Cherqui, A.; Tjallingii, W.F. Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J. Insect Physiol., 2000, 46(8), 1177-1186.
[] [PMID: 10818245]
Martín, B.; Collar, J.L.; Tjallingii, W.F.; Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol., 1997, 78(Pt 10), 2701-2705.
[] [PMID: 9349493]
Prado, E.; Tjallingii, W.F. Aphid activities during sieve element punctures. Entomol. Exp. Appl., 1994, 72(2), 157-165.
Chaudhary, R.; Peng, H.C.; He, J.; MacWilliams, J.; Teixeira, M.; Tsuchiya, T.; Chesnais, Q.; Mudgett, M.B.; Kaloshian, I. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. New Phytol., 2019, 221(3), 1518-1528.
[] [PMID: 30357852]
Rodriguez, P.A.; Escudero-Martinez, C.; Bos, J.I.B. An aphid effector targets trafficking protein VPS52 in a host-specific manner to promote virulence. Plant Physiol., 2017, 173(3), 1892-1903.
[] [PMID: 28100451]
Kettles, G.J.; Kaloshian, I. The potato aphid salivary effector Me47 is a glutathione-s-transferase involved in modifying plant responses to aphid infestation. Front. Plant Sci., 2016, 7, 1142.
[] [PMID: 27536306]
Bos, J.I.B.; Prince, D.; Pitino, M.; Maffei, M.E.; Win, J.; Hogenhout, S.A. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet., 2010, 6(11) e1001216
[] [PMID: 21124944]
Mutti, N.S.; Louis, J.; Pappan, L.K.; Pappan, K.; Begum, K.; Chen, M-S.; Park, Y.; Dittmer, N.; Marshall, J.; Reese, J.C.; Reeck, G.R. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc. Natl. Acad. Sci. USA, 2008, 105(29), 9965-9969.
[] [PMID: 18621720]
McLean, D.L.; Kinsey, M.G. Identification of electrically recorded curve patterns associated with aphid salivation and ingestion. Nature, 1965, 205(976), 1130-1131.
[] [PMID: 5833223]
Miles, P.W. Studies on the salivary physiology of plant-bugs: The salivary secretions of aphids. J. Insect Physiol., 1965, 11(9), 1261-1262.
[] [PMID: 5828294]
Van Der Westhuizen, A.J.; Qian, X.M.; Botha, A.M. Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep., 1998, 18(1-2), 132-137.
Will, T.; Van Bel, A.J.E. Physical and chemical interactions between aphids and plants. J. Experimental Botany., 2006, 57(4), 729-737.
Will, T.; Vilcinskas, A. The structural sheath protein of aphids is required for phloem feeding. Insect Biochem. Mol. Biol., 2015, 57, 34-40.
[] [PMID: 25527379]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[] [PMID: 27004904]
Walker, G.P.; Perring, T.M.; Freeman, T.P. Bemisia: Bionomics and Management of a Global Pest; Springer: Netherlands, 2010.
Huang, H.J.; Liu, C.W.; Cai, Y.F.; Zhang, M.Z.; Bao, Y.Y.; Zhang, C.X. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants. Insect Biochem. Mol. Biol., 2015, 66, 77-87.
[] [PMID: 26483289]
Kimmins, F.M. Ultrastructure of the stylet pathway of Brevicoryne brassicae in host plant tissue. Brassica oleracea. Entomol. Exp. Appl., 1986, 41(3), 283-290.
Garzo, E.; Fernández-Pascual, M.; Morcillo, C.; Fereres, A.; Gómez-Guillamón, M.L.; Tjallingii, W.F. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon. Insect Sci., 2018, 25(4), 631-642.
[] [PMID: 28213963]
Miles, P.W. Plant-sucking bugs can remove the contents of cells without mechanical damage. Experientia, 1987, 43(8), 937-939.
Abdellatef, E.; Will, T.; Koch, A.; Imani, J.; Vilcinskas, A.; Kogel, K.H. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. Plant Biotechnol. J., 2015, 13(6), 849-857.
[] [PMID: 25586210]
Cooper, W.R.; Dillwith, J.W.; Puterka, G.J. Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Environ. Entomol., 2011, 40(1), 151-156.
[] [PMID: 22182624]
Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[] [PMID: 3447015]
Dopazo, J. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J. Mol. Evol., 1994, 38(3), 300-304.
[] [PMID: 8006997]
Rzhetsky, A.; Nei, M. METREE: A program package for inferring and testing minimum-evolution trees. Comput. Appl. Biosci., 1994, 10(4), 409-412.
[] [PMID: 7804873]
Zuckerkandl, E.; Pauling, L. Evolutionary divergence and convergence in proteins., 1965, 97-166.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 06 January, 2020
Page: [158 - 167]
Pages: 10
DOI: 10.2174/0929866526666191014145839
Price: $65

Article Metrics

PDF: 26