Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.)

Author(s): Phetole Mangena*

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Plant cystatins, also called phytocystatins constitute a family of specific cysteine protease inhibitors found in several monocots and dicots. In soybean, phytocystatins regulate several endogenous processes contributing immensely to this crop’s tolerance to abiotic stress factors. Soybeans offer numerous nutritional, pharmaceutical and industrial benefits; however, their growth and yields is hampered by drought, which causes more than 10% yield losses recorded every harvest period worldwide. This review analyses the role of papain-like cysteine proteases and their inhibitors in soybean plant growth and development under drought stress. It also describes their localisation, regulation, target organs and tissues, and the overall impact of cystatins on generating drought tolerance soybean plants. These proteins have many functions that remain poorly characterized, particularly under abiotic stress. Although much information is available on the utilisation of proteases for industrial applications, very few reports have focused on the impact of proteases on plant stress responses. The exploitation of cystatins in plant engineering, as competitive proteases inhibitors is one of the means that will guarantee the continued utilisation of soybeans as an important oilseed crop.

Keywords: Drought, cysteine proteases, proteolysis, cystatins, senescence, soybean, drought resistance, genetic engineering.

[1]
Mangena, P. Oryza Cystatin-1 Based Genetic Transformation in Soybean for Drought Tolerance. Masters’ Dissertation,. University of Limpopo: South Africa, April, 2015.
[2]
Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev., 2009, 29(1), 185-212.
[http://dx.doi.org/10.1051/agro:2008021]
[3]
Gelvin, S.B. Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev., 2003, 67(1), 16-37.
[http://dx.doi.org/10.1128/MMBR.67.1.16-37.2003] [PMID: 12626681]
[4]
Imbo, M.C.; Budambula, N.L.M.; Mweu, C.M.; Muli, S.K.; Anami, S.E. Genetic transformation of sweet potato for improved tolerance to stress: A review. Adv. Life. Sci. Technol, 2016, 49, 67-76.
[5]
Quain, M.D.; Makgopa, M.E.; Cooper, J.W.; Kunert, K.J.; Foyer, C.H. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. Phytochemistry, 2015, 112, 179-187.
[http://dx.doi.org/10.1016/j.phytochem.2014.12.027] [PMID: 25659749]
[6]
Dutt, S.; Gaur, V.S.; Taj, G.; Kumar, A. Differential induction of two different cystatin genes during pathogenesis of Karnal bunt (Tilletia indica) in wheat under the influence of jasmonic acid. Gene, 2012, 506(1), 253-260.
[http://dx.doi.org/10.1016/j.gene.2012.06.028] [PMID: 22750319]
[7]
Masoud, T.; Khosravi, S. Transgenic crops with an improved resistance to biotic stresses. A review. Biotechnol. Agron. Soc. Environ., 2015, 19(1), 62-70.
[8]
López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem., 2008, 283(45), 30433-30437.
[http://dx.doi.org/10.1074/jbc.R800035200] [PMID: 18650443]
[9]
Coulombe, R.; Grochulski, P.; Sivaraman, J.; Ménard, R.; Mort, J.S.; Cygler, M. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J., 1996, 15(20), 5492-5503.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00934.x] [PMID: 8896443]
[10]
Grudkowska, M.; Zagdańska, B. Multifunctional role of plant cysteine proteinases. Acta Biochim. Pol., 2004, 51(3), 609-624.
[PMID: 15448724]
[11]
Oliveira, A.S.; Xavier-Filho, J.; Sales, M.P. Cysteine proteinases and cystatins. Braz. Arch. Biol. Technol., 2003, 46(1), 91-104.
[http://dx.doi.org/10.1590/S1516-89132003000100014]
[12]
United States Department of Agriculture. World agricultural supply and demand estimates, 2018.
[13]
Amanlou, H.; Maheri-Sis, N.; Bassiri, S.; Mirza-Aghazadeh, A.; Salamatdust, R.; Moosavi, A.; Karimi, V. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows. Open Vet. J., 2012, 2(1), 88-94.
[PMID: 26623299]
[14]
Dozier, W.A.; Hess, J.B. Agricultural and Biotechnological Science: Soybean and Nutrition; Auburn University Press: USA, 2011.
[15]
Mangena, P.; Mokwala, P.W.; Nikolova, R.V. Challenges of in vitro and in vivo agrobacterium-mediated genetic transformation in soybean; Kasai, M., Ed.; InTech Open Science: London, 2017, pp. 75-94.
[16]
Gandhi, A.P. Review article: Quality of soybean and its food products. Int. Food Res. J., 2009, 16, 11-19.
[17]
Diaz-Mendoza, M.; Velasco-Arroyo, B.; Santamaria, M.E.; González-Melendi, P.; Martinez, M.; Diaz, I. Plant senescence and proteolysis: Two processes with one destiny. Genet. Mol. Biol., 2016, 39(3), 329-338.
[http://dx.doi.org/10.1590/1678-4685-GMB-2016-0015] [PMID: 27505308]
[18]
Mahajan, R.T.; Badgujar, S.B. Biological aspects of proteolytic enzymes: A review. J. Pharm. Res., 2010, 3(9), 2048-2068.
[19]
Gregersen, P.L.; Holm, P.B.; Krupinska, K. Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol (Stuttg), 2008, 10(Suppl. 1), 37-49.
[http://dx.doi.org/10.1111/j.1438-8677.2008.00114.x] [PMID: 18721310]
[20]
Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed; Sinauer Associates, Inc: Sunderland, 2015.
[21]
Peterson, R.K.D.; Higley, L.G. Biotic Stress and Yield Loss; CRC Press: London, 2000.
[http://dx.doi.org/10.1201/9781420040753]
[22]
Van Toai, T.T.; Hoa, C.T.T.; Hue, N.T.N.; Nguyen, H.T.; Shannon, J.G.; Rahman, M.A. Flooding tolerance of soybean [Glycine max (L.) Merr.] germplasm from Southeast Asia under field and screen-house environments. Open Agric. J., 2010, 4, 38-46.
[http://dx.doi.org/10.2174/1874331501004010038]
[23]
Yamaguchi, N.; Yamazaki, H.; Ohnishi, S.; Suzuki, C.; Hagihara, S.; Miyoshi, T.; Senda, M. Method for selection of soybeans tolerant to seed cracking under chilling temperatures. Breed. Sci., 2014, 64(1), 103-108.
[http://dx.doi.org/10.1270/jsbbs.64.103] [PMID: 24987296]
[24]
Lizumi, T.; Ramankutty, N. Changes in yield variability of major crops for 1981-2010 explained by climate change. Environ. Res. Lett., 2015, 11(3), 1-11.
[25]
Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought effect on US maize and soybean production: Spatiotemporal patterns and historical changes. Environ. Res. Lett., 2016, 11(9), 1-11.
[http://dx.doi.org/10.1088/1748-9326/11/9/094021]
[26]
Iizumi, T.; Furuya, J.; Shen, Z.; Kim, W.; Okada, M.; Fujimori, S.; Hasegawa, T.; Nishimori, M. Responses of crop yield growth to global temperature and socioeconomic changes. Sci. Rep., 2017, 7(1), 7800.
[http://dx.doi.org/10.1038/s41598-017-08214-4] [PMID: 28798370]
[27]
Food and Agriculture Organisation of the United Nations Available from:. www.fao.org/3/a-ax444e.pdf
[28]
Wrather, J.A.; Koenning, S.R.; Anderson, T.R. Effect of diseases on soybean yields in the United States and Ontario (1999-2002); Plant Heath Progress, 2003.
[http://dx.doi.org/10.1094/PHP-2003-0325-01-RV]
[29]
Ryan, C.A. Proteolytic enzymes and their inhibitors in plants. Annu. Rev. Physiol., 1973, 24, 173-196.
[http://dx.doi.org/10.1146/annurev.pp.24.060173.001133]
[30]
Fan, S.G.; Wu, G.J. Characteristics of plant proteinase inhibitors and their applications in combating phytophagous insects. Bot. Bull. Acad. Sin., 2005, 46, 273-292.
[31]
Beers, E.P.; Woffenden, B.J.; Zhao, C. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol., 2000, 44(3), 399-415.
[http://dx.doi.org/10.1023/A:1026556928624] [PMID: 11199397]
[32]
Singh, R.; Mittal, A.; Kumar, M.; Mehta, P.K. Microbial proteases in commercial applications. J. Pharm. Chem. Biol. Sci, 2016, 4(3), 365-374.
[33]
Mótyán, J.A.; Tóth, F.; Tőzsér, J. Research applications of proteolytic enzymes in molecular biology. Biomolecules, 2013, 3(4), 923-942.
[http://dx.doi.org/10.3390/biom3040923] [PMID: 24970197]
[34]
Li, R.; Wang, W.; Wang, W.; Li, F.; Wang, Q.; Xu, Y.; Wang, S. Overexpression of a cysteine proteinase inhibitor gene from Jatropha curcas confers enhanced tolerance to salinity stress. Electron. J. Biotechnol., 2015, 18(5), 368-375.
[http://dx.doi.org/10.1016/j.ejbt.2015.08.002]
[35]
Kunert, K.J.; van Wyk, S.G.; Cullis, C.A.; Vorster, B.J.; Foyer, C.H. Potential use of phytocystatins in crop improvement, with a particular focus on legumes. J. Exp. Bot., 2015, 66(12), 3559-3570.
[http://dx.doi.org/10.1093/jxb/erv211] [PMID: 25944929]
[36]
Zou, Z.; Huang, Q.; Xie, G.; Yang, L. Genome-wide comparative analysis of papain-like cysteine protease family genes in castor bean and physic nut. Sci. Rep., 2018, 8(1), 331.
[http://dx.doi.org/10.1038/s41598-017-18760-6] [PMID: 29321580]
[37]
Deller, M.C.; Kong, L.; Rupp, B. Protein stability: a crystallographer’s perspective. Acta Crystallogr. F Struct. Biol. Commun., 2016, 72(Pt 2), 72-95.
[http://dx.doi.org/10.1107/S2053230X15024619] [PMID: 26841758]
[38]
Studholme, D.J.; Rawlings, N.D.; Barrett, A.J.; Bateman, A. A comparison of Pfam and MEROPS: Two databases, one comprehensive, and one specialised. BMC Bioinformatics, 2003, 4(17), 17.
[http://dx.doi.org/10.1186/1471-2105-4-17] [PMID: 12740029]
[39]
Benchabane, M.; Schlüter, U.; Vorster, J.; Goulet, M.C.; Michaud, D. Plant cystatins. Biochimie, 2010, 92(11), 1657-1666.
[http://dx.doi.org/10.1016/j.biochi.2010.06.006] [PMID: 20558232]
[40]
Wiśniewski, K.; Zagdańska, B. Genotype-dependent proteolytic response of spring wheat to water deficiency. J. Exp. Bot., 2001, 52(360), 1455-1463.
[http://dx.doi.org/10.1093/jexbot/52.360.1455] [PMID: 11457905]
[41]
Singh, K.B. Transcriptional regulation in plants: The importance of combinatorial control. Plant Physiol., 1998, 118(4), 1111-1120.
[http://dx.doi.org/10.1104/pp.118.4.1111] [PMID: 9847085]
[42]
Yang, F. Establishing the architecture of plant gene regulatory networks.Bradley-Moore; Ed.; Elsevier Inc: USA, 2018, 605, pp. 335-339.
[43]
Stolf-Moreira, R.; Medri, M.E.; Neumaier, N.; Lemos, N.G.; Pimenta, J.A.; Tobita, S.; Brogin, R.L.; Marcelino-Guimarães, F.C.; Oliveira, M.C.N.; Farias, J.R.; Abdelnoor, R.V.; Nepomuceno, A.L. Soybean physiology and gene expression during drought. Genet. Mol. Res., 2010, 9(4), 1946-1956.
[http://dx.doi.org/10.4238/vol9-4gmr851] [PMID: 20927713]
[44]
Mangena, P. Morphological and anatomical changes in soybean (Glycine max L.)Plants,; Violeta-Andjelkovic, Ed.; InTech Open Science: London, 2018, pp. 9-31.
[45]
Feller, U.; Anders, I.; Demirevska, K. Degradation of rubisco and other chloroplast proteins under abiotic stress. Gen. Appl. Plant Physiol., 2008, 34(1-2), 5-18.
[46]
Shinozaki, K.; Yamaguchi-Shinozaki, K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol., 2000, 3(3), 217-223.
[http://dx.doi.org/10.1016/S1369-5266(00)00067-4] [PMID: 10837265]
[47]
Guimarães-Dias, F.; Neves-Borges, A.C.; Viana, A.A.B.; Mesquita, R.O.; Romano, E.; de Fátima Grossi-de-Sá, M.; Nepomuceno, A.L.; Loureiro, M.E.; Alves-Ferreira, M. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes. Genet. Mol. Biol., 2012, 35(Suppl. 1), 222-232.
[http://dx.doi.org/10.1590/S1415-47572012000200004] [PMID: 22802708]
[48]
Misaka, T.; Kuroda, M.; Iwabuchi, K.; Abe, K.; Arai, S. Soyacystatin, a novel cysteine proteinase inhibitor in soybean, is distinct in protein structure and gene organization from other cystatins of animal and plant origin. Eur. J. Biochem., 1996, 240(3), 609-614.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0609h.x] [PMID: 8856061]
[49]
Arai, S.; Matsumoto, I.; Emori, Y.; Abe, K. Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J. Agric. Food Chem., 2002, 50(22), 6612-6617.
[http://dx.doi.org/10.1021/jf0201935] [PMID: 12381160]
[50]
Solomon, M.; Belenghi, B.; Delledonne, M.; Menachem, E.; Levine, A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell, 1999, 11(3), 431-444.
[http://dx.doi.org/10.1105/tpc.11.3.431] [PMID: 10072402]
[51]
Krishnan, H.B.; Wang, T.T.Y. An effective and simple procedure to isolate abundant quantities of biologically active chemopreventive Lunasin Protease Inhibitor Concentrate (LPIC) from soybean. Food Chem., 2015, 177, 120-126.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.006] [PMID: 25660866]
[52]
Botella, M.A.; Xu, Y.; Prabha, T.N.; Zhao, Y.; Narasimhan, M.L.; Wilson, K.A.; Nielsen, S.S.; Bressan, R.A.; Hasegawa, P.M. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol., 1996, 112(3), 1201-1210.
[http://dx.doi.org/10.1104/pp.112.3.1201] [PMID: 8938418]
[53]
van Wyk, S.G.; Du Plessis, M.; Cullis, C.A.; Kunert, K.J.; Vorster, B.J. Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. BMC Plant Biol., 2014, 14(294), 294.
[http://dx.doi.org/10.1186/s12870-014-0294-3] [PMID: 25404209]
[54]
van Wyk, S.G.; Kunert, K.J.; Cullis, C.A.; Pillay, P.; Makgopa, M.E.; Schlüter, U.; Vorster, B.J. Review: The future of cystatin engineering. Plant Sci., 2016, 246, 119-127.
[http://dx.doi.org/10.1016/j.plantsci.2016.02.016] [PMID: 26993242]
[55]
Vorster, B.J.; Tastan-Bishop, O.; Schluter, U.; Coetzer, N.; Michaud, D. New insights towards the understanding of plant cystatin-papain interactions. Asp. Appl. Biol., 2010, 96, 550-570.
[56]
Keyster, M.; Adams, R.; Klein, A.; Ludidi, N. Nitric oxide (NO) regulates the expression of single-domain cystatin in Glycine max (soybean). Plant. Omics J, 2013, 6(3), 183-192.
[57]
Pernas, M.; Sánchez-Monge, R.; Salcedo, G. Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett., 2000, 467(2-3), 206-210.
[http://dx.doi.org/10.1016/S0014-5793(00)01157-1] [PMID: 10675539]
[58]
Dutt, S.; Singh, V.K.; Marla, S.S.; Kumar, A. In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense. Genom Proteom Bioinformat, 2010, 8(1), 42-56.
[http://dx.doi.org/10.1016/S1672-0229(10)60005-8] [PMID: 20451161]
[59]
Diop, N.N.; Kidric, M.; Repellin, A.; Gareil, M.; d’Arcy-Lameta, A.; Pham Thi, A.T.; Zuily-Fodil, Y. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett., 2004, 577(3), 545-550.
[http://dx.doi.org/10.1016/j.febslet.2004.10.014] [PMID: 15556644]
[60]
Misas-Villamil, J.C.; van der Hoorn, R.A.; Doehlemann, G. Papain-like cysteine proteases as hubs in plant immunity. New Phytol., 2016, 212(4), 902-907.
[http://dx.doi.org/10.1111/nph.14117] [PMID: 27488095]
[61]
Hossain, M.A.; Bhattacharjee, S.; Armin, S.M.; Qian, P.; Xin, W.; Li, H.Y.; Burritt, D.J.; Fujita, M.; Tran, L.S. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci., 2015, 6(420), 420.
[http://dx.doi.org/10.3389/fpls.2015.00420] [PMID: 26136756]
[62]
Wang, N.; Zhang, W.; Qin, M.; Li, S.; Qiao, M.; Liu, Z.; Xiang, F. Drought tolerance conferred in soybean (Glycine max L.) by GmMYB84, a novel R2R3-MyB transcription factor. Plant Cell Physiol., 2017, 58(10), 1764-1776.
[http://dx.doi.org/10.1093/pcp/pcx111] [PMID: 29016915]
[63]
Goulet, M.C.; Dallaire, C.; Vaillancourt, L.P.; Khalf, M.; Badri, A.M.; Preradov, A.; Duceppe, M.O.; Goulet, C.; Cloutier, C.; Michaud, D. Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiol., 2008, 146(3), 1010-1019.
[http://dx.doi.org/10.1104/pp.108.115741] [PMID: 18192440]
[64]
Van der Vyver, C.; Schneidereit, J.; Driscoll, S.; Turner, J.; Kunert, K.; Foyer, C.H. Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Biotechnol. J., 2003, 1(2), 101-112.
[http://dx.doi.org/10.1046/j.1467-7652.2003.00010.x] [PMID: 17147747]
[65]
Sharma, H.C.; Sharma, K.K.; Seetherama, N.; Ortiz, R. Prospects for using transgenic resistance to insects in crop improvement. Electron. J. Biotechnol., 2000, 3(2), 76-95.
[http://dx.doi.org/10.2225/vol3-issue2-fulltext-3]
[66]
Zhang, X.; Liu, S.; Takano, T. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol., 2008, 68(1-2), 131-143.
[http://dx.doi.org/10.1007/s11103-008-9357-x] [PMID: 18523728]
[67]
Prins, A.; van Heerden, P.D.R.; Olmos, E.; Kunert, K.J.; Foyer, C.H. Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: A model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. J. Exp. Bot., 2008, 59(7), 1935-1950.
[http://dx.doi.org/10.1093/jxb/ern086] [PMID: 18503045]
[68]
Bleakley, S.; Hayes, M. Algal proteins: Extraction, application, and challenges concerning production. Foods, 2017, 6(5), 1-34.
[http://dx.doi.org/10.3390/foods6050033] [PMID: 28445408]
[69]
Perez-Lorens, J.; Benitez, E.; Vergara, J.J.; Berges, J.A. Characterization of proteolytic enzyme activities in macroalgae. Eur. J. Phycol., 2003, 38(1), 55-64.
[http://dx.doi.org/10.1080/0967026031000096254]
[70]
Sainsbury, F.; Rhéaume, A.J.; Goulet, M.C.; Vorster, J.; Michaud, D. Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities. J. Proteome Res., 2012, 11(12), 5983-5993.
[http://dx.doi.org/10.1021/pr300699n] [PMID: 23082957]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 2
Year: 2020
Page: [135 - 144]
Pages: 10
DOI: 10.2174/0929866526666191014125453

Article Metrics

PDF: 32
HTML: 3