Cetyl Trimethyl Ammonium Bromide as Anti-Pit Agent for Mild Steel in Sulfuric Acid Medium

Author(s): Harish Kumar*, Tilak Dhanda

Journal Name: Current Physical Chemistry

Volume 10 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aim: Pitting corrosion is a very serious problem for mild steel when it comes in contact with the dilute sulfuric acid medium. Specialized corrosion inhibitors are essentially required to minimize pitting and uniform types of corrosion in mild steel.

Background: Most of the corrosion inhibitors discovered so far protects the mild steel from uniform type of corrosion. But pitting corrosion is more fatal than a uniform type of corrosion because it immediately makes mild steel unfit for use as leakage starts from the pit.

Objective: The objective was to protect the mild steel alloys from pitting corrosion when comes in contact with dilute sulfuric acid by the use of organic corrosion inhibitor.

Methods: Cetyl Trimethyl Ammonium Bromide (CTAB) is tested as a corrosion inhibitor for mild steel in 0.1 N H2SO4 as corroding medium at 25.0, 30.0 and 35.0°C by weight loss, electrochemical polarization, and Impedance spectroscopy methods. Surface study of corroded and un-corroded specimens of mild steel was carried out by Metallurgical Research Microscopy (MRM) and Scanning Electron Microscopy (SEM) techniques.

Results: Surface study confirms that the adsorption of CTAB takes place through nitrogen atom resulting in the formation of uniform, nonporous, passive film confirmed by decrease in Warburg Impedance (Zw), decrease in Faradaic current, increase in Capacitive current, an increase in charge transfer resistance, Rct (41 to 401 Ω cm2) and significant increase in capacitive loop in Nyquist plot with increase in concentration of CTAB which results in significant decrease in corrosion rate of mild steel in 0.1N H2SO4 medium (percentage corrosion inhibition efficiency: 95.0%) especially eradicating pitting type of corrosion.

Conclusion: CTAB was proved to be a very good anti-pit agent for mild steel in 0.1N sulfuric acid medium. Pitting and uniform type of corrosion was significantly reduced by the use of CTAB as corrosion inhibitor for mild steel in the dilute sulfuric acid medium at 25.0, 30.0 and 35.0°C.

Keywords: CTAB, EIS, electrochemical polarization, mild steel, pitting corrosion, SEM.

