Biomedical and Pharmaceutical-Related Applications of Laccases

Author(s): Elham Mohit, Maryam Tabarzad, Mohammad Ali Faramarzi*.

Journal Name: Current Protein & Peptide Science

Volume 21 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The oxidation of a vast range of phenolic and non-phenolic substrates has been catalyzed by laccases. Given a wide range of substrates, laccases can be applied in different biotechnological applications. The present review was conducted to provide a broad context in pharmaceutical- and biomedical- related applications of laccases for academic and industrial researchers. First, an overview of biological roles of laccases was presented. Furthermore, laccase-mediated strategies for imparting antimicrobial and antioxidant properties to different surfaces were discussed. In this review, laccase-mediated mechanisms for endowing antimicrobial properties were divided into laccase-mediated bio-grafting of phenolic compounds on lignocellulosic fiber, chitosan and catheters, and laccase-catalyzed iodination. Accordingly, a special emphasis was placed on laccase-mediated functionalization for creating antimicrobials, particularly chitosan-based wound dressings. Additionally, oxidative bio-grafting and oxidative polymerization were described as the two main laccase-catalyzed reactions for imparting antioxidant properties. Recent laccase-related studies were also summarized regarding the synthesis of antibacterial and antiproliferative agents and the degradation of pharmaceuticals and personal care products.

Keywords: Laccases, HIV-1, antimicrobial effect, antiproliferative effect, biografting, chitosan.

[1]
Sharma, K.K.; Kuhad, R.C. Laccase: enzyme revisited and function redefined. Indian J. Microbiol., 2008, 48(3), 309-316.
[http://dx.doi.org/10.1007/s12088-008-0028-z] [PMID: 23100727]
[2]
Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: a never-ending story. Cell. Mol. Life Sci., 2010, 67(3), 369-385.
[http://dx.doi.org/10.1007/s00018-009-0169-1] [PMID: 19844659]
[3]
Piscitelli, A.; Pezzella, C.; Giardina, P.; Faraco, V.; Giovanni, S. Heterologous laccase production and its role in industrial applications. Bioeng. Bugs, 2010, 1(4), 252-262.
[http://dx.doi.org/10.4161/bbug.1.4.11438] [PMID: 21327057]
[4]
Shraddha.; R, Shekher.; S, Sehgal.; M, Kamthania.; A. Kumar Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res., 2011, 2011 217861
[http://dx.doi.org/10.4061/2011/217861] [PMID: 21755038]
[5]
Pezzella, C.; Guarino, L.; Piscitelli, A. How to enjoy laccases. Cell. Mol. Life Sci., 2015, 72(5), 923-940.
[http://dx.doi.org/10.1007/s00018-014-1823-9] [PMID: 25577278]
[6]
Reiss, R.; Ihssen, J.; Richter, M.; Eichhorn, E.; Schilling, B.; Thöny-Meyer, L. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One, 2013, 8(6)e65633
[http://dx.doi.org/10.1371/journal.pone.0065633] [PMID: 23755261]
[7]
Cannatelli, M.D.; Ragauskas, A.J. Two decades of laccases: advancing sustainability in the chemical industry. Chem. Rec., 2017, 17(1), 122-140.
[http://dx.doi.org/10.1002/tcr.201600033] [PMID: 27492131]
[8]
Maté, D.; García-Ruiz, E.; Camarero, S.; Alcalde, M. Directed evolution of fungal laccases. Curr. Genomics, 2011, 12(2), 113-122.
[http://dx.doi.org/10.2174/138920211795564322] [PMID: 21966249]
[9]
Yang, J.; Li, W.; Ng, T.B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol., 2017, 8, 832.
[http://dx.doi.org/10.3389/fmicb.2017.00832] [PMID: 28559880]
[10]
Morozova, O.V.; Shumakovich, G.P.; Shleev, S.V.; Iaropolov, A.I. Laccase-mediator systems and their applications: A review. Prikl. Biokhim. Mikrobiol., 2007, 43(5), 583-597.
[PMID: 18038679]
[11]
Kaczmarek, M.B.; Kwiatos, N.; Szczęsna-Antczak, M.; Bielecki, S. Laccases-enzymes with an unlimited potential. Biotech. Food Sci., 2017, 81(1), 41-70.
[12]
Mikolasch, A.; Schauer, F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl. Microbiol. Biotechnol., 2009, 82(4), 605-624.
[http://dx.doi.org/10.1007/s00253-009-1869-z] [PMID: 19183983]
[13]
Kunamneni, A.; Camarero, S.; García-Burgos, C.; Plou, F.J.; Ballesteros, A.; Alcalde, M. Engineering and applications of fungal laccases for organic synthesis. Microb. Cell Fact., 2008, 7, 32.
[http://dx.doi.org/10.1186/1475-2859-7-32] [PMID: 19019256]
[14]
Kudanga, T.; Nemadziva, B.; Le Roes-Hill, M. Laccase catalysis for the synthesis of bioactive compounds. Appl. Microbiol. Biotechnol., 2017, 101(1), 13-33.
[http://dx.doi.org/10.1007/s00253-016-7987-5] [PMID: 27872999]
[15]
Forootanfar, H.; Arjmand, S.; Behzadi, M.; Faramarzi, M.A. Laccase-Mediated Treatment of Pharmaceutical Wastes. Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology; IGI Global, 2018, pp. 213-252.
[http://dx.doi.org/10.4018/978-1-5225-5237-6.ch010]
[16]
Slagman, S.; Zuilhof, H.; Franssen, M.C.R. Laccase-mediated grafting on biopolymers and synthetic polymers: A critical review. ChemBioChem, 2018, 19(4), 288-311.
[http://dx.doi.org/10.1002/cbic.201700518] [PMID: 29111574]
[17]
Kudanga, T.; Nyanhongo, G.S.; Guebitz, G.M.; Burton, S. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb. Technol., 2011, 48(3), 195-208.
[http://dx.doi.org/10.1016/j.enzmictec.2010.11.007] [PMID: 22112901]
[18]
Kalia, S.; Thakur, K.; Kumar, A.; Celli, A. Laccase-assisted surface functionalization of lignocellulosics. J. Mol. Catal., B Enzym., 2014, 102, 48-58.
[http://dx.doi.org/10.1016/j.molcatb.2014.01.014]
[19]
Thakur, K.; Kalia, S.; Kaith, B.S.; Pathania, D.; Kumar, A. Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. RSC Advances, 2015, 5(94), 76844-76851.
[http://dx.doi.org/10.1039/C5RA14891J]
[20]
Elegir, G.; Kindl, A.; Sadocco, P.; Orlandi, M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb. Technol., 2008, 43(2), 84-92.
[http://dx.doi.org/10.1016/j.enzmictec.2007.10.003]
[21]
Roth, S.; Spiess, A.C. Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess Biosyst. Eng., 2015, 38(12), 2285-2313.
[http://dx.doi.org/10.1007/s00449-015-1475-7] [PMID: 26437966]
[22]
Rodríguez-Delgado, M.M.; Alemán-Nava, G.S.; Rodríguez-Delgado, J.M.; Dieck-Assad, G.; Martínez-Chapa, S.O.; Barceló, D.; Parra, R. Laccase-based biosensors for detection of phenolic compounds. Trends Analyt. Chem., 2015, 74, 21-45.
[http://dx.doi.org/10.1016/j.trac.2015.05.008]
[23]
Jeon, J.R.; Kim, E.J.; Murugesan, K.; Park, H.K.; Kim, Y.M.; Kwon, J.H.; Kim, W.G.; Lee, J.Y.; Chang, Y.S. Laccase-catalysed polymeric dye synthesis from plant-derived phenols for potential application in hair dyeing: Enzymatic colourations driven by homo- or hetero-polymer synthesis. Microb. Biotechnol., 2010, 3(3), 324-335.
[http://dx.doi.org/10.1111/j.1751-7915.2009.00153.x] [PMID: 21255331]
[24]
Viswanath, B.; Rajesh, B.; Janardhan, A.; Kumar, A.P.; Narasimha, G. Fungal laccases and their applications in bioremediation. Enzyme Res., 2014, 2014163242
[http://dx.doi.org/10.1155/2014/163242]
[25]
Senthivelan, T.; Kanagaraj, J.; Panda, R.C. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach - A review. Biotechnol. Bioprocess Eng.; BBE, 2016, 21(1), 19-38.
[http://dx.doi.org/10.1007/s12257-015-0278-7]
[26]
Singh Arora, D.; Kumar Sharma, R. Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem. Biotechnol., 2010, 160(6), 1760-1788.
[http://dx.doi.org/10.1007/s12010-009-8676-y] [PMID: 19513857]
[27]
Javed, A.; Ali, S.; Abid, W.; Ali, N. A review on the potential industrial applications of microbial laccases. Org. Synth., 2017, 14, 15.
[28]
Gonçalves, I.; Silva, C.; Cavaco-Paulo, A. Ultrasound enhanced laccase applications. Green Chem., 2015, 17(3), 1362-1374.
[http://dx.doi.org/10.1039/C4GC02221A]
[29]
Wang, H.X.; Ng, T.B. A laccase from the medicinal mushroom Ganoderma lucidum. Appl. Microbiol. Biotechnol., 2006, 72(3), 508-513.
[http://dx.doi.org/10.1007/s00253-006-0314-9] [PMID: 16636832]
[30]
Guest, T.; Rashid, S. Anticancer laccases: A review. J. Clin. Exp. Oncol., 2016, 5(1)1000153
[31]
Cardullo, N.; Pulvirenti, L.; Spatafora, C.; Musso, N.; Barresi, V.; Condorelli, D.F.; Tringali, C. Dihydrobenzofuran neolignanamides: Laccase-mediated biomimetic synthesis and antiproliferative activity. J. Nat. Prod., 2016, 79(8), 2122-2134.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00577] [PMID: 27504537]
[32]
Bhusainahalli, V.M.; Spatafora, C.; Chalal, M.; Vervandier‐Fasseur, D.; Meunier, P.; Latruffe, N.; Tringali, C. Resveratrol-related dehydrodimers: laccase‐mediated biomimetic synthesis and antiproliferative activity. Eur. J. Org. Chem., 2012, 2012(27), 5217-5224.
[http://dx.doi.org/10.1002/ejoc.201200664]
[33]
Mogharabi, M.; Faramarzi, M.A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal., 2014, 356(5), 897-927.
[http://dx.doi.org/10.1002/adsc.201300960]
[34]
Azimi, M.; Nafissi-Varcheh, N.; Faramarzi, M.A.; Aboofazeli, R. Laccase activity in CTAB-based water-in-oil microemulsions. Iran. J. Pharm. Res., 2016, 15(3), 441-452.
[PMID: 27980579]
[35]
Wang, J.; Feng, J.; Jia, W.; Chang, S.; Li, S.; Li, Y. Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol. Biofuels, 2015, 8(1), 145.
[http://dx.doi.org/10.1186/s13068-015-0331-y] [PMID: 26379777]
[36]
Liu, Y.H.; Ye, M.; Lu, Y.; Zhang, X.; Li, G. Improving the decolorization for textile dyes of a metagenome-derived alkaline laccase by directed evolution. Appl. Microbiol. Biotechnol., 2011, 91(3), 667-675.
[http://dx.doi.org/10.1007/s00253-011-3292-5] [PMID: 21523474]
[37]
Chauhan, P.S.; Goradia, B.; Saxena, A. Bacterial laccase: recent update on production, properties and industrial applications 3 Biotech., 2017, 7(5), 323.
[38]
Brander, S.; Mikkelsen, J.D.; Kepp, K.P. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS One, 2014, 9(6) e99402
[http://dx.doi.org/10.1371/journal.pone.0099402] [PMID: 24915287]
[39]
Zhou, W.; Guan, Z.B.; Chen, Y.; Zhang, F.; Cai, Y.J.; Xu, C.W.; Chen, X.S.; Liao, X.R. Production of spore laccase from Bacillus pumilus W3 and its application in dye decolorization after immobilization. Water Sci. Technol., 2017, 76(1-2), 147-154.
[http://dx.doi.org/10.2166/wst.2017.192] [PMID: 28708619]
[40]
Shi, L.; Chan, S.; Li, C.; Zhang, S. Identification and characterization of a laccase from Litopenaeus vannamei involved in anti-bacterial host defense. Fish Shellfish Immunol., 2017, 66, 1-10.
[http://dx.doi.org/10.1016/j.fsi.2017.04.026] [PMID: 28476665]
[41]
Bronikowski, A.; Hagedoorn, P.L.; Koschorreck, K.; Urlacher, V.B. Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express, 2017, 7(1), 73.
[http://dx.doi.org/10.1186/s13568-017-0368-3] [PMID: 28357784]
[42]
Avelar, M.; Olvera, C.; Aceves-Zamudio, D.; Folch, J.L.; Ayala, M. Recombinant expression of a laccase from Coriolopsis gallica in Pichia pastoris using a modified α-factor preproleader. Protein Expr. Purif., 2017, 136, 14-19.
[http://dx.doi.org/10.1016/j.pep.2017.06.001] [PMID: 28602730]
[43]
Ma, X.; Liu, L.; Li, Q.; Liu, Y.; Yi, L.; Ma, L.; Zhai, C. High-level expression of a bacterial laccase, CueO from Escherichia coli K12 in Pichia pastoris GS115 and its application on the decolorization of synthetic dyes. Enzyme Microb. Technol., 2017, 103, 34-41.
[http://dx.doi.org/10.1016/j.enzmictec.2017.04.004] [PMID: 28554383]
[44]
Wang, J.; Lu, L.; Feng, F. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris. Electron. J. Biotechnol., 2017, 28, 7-13.
[http://dx.doi.org/10.1016/j.ejbt.2017.04.002]
[45]
Ece, S.; Lambertz, C.; Fischer, R.; Commandeur, U. Heterologous expression of a Streptomyces cyaneus laccase for biomass modification applications. AMB Express, 2017, 7(1), 86.
[http://dx.doi.org/10.1186/s13568-017-0387-0] [PMID: 28439850]
[46]
Liu, Y.; Huang, L.; Guo, W.; Jia, L.; Fu, Y.; Gui, S.; Lu, F. Cloning, expression, and characterization of a thermostable and pH-stable laccase from Klebsiella pneumoniae and its application to dye decolorization. Process Biochem., 2017, 53, 125-134.
[http://dx.doi.org/10.1016/j.procbio.2016.11.015]
[47]
Sun, J.; Zheng, M.; Lu, Z.; Lu, F.; Zhang, C. Heterologous production of a temperature and pH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process Biochem., 2017, 55, 77-84.
[http://dx.doi.org/10.1016/j.procbio.2017.01.030]
[48]
Olajuyigbe, F.M.; Fatokun, C.O. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. Int. J. Biol. Macromol., 2017, 94(Pt A), 535-543.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.037]
[49]
Zheng, F.; An, Q.; Meng, G.; Wu, X.J.; Dai, Y.C.; Si, J.; Cui, B.K. A novel laccase from white rot fungus Trametes orientalis: Purification, characterization, and application. Int. J. Biol. Macromol., 2017, 102, 758-770.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.089] [PMID: 28455255]
[50]
Jeon, S.J.; Lim, S.J. Purification and characterization of the laccase involved in dye decolorization by the white-rot fungus Marasmius scorodonius. J. Microbiol. Biotechnol., 2017, 27(6), 1120-1127.
[http://dx.doi.org/10.4014/jmb.1701.01004] [PMID: 28376610]
[51]
Mtibaà, R.; de Eugenio, L.; Ghariani, B.; Louati, I.; Belbahri, L.; Nasri, M.; Mechichi, T. A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization 3 Biotech., 2017, 7(5), 329.
[52]
Bagewadi, Z.K.; Mulla, S.I.; Ninnekar, H.Z. Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. J. Genet. Eng. Biotechnol, 2017, 15(1), 139-150.
[http://dx.doi.org/10.1016/j.jgeb.2017.01.007] [PMID: 30647650]
[53]
Wang, Z.; Liu, J.; Ning, Y.; Liao, X.; