Diabetic Theory in Anti-Alzheimer’s Drug Research and Development - Part 1: Therapeutic Potential of Antidiabetic Agents

Author(s): Agnieszka Jankowska, Anna Wesołowska*, Maciej Pawłowski, Grażyna Chłoń-Rzepa*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 39 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Alzheimer’s Disease (AD) is a chronic and progressive neurodegenerative disorder that affects over 46 million people worldwide. It is characterized by a decline in cognitive abilities, including memory and thinking skills. AD patients also suffer from behavioral and psychological symptoms of dementia of which depression is the most prevalent. Currently available drugs provide modest symptomatic relief and do not reduce pathological hallmarks (senile plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of AD. Studies suggest that AD is a type of diabetes manifested in the brain. Although AD and diabetes are currently classified as separate disease entities, they share common pathophysiological mechanisms, one of them is an increased level of cytokines involved in the inflammation and the regulation of metabolic, regenerative, and neural processes. The purpose of this review was to update the most recent reports on the discovery and development of antidiabetic agents as promising drugs for the symptomatic and diseasemodifying treatment of AD. We collected the results of in vitro and in vivo studies, and recent reports from clinical trials suggesting the utility of antidiabetic agents in memory-enhancing therapy of AD. Their beneficial effects on chronic neuroinflammation, pathological hallmarks, and neuropsychiatric symptoms co-occurring with cognitive deficits are also presented. Antidiabetic agents refer to the diabetic and inflammatory hypotheses of AD and provide hope to find an effective drug for comprehensive therapy of the disease.

Keywords: Alzheimer's disease, BPSD, cognitive impairments, neurodegeneration, neuroinflammation, type III diabetes, antidiabetic drugs, anti-inflammatory activity.

Kelley, B.J.; Petersen, R.C. Alzheimer’s disease and mild cognitive impairment. Neurol. Clin. , 2007, 25(3), 577-609, v..
[http://dx.doi.org/10.1016/j.ncl.2007.03.008] [PMID: 17659182]
Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E.B. Behavioral and psychological symptoms of dementia. Front. Neurol., 2012, 3, 73.
[http://dx.doi.org/10.3389/fneur.2012.00073] [PMID: 22586419]
Mat Nuri, T.H.; Hong, Y.H.; Ming, L.C.; Mohd Joffry, S.; Othman, M.F.; Neoh, C.F. Knowledge on Alzheimer’s disease among public hospitals and health clinics pharmacists in the state of Selangor, Malaysia. Front. Pharmacol., 2017, 8, 739.
[http://dx.doi.org/10.3389/fphar.2017.00739] [PMID: 29123479]
Cimler, R.; Maresova, P.; Kuhnova, J.; Kuca, K. Predictions of Alzheimer’s disease treatment and care costs in European countries. PLoS One, 2019, 14(1)e0210958
[http://dx.doi.org/10.1371/journal.pone.0210958] [PMID: 30682120]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics. (review) Mol. Med. Rep., 2019, 20(2), 1479-1487.
[http://dx.doi.org/10.3892/mmr.2019.10374 ] [PMID: 31257471]
Kołaczkowski, M.; Mierzejewski, P.; Bienkowski, P.; Wesołowska, A.; Newman-Tancredi, A. Antipsychotic, antidepressant, and cognitive-impairment properties of antipsychotics: rat profile and implications for behavioral and psychological symptoms of dementia. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(6), 545-557.
[http://dx.doi.org/10.1007/s00210-014-0966-4] [PMID: 24599316]
Rodda, J.; Carter, J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ, 2012, 344, e2986-e2986.
[http://dx.doi.org/10.1136/bmj.e2986] [PMID: 22550350]
Yang, Z.; Zhou, X.; Zhang, Q. Effectiveness and safety of memantine treatment for Alzheimer’s disease. J. Alzheimers Dis., 2013, 36(3), 445-458.
[http://dx.doi.org/10.3233/JAD-130395] [PMID: 23635410]
Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: the link between comorbidities, genetics and Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 276.
[http://dx.doi.org/10.1186/s12974-018-1313-3] [PMID: 30249283]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
Kroner, Z. The relationship between Alzheimer’s disease and diabetes: type 3 diabetes? Altern. Med. Rev., 2009, 14(4), 373-379.
[PMID: 20030463]
Leszek, J.; Trypka, E.; Tarasov, V.V.; Ashraf, G.M.; Aliev, G. Type 3 diabetes mellitus: a novel implication of Alzheimers disease. Curr. Top. Med. Chem., 2017, 17(12), 1331-1335.
[http://dx.doi.org/10.2174/1568026617666170103163403] [PMID: 28049395]
Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1078-1089.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
Rivera, E.J.; Goldin, A.; Fulmer, N.; Tavares, R.; Wands, J.R.; de la Monte, S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J. Alzheimers Dis., 2005, 8(3), 247-268.
[http://dx.doi.org/10.3233/JAD-2005-8304] [PMID: 16340083]
Taylor, S.I.; Accili, D.; Haft, C.R.; Hone, J.; Imai, Y.; Levy-Toledano, R.; Quon, M.J.; Suzuki, Y.; Wertheimer, E. Mechanisms of hormone resistance: lessons from insulin-resistant patients. Acta Paediatr. Suppl., 1994, 399(s399), 95-104.
[http://dx.doi.org/10.1111/j.1651-2227.1994.tb13300.x] [PMID: 7949626]
Fiore, V.; De Rosa, A.; Falasca, P.; Marci, M.; Guastamacchia, E.; Licchelli, B.; Giagulli, V.A.; De Pergola, G.; Poggi, A.; Triggiani, V. Focus on the correlations between Alzheimer’s disease and type 2 diabetes. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 571-579.
[http://dx.doi.org/10.2174/1871530319666190311141855] [PMID: 30854980]
Hanyu, H. Diabetes-related dementia. Adv. Exp. Med. Biol., 2019, 1128, 147-160.
[http://dx.doi.org/10.1007/978-981-13-3540-2_8] [PMID: 31062329]
Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
Massaccesi, L.; Galliera, E.; Galimberti, D.; Fenoglio, C.; Arcaro, M.; Goi, G.; Barassi, A.; Corsi Romanelli, M.M. Lag-time in Alzheimer’s disease patients: a potential plasmatic oxidative stress marker associated with ApoE4 isoform. Immun. ageing I A, 2019, 16, 7.
[http://dx.doi.org/10.1186/s12979-019-0147-x] [PMID: 30984280]
Bigagli, E.; Lodovici, M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid. Med. Cell. Longev., 2019, 20195953685
[http://dx.doi.org/10.1155/2019/5953685] [PMID: 31214280]
Stefano, G.B.; Challenger, S.; Kream, R.M. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur. J. Nutr., 2016, 55(8), 2339-2345.
[http://dx.doi.org/10.1007/s00394-016-1212-2] [PMID: 27084094]
Pintana, H.; Apaijai, N.; Kerdphoo, S.; Pratchayasakul, W.; Sripetchwandee, J.; Suntornsaratoon, P.; Charoenphandhu, N.; Chattipakorn, N.; Chattipakorn, S.C. Hyperglycemia induced the Alzheimer’s proteins and promoted loss of synaptic proteins in advanced-age female Goto-Kakizaki (GK) rats. Neurosci. Lett., 2017, 655, 41-45.
[http://dx.doi.org/10.1016/j.neulet.2017.06.041] [PMID: 28652187]
Martinez-Valbuena, I.; Valenti-Azcarate, R.; Amat-Villegas, I.; Riverol, M.; Marcilla, I.; de Andrea, C.E.; Sánchez-Arias, J.A.; Del Mar Carmona-Abellan, M.; Marti, G.; Erro, M.E.; Martínez-Vila, E.; Tuñon, M-T.; Luquin, M-R. Amylin as a potential link between type 2 diabetes and alzheimer disease. Ann. Neurol., 2019, 86(4), 539-551.
[http://dx.doi.org/10.1002/ana.25570] [PMID: 31376172]
Zhang, Y-W.; Zhang, J-Q.; Liu, C.; Wei, P.; Zhang, X.; Yuan, Q-Y.; Yin, X-T.; Wei, L-Q.; Cui, J-G.; Wang, J. Memory dysfunction in type 2 diabetes mellitus correlates with reduced hippocampal CA1 and subiculum volumes. Chin. Med. J. (Engl.), 2015, 128(4), 465-471.
[http://dx.doi.org/10.4103/0366-6999.151082] [PMID: 25673447]
US National Library of Medicine. Available at: https://clinicaltrials.gov/
Yaffe, K.; Kanaya, A.; Lindquist, K.; Simonsick, E.M.; Harris, T.; Shorr, R.I.; Tylavsky, F.A.; Newman, A.B. The metabolic syndrome, inflammation and risk of cognitive decline. JAMA, 2004, 292(18), 2237-2242.
[http://dx.doi.org/10.1001/jama.292.18.2237] [PMID: 15536110]
Languren, G.; Montiel, T.; Julio-Amilpas, A.; Massieu, L. Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochem. Int., 2013, 63(4), 331-343.
[http://dx.doi.org/10.1016/j.neuint.2013.06.018] [PMID: 23876631]
Atkin, S.; Javed, Z.; Fulcher, G. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus. Ther. Adv. Chronic Dis., 2015, 6(6), 375-388.
[http://dx.doi.org/10.1177/2040622315608646] [PMID: 26568812]
Anderson, K.L.; Frazier, H.N.; Maimaiti, S.; Bakshi, V.V.; Majeed, Z.R.; Brewer, L.D.; Porter, N.M.; Lin, A-L.; Thibault, O. Impact of single or repeated dose intranasal zinc-free insulin in young and aged F344 rats on cognition, signaling and brain metabolism. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(2), 189-197.
[http://dx.doi.org/10.1093/gerona/glw065] [PMID: 27069097]
Adzovic, L.; Lynn, A.E.; D’Angelo, H.M.; Crockett, A.M.; Kaercher, R.M.; Royer, S.E.; Hopp, S.C.; Wenk, G.L. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J. Neuroinflammation, 2015, 12(1), 63.
[http://dx.doi.org/10.1186/s12974-015-0282-z] [PMID: 25889938]
Akanmu, M.A.; Nwabudike, N.L.; Ilesanmi, O.R. Analgesic, learning and memory and anxiolytic effects of insulin in mice. Behav. Brain Res., 2009, 196(2), 237-241.
[http://dx.doi.org/10.1016/j.bbr.2008.09.008] [PMID: 18840474]
Mueller, P.L.; Pritchett, C.E.; Wiechman, T.N.; Zharikov, A.; Hajnal, A. Antidepressant-like effects of insulin and IGF-1 are mediated by IGF-1 receptors in the brain. Brain Res. Bull., 2018, 143, 27-35.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.017] [PMID: 30278200]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multifunctional ligands targeting phosphodiesterase as the future strategy for the symptomatic and disease-modifying treatment of Alzheimer’s disease. Curr. Med. Chem., 2020, 27(32), 5351-5373.
[http://dx.doi.org/10.2174/0929867326666190620095623] [PMID: 31250747]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multi-target-directed ligands affecting serotonergic neurotransmission for Alzheimer’s disease therapy: advances in chemical and biological research. Curr. Med. Chem., 2018, 25(17), 2045-2067.
[http://dx.doi.org/10.2174/0929867324666170529122802] [PMID: 28554324]
Nampoothiri, M.; Reddy, N.D.; John, J.; Kumar, N.; Kutty Nampurath, G.; Rao Chamallamudi, M. Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells. Behav. Neurol., 2014, 2014674164
[http://dx.doi.org/10.1155/2014/674164] [PMID: 25018588]
Skeberdis, V.A.; Lan, J.; Zheng, X.; Zukin, R.S.; Bennett, M.V.L. Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3561-3566.
[http://dx.doi.org/10.1073/pnas.051634698] [PMID: 11248117]
Stouffer, M.A.; Woods, C.A.; Patel, J.C.; Lee, C.R.; Witkovsky, P.; Bao, L.; Machold, R.P.; Jones, K.T.; de Vaca, S.C.; Reith, M.E.A.; Carr, K.D.; Rice, M.E. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat. Commun., 2015, 6, 8543.
[http://dx.doi.org/10.1038/ncomms9543] [PMID: 26503322]
Yarube, I.; Ayo, J.; Magaji, R.; Umar, I. Insulin treatment increases brain nitric oxide and oxidative stress, but does not affect memory function in mice. Physiol. Behav., 2019, 211112640
[http://dx.doi.org/10.1016/j.physbeh.2019.112640] [PMID: 31377312]
Kim, B.; Elzinga, S.E.; Henn, R.E.; McGinley, L.M.; Feldman, E.L. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol. Dis., 2019, 132104541
[http://dx.doi.org/10.1016/j.nbd.2019.104541] [PMID: 31349033]
De Felice, F.G.; Lourenco, M.V.; Ferreira, S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement., 2014, 10(Suppl. 1), S26-S32.
[http://dx.doi.org/10.1016/j.jalz.2013.12.004] [PMID: 24529521]
Wang, Y-W.; He, S-J.; Feng, X.; Cheng, J.; Luo, Y-T.; Tian, L.; Huang, Q. Metformin: a review of its potential indications. Drug Des. Devel. Ther., 2017, 11, 2421-2429.
[http://dx.doi.org/10.2147/DDDT.S141675] [PMID: 28860713]
Saisho, Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(3), 196-205.
[http://dx.doi.org/10.2174/1871530315666150316124019] [PMID: 25772174]
Łabuzek, K.; Suchy, D.; Gabryel, B.; Bielecka, A.; Liber, S.; Okopień, B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol. Rep., 2010, 62(5), 956-965.
[http://dx.doi.org/10.1016/S1734-1140(10)70357-1] [PMID: 21098880]
Oliveira, W.H.; Nunes, A.K.; França, M.E.R.; Santos, L.A.; Lós, D.B.; Rocha, S.W.; Barbosa, K.P.; Rodrigues, G.B.; Peixoto, C.A. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res., 2016, 1644, 149-160.
[http://dx.doi.org/10.1016/j.brainres.2016.05.013] [PMID: 27174003]
Chen, J-L.; Luo, C.; Pu, D.; Zhang, G-Q.; Zhao, Y-X.; Sun, Y.; Zhao, K-X.; Liao, Z-Y.; Lv, A-K.; Zhu, S-Y.; Zhou, J.; Xiao, Q. Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp. Neurol., 2019, 311, 44-56.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.008] [PMID: 30219731]
Ou, Z.; Kong, X.; Sun, X.; He, X.; Zhang, L.; Gong, Z.; Huang, J.; Xu, B.; Long, D.; Li, J.; Li, Q.; Xu, L.; Xuan, A. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav. Immun., 2018, 69, 351-363.
[http://dx.doi.org/10.1016/j.bbi.2017.12.009] [PMID: 29253574]
Fatemi, I.; Khaluoi, A.; Kaeidi, A.; Shamsizadeh, A.; Heydari, S.; Allahtavakoli, M.A. Protective effect of metformin on D-galactose-induced aging model in mice. Iran. J. Basic Med. Sci., 2018, 21(1), 19-25.
[http://dx.doi.org/10.22038/IJBMS.2017.24331.6071 ] [PMID: 29372032]
Ashrostaghi, Z.; Ganji, F.; Sepehri, H. Effect of metformin on the spatial memory in aged rats. Natl. J. Physiol. Pharm. Pharmacol., 2015, 5(5), 416.
Aksoz, E.; Gocmez, S.S.; Sahin, T.D.; Aksit, D.; Aksit, H.; Utkan, T. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacol. Rep., 2019, 71(5), 818-825.
[http://dx.doi.org/10.1016/j.pharep.2019.04.015] [PMID: 31382167]
Farr, S.A.; Roesler, E.; Niehoff, M.L.; Roby, D.A.; McKee, A.; Morley, J.E. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2019, 68(4), 1699-1710.
[http://dx.doi.org/10.3233/JAD-181240] [PMID: 30958364]
Zhang, J.; Lin, Y.; Dai, X.; Fang, W.; Wu, X.; Chen, X. Metformin treatment improves the spatial memory of aged mice in an APOE genotype-dependent manner. FASEB J., 2019, 33(6), 7748-7757.
[http://dx.doi.org/10.1096/fj.201802718R] [PMID: 30894020]
Fan, J.; Li, D.; Chen, H-S.; Huang, J-G.; Xu, J-F.; Zhu, W-W.; Chen, J-G.; Wang, F. Metformin produces anxiolytic-like effects in rats by facilitating GABAA receptor trafficking to membrane. Br. J. Pharmacol., 2019, 176(2), 297-316.
[http://dx.doi.org/10.1111/bph.14519] [PMID: 30318707]
Guo, M.; Mi, J.; Jiang, Q-M.; Xu, J-M.; Tang, Y-Y.; Tian, G.; Wang, B. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2014, 41(9), 650-656.
[http://dx.doi.org/10.1111/1440-1681.12265] [PMID: 24862430]
Khedr, S.A.; Elmelgy, A.A.; El-Kharashi, O.A.; Abd-Alkhalek, H.A.; Louka, M.L.; Sallam, H.A.; Aboul-Fotouh, S. Metformin potentiates cognitive and antidepressant effects of fluoxetine in rats exposed to chronic restraint stress and high fat diet: potential involvement of hippocampal c-Jun repression. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(4), 407-422.
[http://dx.doi.org/10.1007/s00210-018-1466-8] [PMID: 29379991]
Matte Bon, G.; Poggini, S.; Viglione, A.; Milior, G.; Golia, M.T.; Alboni, S.; Maggi, L.; Branchi, I. Combined treatment fluoxetine and metformin potentiates antidepressant efficacy: the differential involvement of the dorsal and ventral hippocampus. Eur. Neuropsychopharmacol., 2018, 28, S54-S55.
Wang, X.; Luo, C.; Mao, X-Y.; Li, X.; Yin, J-Y.; Zhang, W.; Zhou, H-H.; Liu, Z-Q. Metformin reverses the schizophrenia-like behaviors induced by MK-801 in rats. Brain Res., 2019, 1719, 30-39.
[http://dx.doi.org/10.1016/j.brainres.2019.05.023] [PMID: 31121159]
Chin-Hsiao, T. Metformin and the risk of dementia in type 2 diabetes patients. Aging Dis., 2019, 10(1), 37-48.
[http://dx.doi.org/10.14336/AD.2017.1202] [PMID: 30705766]
Lin, Y.; Wang, K.; Ma, C.; Wang, X.; Gong, Z.; Zhang, R.; Zang, D.; Cheng, Y. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front. Aging Neurosci., 2018, 10, 227.
[http://dx.doi.org/10.3389/fnagi.2018.00227] [PMID: 30100873]
Aman, M.G.; Hollway, J.A.; Veenstra-VanderWeele, J.; Handen, B.L.; Sanders, K.B.; Chan, J.; Macklin, E.; Arnold, L.E.; Wong, T.; Newsom, C.; Hastie Adams, R.; Marler, S.; Peleg, N.; Anagnostou, E.A. Effects of metformin on spatial and verbal memory in children with ASD and overweight associated with atypical antipsychotic use. J. Child Adolesc. Psychopharmacol., 2018, 28(4), 266-273.
[http://dx.doi.org/10.1089/cap.2017.0072] [PMID: 29620914]
Kuan, Y-C.; Huang, K-W.; Lin, C-L.; Hu, C-J.; Kao, C-H. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus Prog. Neuro-psychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 77-83.
Hong, F.; Pan, S.; Guo, Y.; Xu, P.; Zhai, Y. PPARs as nuclear receptors for nutrient and energy metabolism. Molecules, 2019, 24(14), 2545.
[http://dx.doi.org/10.3390/molecules24142545] [PMID: 31336903]
Ahsan, W. The journey of thiazolidinediones as modulators of PPARs for the management of diabetes: a current perspective. Curr. Pharm. Des., 2019, 25(23), 2540-2554.