[1]
Chauhan, L.R.; Gunasekaran, G. Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corros. Sci., 2007, 49(3), 1143-1161.
[http://dx.doi.org/10.1016/j.corsci.2006.08.012]
[2]
Knag, M.; Sjoblom, J.; Gulbrandsen, E. Partitioning of a model corrosion inhibitor in emulsions. J. Disp. Sci. Tech., 2006, 27(1), 65-75.
[http://dx.doi.org/10.1081/DIS-200066727]
[3]
Knag, M. Fundamental behavior of model corrosion inhibitors. J. Disp. Sci. Tech., 2006, 27(5), 587-597.
[http://dx.doi.org/10.1080/01932690600660657]
[4]
Ahmed, M.H.O.; Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B.; Gaaz, T.S. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1.0 M hydrochloric acid. Res. in Phy., 2018, 8, 728-733.
[5]
Zhang, F.; Tang, Y.; Cao, Z.; Jing, W.; Wu, Z.; Chen, Y. Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corros. Sci., 2012, 61, 1-9.
[http://dx.doi.org/10.1016/j.corsci.2012.03.045]
[6]
Dkhireche, N.; Galai, M.; El Kacimi, Y.; Rbaa, M.; Ouakki, M.; Lakhrissi, B.; Touhami, M.E. New quinoline derivatives as sulfuric acid inhibitors for mild steel. Anal. Bioanal. Electrochem., 2018, 10(1), 111-135.
[7]
Habeeb, H.J.; Luaibi, H.M.; Dakhil, R.M.; Kadhum, A.A.H.; Al-Amiery, A.A.; Gaaz, T.S. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study. Res. in Phy., 2018, 8, 1260-1267.
[http://dx.doi.org/10.1016/j.rinp.2018.02.015]
[8]
Mohan, R.; Joseph, A. Corrosion protection of mild steel in hydrochloric acid up to 313 K using propyl benzimidazole: Electroanalytical, adsorption and quantum chemical studies. Egy. J. Petro., 2018, 27(1), 11-20.
[http://dx.doi.org/10.1016/j.ejpe.2016.12.003]
[9]
Edison, T.N.J.I.; Atchudan, R.; Pugazhendhi, A.; Lee, Y.R.; Sethuraman, M.G. Corrosion inhibition performance of spermidine on mild steel in acid media. J. Mol. Liq., 2018, 264, 483-489.
[http://dx.doi.org/10.1016/j.molliq.2018.05.087]
[10]
Soltani, N.; Behpour, M.; Ghoreishi, S.M.; Naeimi, H. Corrosion inhibition of mild steel in hydrochloric acid solution by some double Schiff bases. Corros. Sci., 2010, 52(4), 1351-1361.
[http://dx.doi.org/10.1016/j.corsci.2009.11.045]
[11]
Al-Amiery, A.A.; Kadhum, A.A.H.; Kadihum, A.; Mohamad, A.B.; How, C.K.; Junaedi, S. Inhibition of mild steel corrosion in sulfuric acid solution by new Schiff base. Materials (Basel), 2014, 7(2), 787-804.
[http://dx.doi.org/10.3390/ma7020787 PMID: 28788488]
[12]
Tao, Z.; Zhang, S.; Li, W.; Hou, B. Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives. Corros. Sci., 2009, 51(11), 2588-2595.
[http://dx.doi.org/10.1016/j.corsci.2009.06.042]
[13]
Solomon, M.M.; Umoren, S.A.; Udosoro, I.I.; Udoh, A.P. Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corros. Sci., 2010, 52(4), 1317-1325.
[http://dx.doi.org/10.1016/j.corsci.2009.11.041]
[14]
Mourya, P.; Banerjee, S.; Singh, M.M. Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corros. Sci., 2014, 85, 352-363.
[http://dx.doi.org/10.1016/j.corsci.2014.04.036]
[15]
Pournazari, S.; Moayed, M.H.; Rahimizadeh, M. In situ inhibitor synthesis from admixture of benzaldehyde and benzene-1, 2-diamine along with FeCl3 catalyst as a new corrosion inhibitor for mild steel in 0.5 M sulphuric acid. Corros. Sci., 2013, 71, 20-31.
[http://dx.doi.org/10.1016/j.corsci.2013.01.019]
[16]
Yıldız, R.; Doner, A.; Dogan, T.; Dehri, I. Experimental studies of 2-pyridinecarbonitrile as corrosion inhibitor for mild steel in hydrochloric acid solution. Corros. Sci., 2014, 82, 125-132.
[http://dx.doi.org/10.1016/j.corsci.2014.01.008]
[17]
Yıldız, R. An electrochemical and theoretical evaluation of 4, 6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corros. Sci., 2015, 90, 544-553.
[http://dx.doi.org/10.1016/j.corsci.2014.10.047]
[18]
Hanza, A.P.; Naderi, R.; Kowsari, E.; Sayebani, M. Corrosion behavior of mild steel in H2SO4 solution with 1, 4-di [1′-methylene-3′-methyl imidazolium bromide]-benzene as an ionic liquid. Corros. Sci., 2016, 107, 96-106.
[http://dx.doi.org/10.1016/j.corsci.2016.02.023]
[19]
Mendonça, G.L.; Costa, S.N.; Freire, V.N.; Casciano, P.N.; Correia, A.N.; de Lima-Neto, P. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corros. Sci., 2017, 115, 41-55.
[http://dx.doi.org/10.1016/j.corsci.2016.11.012]
[20]
Al-Amiery, A.A.; Binti Kassim, F.A.; Kadhum, A.A.H.; Mohamad, A.B. Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid. Sci. Rep., 2016, 6, 19890.
[http://dx.doi.org/10.1038/srep19890 PMID: 26795066]
[21]
Solomon, M.M.; Umoren, S.A. In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution. J. Colloid Interface Sci., 2016, 462, 29-41.
[http://dx.doi.org/10.1016/j.jcis.2015.09.057 PMID: 26433475]
[22]
Raja, P.B.; Qureshi, A.K.; Rahim, A.A.; Osman, H.; Awang, K. Neolamarckia cadamba alkaloids as eco-friendly corrosion inhibitors for mild steel in 1 M HCl media. Corros. Sci., 2013, 69, 292-301.
[http://dx.doi.org/10.1016/j.corsci.2012.11.042]
[23]
Biswas, A.; Mourya, P.; Mondal, D.; Pal, S.; Udayabhanu, G. Grafting effect of gum Acacia on mild steel corrosion in acidic medium: Gravimetric and electrochemical study. J. Mol. Liq., 2018, 251, 470-479.
[http://dx.doi.org/10.1016/j.molliq.2017.12.087]
[24]
Gowraraju, N.D.; Jagadeesan, S.; Ayyasamy, K.; Olasunkanmi, L.O.; Ebenso, E.E.; Subramanian, C. Adsorption characteristics of Iota-carrageenan and inulin biopolymers as potential corrosion inhibitors at mild steel/sulphuric acid interface. J. Mol. Liq., 2017, 232, 9-19.
[http://dx.doi.org/10.1016/j.molliq.2017.02.054]
[25]
Ji, G.; Anjum, S.; Sundaram, S.; Prakash, R. Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution. Corros. Sci., 2015, 90, 107-117.
[http://dx.doi.org/10.1016/j.corsci.2014.10.002]
[26]
Mourya, P.; Banerjee, S.; Singh, M.M. Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corros. Sci., 2014, 85, 352-363.
[http://dx.doi.org/10.1016/j.corsci.2014.04.036]
[27]
Saxena, A.; Prasad, D.; Haldhar, R.; Singh, G.; Kumar, A. Use of Saraca ashoka extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4. J. Mol. Liq., 2018, 258, 89-97.
[http://dx.doi.org/10.1016/j.molliq.2018.02.104]
[28]
Kalaiselvi, K.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Corrosion resistance of mild steel in sulphuric acid solution by Coreopsis tinctoria extract: Electrochemical and surface studies. Anti-Corros. Methods Mater., 2018, 65(4), 408-416.
[http://dx.doi.org/10.1108/ACMM-12-2017-1866]
[29]
Haldhar, R.; Prasad, D.; Saxena, A. Myristica fragrans extract as an eco-friendly corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. J. Environ. Chem. Eng., 2018, 6(2), 2290-2301.
[http://dx.doi.org/10.1016/j.jece.2018.03.023]
[30]
Alibakhshi, E.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B.; Mahdavian, M.; Motamedi, M. Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: Experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J. Mol. Liq., 2018, 255, 185-198.
[http://dx.doi.org/10.1016/j.molliq.2018.01.144]
[31]
Saxena, A.; Prasad, D.; Haldhar, R.; Singh, G.; Kumar, A. Use of Sida cordifolia extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4. J. Environ. Chem. Eng., 2018, 6(1), 694-700.
[http://dx.doi.org/10.1016/j.jece.2017.12.064]
[32]
Srivastava, M.; Tiwari, P.; Srivastava, S.K.; Kumar, A.; Ji, G.; Prakash, R. Low cost aqueous extract of Pisum sativum peels for inhibition of mild steel corrosion. J. Mol. Liq., 2018, 254, 357-368.
[http://dx.doi.org/10.1016/j.molliq.2018.01.137]
[33]
Yadav, M.; Sinha, R.R.; Sarkar, T.K.; Tiwari, N. Corrosion inhibition effect of pyrazole derivatives on mild steel in hydrochloric acid solution. J. Adhes. Sci. Technol., 2015, 29(16), 1690-1713.
[http://dx.doi.org/10.1080/01694243.2015.1040979]
[34]
Mu, G.; Li, X. Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: Weight loss, electrochemical and AFM approaches. J. Colloid Interface Sci., 2005, 289(1), 184-192.
[http://dx.doi.org/10.1016/j.jcis.2005.03.061 PMID: 16009226]
[35]
Bhawsar, J.; Jain, P.K.; Jain, P. Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium. Alexan. Eng. J., 2015, 54(3), 769-775.
[http://dx.doi.org/10.1016/j.aej.2015.03.022]
[36]
Dorcheh, A.S.; Durham, R.N.; Galetz, M.C. Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 C. Sol. Energy Mater. Sol. Cells, 2016, 144, 109-116.
[http://dx.doi.org/10.1016/j.solmat.2015.08.011]
[37]
Deyab, M.A. Adsorption and inhibition effect of Ascorbyl palmitate on corrosion of carbon steel in ethanol blended gasoline containing water as a contaminant. Corros. Sci., 2014, 80, 359-365.
[http://dx.doi.org/10.1016/j.corsci.2013.11.056]
[38]
Afia, L.; Salghi, R.; Bammou, L.; Bazzi, E.; Hammouti, B.; Bazzi, L.; Bouyanzer, A. Anti-corrosive properties of Argan oil on C38 steel in molar HCl solution. J. Saudi Chem. Soc., 2014, 18(1), 19-25.
[http://dx.doi.org/10.1016/j.jscs.2011.05.008]
[39]
Mallaiya, K.; Subramaniam, R.; Srikandan, S.S.; Gowri, S.; Rajasekaran, N.; Selvaraj, A. Electrochemical characterization of the protective film formed by the unsymmetrical Schiff’s base on the mild steel surface in acid media. Electrochim. Acta, 2011, 56(11), 3857-3863.
[http://dx.doi.org/10.1016/j.electacta.2011.02.036]
[40]
Tourabi, M.; Nohair, K.; Traisnel, M.; Jama, C.; Bentiss, F. Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3, 5-bis (2-thienylmethyl)-4-amino-1, 2, 4-triazole. Corros. Sci., 2013, 75, 123-133.
[http://dx.doi.org/10.1016/j.corsci.2013.05.023]
[41]
Kumar, H.; Yadav, S.; Chaudhary, R.S.; Kumar, D. Synergistic effect of some antiscalants as corrosion inhibitor for industrial cooling water system. J. Appl. Electrochem., 2009, 39(8), 1339-1347.
[http://dx.doi.org/10.1007/s10800-009-9807-4]
[42]
Ni, C.S.; Lu, L.Y.; Zeng, C.L.; Niu, Y. Electrochemical impedance studies of the initial stage corrosion of 310S stainless steel beneath thin films of molten (0.62 Li, 0.38K)2CO3 at 650°C. Corros. Sci., 2011, 53(3), 1018-1024.
[http://dx.doi.org/10.1016/j.corsci.2010.11.036]
[43]
Ni, C.S.; Lu, L.Y.; Zeng, C.L.; Niu, Y. Evaluation of corrosion resistance of Aluminium coating with and without annealing against molten carbonate using electrochemical impedance spectroscopy. J. Power Sources, 2014, 261(1), 162-169.
[http://dx.doi.org/10.1016/j.jpowsour.2014.03.076 ]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Published on: 11 October, 2019
Page: [164 - 177]
Pages: 14
DOI: 10.2174/1877946809666191011162351

Article Metrics

PDF: 17
HTML: 2