[http://dx.doi.org/10.2174/1381612825666190716094852] [PMID: 31333088]
Khan, M.A.; Alam, Q.; Haque, A.; Ashafaq, M.; Khan, M.J.; Ashraf, G.M.; Ahmad, M. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of Alzheimer’s disease: an update. Curr. Neuropharmacol., 2019, 17(3), 232-246.
[http://dx.doi.org/10.2174/1570159X16666180828100002] [PMID: 30152284]
Escribano, L.; Simón, A-M.; Gimeno, E.; Cuadrado-Tejedor, M.; López de Maturana, R.; García-Osta, A.; Ricobaraza, A.; Pérez-Mediavilla, A.; Del Río, J.; Frechilla, D. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 2010, 35(7), 1593-1604.
[http://dx.doi.org/10.1038/npp.2010.32] [PMID: 20336061]
Yoon, S-Y.; Park, J-S.; Choi, J-E.; Choi, J-M.; Lee, W-J.; Kim, S-W.; Kim, D-H. Rosiglitazone reduces tau phosphorylation via JNK inhibition in the hippocampus of rats with type 2 diabetes and tau transfected SH-SY5Y cells. Neurobiol. Dis., 2010, 40(2), 449-455.
[http://dx.doi.org/10.1016/j.nbd.2010.07.005] [PMID: 20655383]
Xiang, G.Q.; Tang, S.S.; Jiang, L.Y.; Hong, H.; Li, Q.; Wang, C.; Wang, X.Y.; Zhang, T.T.; Yin, L. PPARγ agonist pioglitazone improves scopolamine-induced memory impairment in mice. J. Pharm. Pharmacol., 2012, 64(4), 589-596.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01432.x] [PMID: 22420664]
Kaur, B.; Singh, N.; Jaggi, A.S. Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam. Clin. Pharmacol., 2009, 23(5), 557-566.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00708.x] [PMID: 19656209]
Gao, F.; Zang, L.; Wu, D.Y.; Li, Y.J.; Zhang, Q.; Wang, H.B.; Tian, G.L.; Mu, Y.M. Pioglitazone improves the ability of learning and memory via activating ERK1/2 signaling pathway in the hippocampus of T2DM rats. Neurosci. Lett., 2017, 651, 165-170.
[http://dx.doi.org/10.1016/j.neulet.2017.04.052] [PMID: 28458023]
Xu, S.; Guan, Q.; Wang, C.; Wei, X.; Chen, X.; Zheng, B.; An, P.; Zhang, J.; Chang, L.; Zhou, W.; Mody, I.; Wang, Q. Rosiglitazone prevents the memory deficits induced by amyloid-beta oligomers via inhibition of inflammatory responses. Neurosci. Lett., 2014, 578, 7-11.
[http://dx.doi.org/10.1016/j.neulet.2014.06.010] [PMID: 24933538]
Li, J.; Shen, X. Effect of rosiglitazone on inflammatory cytokines and oxidative stress after intensive insulin therapy in patients with newly diagnosed type 2 diabetes. Diabetol. Metab. Syndr., 2019, 11, 35.
[http://dx.doi.org/10.1186/s13098-019-0432-z] [PMID: 31073335]
Xia, L.; Liu, J.; Sun, Y.; Shi, H.; Yang, G.; Feng, Y.; Yin, S. Rosiglitazone improves glucocorticoid resistance in a sudden sensorineural hearing loss by promoting MAP kinase phosphatase-1 Expression. Mediators Inflamm., 2019, 20197915730
[http://dx.doi.org/10.1155/2019/7915730] [PMID: 31217747]
Meng, Q-Q.; Feng, Z-C.; Zhang, X-L.; Hu, L-Q.; Wang, M.; Zhang, H-F.; Li, S-M. PPAR-γ activation exerts an anti-inflammatory effect by suppressing the NLRP3 inflammasome in spinal cord-derived neurons. Mediators Inflamm., 2019, 20196386729
[http://dx.doi.org/10.1155/2019/6386729] [PMID: 31015796]
Kadam, L.; Kilburn, B.; Baczyk, D.; Kohan-Ghadr, H.R.; Kingdom, J.; Drewlo, S. Rosiglitazone blocks first trimester in-vitro placental injury caused by NF-κB-mediated inflammation. Sci. Rep., 2019, 9(1), 2018.
[http://dx.doi.org/10.1038/s41598-018-38336-2] [PMID: 30765769]
Zhao, Y.; Wei, X.; Song, J.; Zhang, M.; Huang, T.; Qin, J. Peroxisome proliferator-activated receptor γ agonist rosiglitazone protects blood-brain barrier integrity following diffuse axonal injury by decreasing the levels of inflammatory mediators through a caveolin-1-dependent pathway. Inflammation, 2019, 42(3), 841-856.
[http://dx.doi.org/10.1007/s10753-018-0940-2] [PMID: 30488141]
Luo, Y.; Yin, W.; Signore, A.P.; Zhang, F.; Hong, Z.; Wang, S.; Graham, S.H.; Chen, J. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J. Neurochem., 2006, 97(2), 435-448.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03758.x] [PMID: 16539667]
Zhang, Q.; Hu, W.; Meng, B.; Tang, T. PPARγ agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats. Neurol. Res., 2010, 32(8), 852-859.
[http://dx.doi.org/10.1179/016164110X12556180206112] [PMID: 20350367]
Yao, J.; Zheng, K.; Zhang, X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol. Med. Rep., 2015, 12(5), 6591-6597.
[http://dx.doi.org/10.3892/mmr.2015.4292] [PMID: 26351751]
Liu, M.; Bachstetter, A.D.; Cass, W.A.; Lifshitz, J.; Bing, G. Pioglitazone attenuates neuroinflammation and promotes dopaminergic neuronal survival in the nigrostriatal system of rats after diffuse brain injury. J. Neurotrauma, 2017, 34(2), 414-422.
[http://dx.doi.org/10.1089/neu.2015.4361] [PMID: 27142118]
Almasi-Nasrabadi, M.; Javadi-Paydar, M.; Mahdavian, S.; Babaei, R.; Sharifian, M.; Norouzi, A.; Dehpour, A.R. Involvement of NMDA receptors in the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice. Behav. Brain Res., 2012, 231(1), 138-145.
[http://dx.doi.org/10.1016/j.bbr.2012.03.006] [PMID: 22440233]
Salehi-Sadaghiani, M.; Javadi-Paydar, M.; Gharedaghi, M.H.; Zandieh, A.; Heydarpour, P.; Yousefzadeh-Fard, Y.; Dehpour, A.R. NMDA receptor involvement in antidepressant-like effect of pioglitazone in the forced swimming test in mice. Psychopharmacology (Berl.), 2012, 223(3), 345-355.
[http://dx.doi.org/10.1007/s00213-012-2722-0] [PMID: 22547332]
Heneka, M.T.; Fink, A.; Doblhammer, G. Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol., 2015, 78(2), 284-294.
[http://dx.doi.org/10.1002/ana.24439] [PMID: 25974006]
Chou, P-S.; Ho, B-L.; Yang, Y-H. Effects of pioglitazone on the incidence of dementia in patients with diabetes. J. Diabetes Complications, 2017, 31(6), 1053-1057.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.01.006] [PMID: 28254448]
Lu, C-H.; Yang, C-Y.; Li, C-Y.; Hsieh, C-Y.; Ou, H-T. Lower risk of dementia with pioglitazone, compared with other second-line treatments, in metformin-based dual therapy: a population-based longitudinal study. Diabetologia, 2018, 61(3), 562-573.
[http://dx.doi.org/10.1007/s00125-017-4499-5] [PMID: 29138876]
Knodt, A.R.; Burke, J.R.; Welsh-Bohmer, K.A.; Plassman, B.L.; Burns, D.K.; Brannan, S.K.; Kukulka, M.; Wu, J.; Hariri, A.R. Effects of pioglitazone on mnemonic hippocampal function: A blood oxygen level-dependent functional magnetic resonance imaging study in elderly adults. Alzheimers Dement. (N. Y.), 2019, 5, 254-263.
[http://dx.doi.org/10.1016/j.trci.2019.05.004] [PMID: 31304231]
Geldmacher, D.S.; Fritsch, T.; McClendon, M.J.; Landreth, G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol., 2011, 68(1), 45-50.
[http://dx.doi.org/10.1001/archneurol.2010.229] [PMID: 20837824]
Gold, M.; Alderton, C.; Zvartau-Hind, M.; Egginton, S.; Saunders, A.M.; Irizarry, M.; Craft, S.; Landreth, G.; Linnamägi, U.; Sawchak, S. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement. Geriatr. Cogn. Disord., 2010, 30(2), 131-146.
[http://dx.doi.org/10.1159/000318845] [PMID: 20733306]
Hiatt, W.R.; Kaul, S.; Smith, R.J. The cardiovascular safety of diabetes drugs--insights from the rosiglitazone experience. N. Engl. J. Med., 2013, 369(14), 1285-1287.
[http://dx.doi.org/10.1056/NEJMp1309610] [PMID: 23992603]
Silva-Abreu, M.; Gonzalez-Pizarro, R.; Espinoza, L.C.; Rodríguez-Lagunas, M.J.; Espina, M.; García, M.L.; Calpena, A.C. Thiazolidinedione as an alternative to facilitate oral administration in geriatric patients with Alzheimer’s disease. Eur. J. Pharm. Sci., 2019, 129, 173-180.
[http://dx.doi.org/10.1016/j.ejps.2019.01.008] [PMID: 30639402]
Chappidi, S.R.; Bhargav, E.; Marikunte, V.; Chinthaginjala, H.; Vijaya Jyothi, M.; Pisay, M.; Jutur, M.; Shaik Mahammad, M.; Poura, M.; Yadav, S.; Syed, M. A cost effective (QbD) approach in the development and optimization of rosiglitazone maleate mucoadhesive extended release tablets -in vitro and ex vivo. Adv. Pharm. Bull., 2019, 9(2), 281-288.
[http://dx.doi.org/10.15171/apb.2019.032] [PMID: 31380254]
Erol, A. The functions of PPARs in aging and longevity. PPAR Res., 2007, 2007, 39654.
[http://dx.doi.org/10.1155/2007/39654] [PMID: 18317516]
Moreno, S.; Cerù, M.P. In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target? Neural Regen. Res., 2015, 10(9), 1409-1412.
[http://dx.doi.org/10.4103/1673-5374.165313] [PMID: 26604898]
Krishna; Vaseem, A.; Sah, R.K.; Ali, M. Saroglitazar: a novel dual acting peroxisome proliferator activated receptor (PPAR) in dyslipidemia associated with T2DM. EJPMR, 2017, 4(2), 680-684.
Rigano, D.; Sirignano, C.; Taglialatela-Scafati, O. The potential of natural products for targeting PPARα. Acta Pharm. Sin. B, 2017, 7(4), 427-438.
[http://dx.doi.org/10.1016/j.apsb.2017.05.005] [PMID: 28752027]
Ashcroft, F.M. Mechanisms of the glycaemic effects of sulfonylureas. Horm. Metab. Res., 1996, 28(9), 456-463.
[http://dx.doi.org/10.1055/s-2007-979837] [PMID: 8911983]
Lee, K.W.; Ku, Y.H.; Kim, M.; Ahn, B.Y.; Chung, S.S.; Park, K.S. Effects of sulfonylureas on peroxisome proliferator-activated receptor γ activity and on glucose uptake by thiazolidinediones. Diabetes Metab. J., 2011, 35(4), 340-347.
[http://dx.doi.org/10.4093/dmj.2011.35.4.340] [PMID: 21977453]
Baraka, A.; ElGhotny, S. Study of the effect of inhibiting galanin in Alzheimer’s disease induced in rats. Eur. J. Pharmacol., 2010, 641(2-3), 123-127.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.030] [PMID: 20639139]
Rizvi, S.M.D.; Shaikh, S.; Naaz, D.; Shakil, S.; Ahmad, A.; Haneef, M.; Abuzenadah, A.M. Kinetics and molecular docking study of an anti-diabetic drug glimepiride as acetylcholinesterase inhibitor: implication for Alzheimer’s disease-diabetes dual therapy. Neurochem. Res., 2016, 41(6), 1475-1482.
[http://dx.doi.org/10.1007/s11064-016-1859-3] [PMID: 26886763]
Liu, F.; Wang, Y.; Yan, M.; Zhang, L.; Pang, T.; Liao, H. Glimepiride attenuates Aβ production via suppressing BACE1 activity in cortical neurons Neurosci. Lett., 2013, 557(Pt B), 90-94.
Ling, M-Y.; Ma, Z-Y.; Wang, Y-Y.; Qi, J.; Liu, L.; Li, L.; Zhang, Y. Up-regulated ATP-sensitive potassium channels play a role in increased inflammation and plaque vulnerability in macrophages. Atherosclerosis, 2013, 226(2), 348-355.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.11.016] [PMID: 23218803]
Tamura, K.; Ishikawa, G.; Yoshie, M.; Ohneda, W.; Nakai, A.; Takeshita, T.; Tachikawa, E. Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1β secretion in human trophoblasts. J. Pharmacol. Sci., 2017, 135(2), 89-95.
[http://dx.doi.org/10.1016/j.jphs.2017.09.032] [PMID: 29056256]
Lin, Y-W.; Liu, P-S.; Pook, K.A.; Wei, L-N. Glyburide and retinoic acid synergize to promote wound healing by anti-inflammation and RIP140 degradation. Sci. Rep., 2018, 8(1), 834.
[http://dx.doi.org/10.1038/s41598-017-18785-x] [PMID: 29339732]
Kewcharoenwong, C.; Rinchai, D.; Utispan, K.; Suwannasaen, D.; Bancroft, G.J.; Ato, M.; Lertmemongkolchai, G. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection. Sci. Rep., 2013, 3(1), 3363.
[http://dx.doi.org/10.1038/srep03363] [PMID: 24285369]
Ishola, I.O.; Akataobi, O.E.; Alade, A.A.; Adeyemi, O.O. Glimepiride prevents paraquat-induced Parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Fundam. Clin. Pharmacol., 2019, 33(3), 277-285.
[http://dx.doi.org/10.1111/fcp.12434] [PMID: 30451327]
Esmaeili, M.H.; Bahari, B.; Salari, A-A. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer’s disease. Brain Res. Bull., 2018, 137, 265-276.
[http://dx.doi.org/10.1016/j.brainresbull.2018.01.001] [PMID: 29307659]
Hsu, C-C.; Wahlqvist, M.L.; Lee, M-S.; Tsai, H-N. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J. Alzheimers Dis., 2011, 24(3), 485-493.
[http://dx.doi.org/10.3233/JAD-2011-101524] [PMID: 21297276]
Ortega, F.J.; Jolkkonen, J.; Mahy, N.; Rodríguez, M.J. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2013, 33(3), 356-364.
[http://dx.doi.org/10.1038/jcbfm.2012.166] [PMID: 23149556]
Simard, J.M.; Yurovsky, V.; Tsymbalyuk, N.; Melnichenko, L.; Ivanova, S.; Gerzanich, V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke, 2009, 40(2), 604-609.
[http://dx.doi.org/10.1161/STROKEAHA.108.522409] [PMID: 19023097]
Zhou, F.; Liu, Y.; Yang, B.; Hu, Z. Neuroprotective potential of glibenclamide is mediated by antioxidant and anti-apoptotic pathways in intracerebral hemorrhage. Brain Res. Bull., 2018, 142, 18-24.
[http://dx.doi.org/10.1016/j.brainresbull.2018.06.006] [PMID: 29933037]
Bomba, M.; Granzotto, A.; Castelli, V.; Massetti, N.; Silvestri, E.; Canzoniero, L.M.T.; Cimini, A.; Sensi, S.L. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol. Aging, 2018, 64, 33-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.12.009] [PMID: 29331730]
Trujillo, J.M.; Nuffer, W.; Ellis, S.L. GLP-1 receptor agonists: a review of head-to-head clinical studies. Ther. Adv. Endocrinol. Metab., 2015, 6(1), 19-28.
[http://dx.doi.org/10.1177/2042018814559725] [PMID: 25678953]
Hunter, K.; Hölscher, C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci., 2012, 13, 33.
[http://dx.doi.org/10.1186/1471-2202-13-33] [PMID: 22443187]
Kastin, A.J.; Akerstrom, V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int. J. Obes. Relat. Metab. Disord., 2003, 27(3), 313-318.
[http://dx.doi.org/10.1038/sj.ijo.0802206] [PMID: 12629557]
Gumuslu, E.; Mutlu, O.; Celikyurt, I.K.; Ulak, G.; Akar, F.; Erden, F.; Ertan, M. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam. Clin. Pharmacol., 2016, 30(4), 376-384.
[http://dx.doi.org/10.1111/fcp.12192] [PMID: 26935863]
Komsuoglu Celikyurt, I.; Mutlu, O.; Ulak, G.; Uyar, E.; Bektaş, E.; Yildiz Akar, F.; Erden, F.; Tarkun, I. Exenatide treatment exerts anxiolytic- and antidepressant-like effects and reverses neuropathy in a mouse model of type-2 diabetes. Med. Sci. Monit. Basic Res., 2014, 20, 112-117.
[http://dx.doi.org/10.12659/MSMBR.891168] [PMID: 25076419]
Bułdak, Ł.; Machnik, G.; Skudrzyk, E.; Bołdys, A.; Okopień, B. The impact of exenatide (a GLP-1 agonist) on markers of inflammation and oxidative stress in normal human astrocytes subjected to various glycemic conditions. Exp. Ther. Med., 2019, 17(4), 2861-2869.
[PMID: 30906473]
Xian, Y.; Chen, Z.; Deng, H.; Cai, M.; Liang, H.; Xu, W.; Jianping, W.; Xu, F. Exenatide mitigates inflammation and hypoxia along with improved angiogenesis in obese fat tissue. J. Endocrinol., 2019, 242(2), 79-89.
[http://dx.doi.org/10.1530/JOE-18-0639] [PMID: 31137012]
Fang, J.; Tang, Y.; Cheng, X.; Wang, L.; Cai, C.; Zhang, X.; Liu, S.; Li, P. Exenatide alleviates adriamycin-induced heart dysfunction in mice: Modulation of oxidative stress, apoptosis and inflammation. Chem. Biol. Interact., 2019, 304, 186-193.
[http://dx.doi.org/10.1016/j.cbi.2019.03.012] [PMID: 30885636]
Lennox, R.; Flatt, P.R.; Gault, V.A. Lixisenatide improves recognition memory and exerts neuroprotective actions in high-fat fed mice. Peptides, 2014, 61, 38-47.
[http://dx.doi.org/10.1016/j.peptides.2014.08.014] [PMID: 25195184]
McClean, P.L.; Hölscher, C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology, 2014, 86, 241-258.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.015] [PMID: 25107586]
Zhao, Z.; Pu, Y. Lixisenatide enhances mitochondrial biogenesis and function through regulating the CREB/PGC-1α pathway. Biochem. Biophys. Res. Commun., 2019, 508(4), 1120-1125.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.135] [PMID: 30553453]
Cai, H-Y.; Yang, J-T.; Wang, Z-J.; Zhang, J.; Yang, W.; Wu, M-N.; Qi, J-S. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2018, 495(1), 1034-1040.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.114] [PMID: 29175324]
Du, X.; Zhang, H.; Zhang, W.; Wang, Q.; Wang, W.; Ge, G.; Bai, J.; Guo, X.; Zhang, Y.; Jiang, X.; Gu, J.; Xu, Y.; Geng, D. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int. Immunopharmacol., 2019, 75105732
[http://dx.doi.org/10.1016/j.intimp.2019.105732] [PMID: 31336333]
Zhao, Q.; Xu, H.; Zhang, L.; Liu, L.; Wang, L. GLP-1 receptor agonist lixisenatide protects against high free fatty acids-induced oxidative stress and inflammatory response. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2325-2332.
[http://dx.doi.org/10.1080/21691401.2019.1620248] [PMID: 31174433]
Kamble, M.; Gupta, R.; Rehan, H.S.; Gupta, L.K. Neurobehavioral effects of liraglutide and sitagliptin in experimental models. Eur. J. Pharmacol., 2016, 774, 64-70.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.003] [PMID: 26849938]
Hansen, H.H.; Fabricius, K.; Barkholt, P.; Kongsbak-Wismann, P.; Schlumberger, C.; Jelsing, J.; Terwel, D.; Termont, A.; Pyke, C.; Knudsen, L.B.; Vrang, N. Long-term treatment with liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has no effect on β-amyloid plaque load in two transgenic APP/PS1 mouse models of Alzheimer’s disease. PLoS One, 2016, 11(7)e0158205
[http://dx.doi.org/10.1371/journal.pone.0158205] [PMID: 27421117]
Perna, S.; Mainardi, M.; Astrone, P.; Gozzer, C.; Biava, A.; Bacchio, R.; Spadaccini, D.; Solerte, S.B.; Rondanelli, M. 12-month effects of incretins versus SGLT-2 inhibitors on cognitive performance and metabolic profile. A randomized clinical trial in the elderly with Type-2 diabetes mellitus. Clin. Pharmacol., 2018, 10, 141-151.
[http://dx.doi.org/10.2147/CPAA.S164785] [PMID: 30349407]
Prasad-Reddy, L.; Isaacs, D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context, 2015, 4212283
[http://dx.doi.org/10.7573/dic.212283] [PMID: 26213556]
Pathak, R.; Bridgeman, M.B. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T, 2010, 35(9), 509-513.
[PMID: 20975810]
Scheen, A.J. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes. Metab., 2010, 12(8), 648-658.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01212.x] [PMID: 20590741]
Chen, X-W.; He, Z-X.; Zhou, Z-W.; Yang, T.; Zhang, X.; Yang, Y-X.; Duan, W.; Zhou, S-F. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2015, 42(10), 999-1024.
[http://dx.doi.org/10.1111/1440-1681.12455] [PMID: 26173919]
Hamasaki, H.; Hamasaki, Y. Efficacy of anagliptin as compared to linagliptin on metabolic parameters over 2 years of drug consumption: A retrospective cohort study. World J. Diabetes, 2018, 9(10), 165-171.
[http://dx.doi.org/10.4239/wjd.v9.i10.165] [PMID: 30364744]
Sakr, H.F. Effect of sitagliptin on the working memory and reference memory in type 2 diabetic Sprague-Dawley rats: possible role of adiponectin receptors 1. J. Physiol. Pharmacol., 2013, 64(5), 613-623.
[PMID: 24304575]
Gault, V.A.; Lennox, R.; Flatt, P.R. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obes. Metab., 2015, 17(4), 403-413.
[http://dx.doi.org/10.1111/dom.12432] [PMID: 25580570]
Li, J.; Zhang, S.; Li, C.; Li, M.; Ma, L. Sitagliptin rescues memory deficits in Parkinsonian rats via upregulating BDNF to prevent neuron and dendritic spine loss. Neurol. Res., 2018, 40(9), 736-743.
[http://dx.doi.org/10.1080/01616412.2018.1474840] [PMID: 29781786]
Pintana, H.; Apaijai, N.; Chattipakorn, N.; Chattipakorn, S.C. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J. Endocrinol., 2013, 218(1), 1-11.
[http://dx.doi.org/10.1530/JOE-12-0521] [PMID: 23591914]
Li, Y.; Tian, Q.; Li, Z.; Dang, M.; Lin, Y.; Hou, X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. Drug Dev. Res., 2019, 80(6), 837-845.
[http://dx.doi.org/10.1002/ddr.21567] [PMID: 31301179]
Wiciński, M.; Wódkiewicz, E.; Słupski, M.; Walczak, M.; Socha, M.; Malinowski, B.; Pawlak-Osińska, K. Neuroprotective activity of sitagliptin via reduction of neuroinflammation beyond the incretin effect: focus on Alzheimer’s disease. BioMed Res. Int., 2018, 20186091014
[http://dx.doi.org/10.1155/2018/6091014] [PMID: 30186862]
Nader, M.A.; Ateyya, H.; El-Shafey, M.; El-Sherbeeny, N.A. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem. Int., 2018, 115, 11-23.
[http://dx.doi.org/10.1016/j.neuint.2017.10.006] [PMID: 29032011]
Jo, C.H.; Kim, S.; Park, J-S.; Kim, G-H. Anti-inflammatory action of sitagliptin and linagliptin in doxorubicin nephropathy. Kidney Blood Press. Res., 2018, 43(3), 987-999.
[http://dx.doi.org/10.1159/000490688] [PMID: 29913457]
Shaikh, S.; Rizvi, S.M.D.; Suhail, T.; Shakil, S.; Abuzenadah, A.M.; Anis, R.; Naaz, D.; Dallol, A.; Haneef, M.; Ahmad, A.; Choudhary, L. Prediction of anti-diabetic drugs as dual inhibitors against acetylcholinesterase and beta-secretase: a neuroinformatics study. CNS Neurol. Disord. Drug Targets, 2016, 15(10), 1216-1221.
[http://dx.doi.org/10.2174/1871527315666161003125752] [PMID: 27697060]
Anno, T.; Kaneto, H.; Kawasaki, F.; Shigemoto, R.; Aoyama, Y.; Kaku, K.; Okimoto, N. Drug fever and acute inflammation from hypercytokinemia triggered by dipeptidyl peptidase-4 inhibitor vildagliptin. J. Diabetes Investig., 2019, 10(1), 182-185.
[http://dx.doi.org/10.1111/jdi.12847] [PMID: 29607626]
Zhang, D-D.; Shi, N.; Fang, H.; Ma, L.; Wu, W-P.; Zhang, Y-Z.; Tian, J-L.; Tian, L-B.; Kang, K.; Chen, S. Vildagliptin, a DPP4 inhibitor, alleviates diabetes-associated cognitive deficits by decreasing the levels of apoptosis-related proteins in the rat hippocampus. Exp. Ther. Med., 2018, 15(6), 5100-5106.
[http://dx.doi.org/10.3892/etm.2018.6016] [PMID: 29805536]
Ma, Q-H.; Jiang, L-F.; Mao, J-L.; Xu, W-X.; Huang, M. Vildagliptin prevents cognitive deficits and neuronal apoptosis in a rat model of Alzheimer’s disease. Mol. Med. Rep., 2018, 17(3), 4113-4119.
[PMID: 29257340]
Sa-Nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Jaiwongkam, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. SGLT-2 inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol. Appl. Pharmacol., 2017, 333, 43-50.
[http://dx.doi.org/10.1016/j.taap.2017.08.005] [PMID: 28807765]
Sala, L.L.; Genovese, S.; Ceriello, A. Effect of vildagliptin, compared to sitagliptin, on the onset of hyperglycemia-induced metabolic memory in human umbilical vein endothelial cells. Cardiovasc. Pharm. Open Access, 2017, 6(1), 203.
Tang, Y-Z.; Wang, G.; Jiang, Z-H.; Yan, T-T.; Chen, Y-J.; Yang, M.; Meng, L-L.; Zhu, Y-J.; Li, C-G.; Li, Z.; Yu, P.; Ni, C-L. Efficacy and safety of vildagliptin, sitagliptin, and linagliptin as add-on therapy in Chinese patients with T2DM inadequately controlled with dual combination of insulin and traditional oral hypoglycemic agent. Diabetol. Metab. Syndr., 2015, 7, 91.
[http://dx.doi.org/10.1186/s13098-015-0087-3] [PMID: 26500706]
Isik, A.T.; Soysal, P.; Yay, A.; Usarel, C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res. Clin. Pract., 2017, 123, 192-198.
[http://dx.doi.org/10.1016/j.diabres.2016.12.010] [PMID: 28056430]
Nair, S.; Wilding, J.P.H. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J. Clin. Endocrinol. Metab., 2010, 95(1), 34-42.
[http://dx.doi.org/10.1210/jc.2009-0473] [PMID: 19892839]
Johnston, R.; Uthman, O.; Cummins, E.; Clar, C.; Royle, P.; Colquitt, J.; Tan, B.K.; Clegg, A.; Shantikumar, S.; Court, R.; O’Hare, J.P.; McGrane, D.; Holt, T.; Waugh, N. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health Technol. Assess., 2017, 21(2), 1-218.
[http://dx.doi.org/10.3310/hta21020] [PMID: 28105986]
Markham, A. Ertugliflozin: first global approval. Drugs, 2018, 78(4), 513-519.
[http://dx.doi.org/10.1007/s40265-018-0878-6] [PMID: 29476348]
Rizvi, S.M.D.; Shakil, S.; Biswas, D.; Shakil, S.; Shaikh, S.; Bagga, P.; Kamal, M.A. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer’s disease- diabetes type 2 linkage via an enzoinformatics study. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 447-451.
[http://dx.doi.org/10.2174/18715273113126660160] [PMID: 24059302]
Shaikh, S.; Rizvi, S.M.D.; Shakil, S.; Riyaz, S.; Biswas, D.; Jahan, R. Forxiga (dapagliflozin): plausible role in the treatment of diabetes-associated neurological disorders. Biotechnol. Appl. Biochem., 2016, 63(1), 145-150.
[http://dx.doi.org/10.1002/bab.1319] [PMID: 25402624]
Arafa, N.M.S.; Ali, E.H.A.; Hassan, M.K. Canagliflozin prevents scopolamine-induced memory impairment in rats: Comparison with galantamine hydrobromide action. Chem. Biol. Interact., 2017, 277, 195-203.
[http://dx.doi.org/10.1016/j.cbi.2017.08.013] [PMID: 28837785]
Shibusawa, R.; Yamada, E.; Okada, S.; Nakajima, Y.; Bastie, C.C.; Maeshima, A.; Kaira, K.; Yamada, M. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep., 2019, 9(1), 9887.
[http://dx.doi.org/10.1038/s41598-019-46402-6] [PMID: 31285506]
Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol., 2014, 13, 148.
[http://dx.doi.org/10.1186/s12933-014-0148-1] [PMID: 25344694]
Naznin, F.; Sakoda, H.; Okada, T.; Tsubouchi, H.; Waise, T.M.Z.; Arakawa, K.; Nakazato, M. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur. J. Pharmacol., 2017, 794, 37-44.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.028] [PMID: 27876617]
Millar, P.; Pathak, N.; Parthsarathy, V.; Bjourson, A.J.; O’Kane, M.; Pathak, V.; Moffett, R.C.; Flatt, P.R.; Gault, V.A. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. J. Endocrinol., 2017, 234(3), 255-267.
[http://dx.doi.org/10.1530/JOE-17-0263] [PMID: 28611211]
Loutradis, C.; Papadopoulou, E.; Theodorakopoulou, M.; Karagiannis, A.; Sarafidis, P. The effect of SGLT-2 inhibitors on blood pressure: a pleiotropic action favoring cardio- and nephroprotection. Future Med. Chem., 2019, 11(11), 1285-1303.
[http://dx.doi.org/10.4155/fmc-2018-0514] [PMID: 31161798]
Swiss Institute of Bioinformatics. Available at: http://www.swissadme.ch/
Chemaxon. Software solutions and services for chemistry & biology. Available at: http://www.chemaxon.com2018.
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci., 2010, 1(6), 435-449.
[http://dx.doi.org/10.1021/cn100008c] [PMID: 22778837]
Mohey, V.; Singh, M.; Puri, N.; Kaur, T.; Pathak, D.; Singh, A.P. Sildenafil obviates ischemia-reperfusion injury-induced acute kidney injury through peroxisome proliferator-activated receptor γ agonism in rats. J. Surg. Res., 2016, 201(1), 69-75.
[http://dx.doi.org/10.1016/j.jss.2015.09.035] [PMID: 26850186]
Sanada, F.; Kanbara, Y.; Taniyama, Y.; Otsu, R.; Carracedo, M.; Ikeda-Iwabu, Y.; Muratsu, J.; Sugimoto, K.; Yamamoto, K.; Rakugi, H.; Morishita, R. Induction of angiogenesis by a type III phosphodiesterase inhibitor, cilostazol, through activation of peroxisome proliferator-activated receptor-γ and camp pathways in vascular cells. Arterioscler. Thromb. Vasc. Biol., 2016, 36(3), 545-552.
[http://dx.doi.org/10.1161/ATVBAHA.115.307011] [PMID: 26769045]
Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-selective and dual inhibitors: advances in chemical and biological research. Curr. Med. Chem., 2017, 24(7), 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
Jankowska, A.; Świerczek, A.; Wyska, E.; Gawalska, A.; Bucki, A.; Pawłowski, M.; Chłoń-Rzepa, G. Advances in discovery of PDE10A inhibitors for CNS-related disorders. Part 1: overview of the chemical and biological research. Curr. Drug Targets, 2019, 20(1), 122-143.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414 ]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 11 October, 2019
Page: [6658 - 6681]
Pages: 24
DOI: 10.2174/0929867326666191011144818
Price: $65

Article Metrics

PDF: 22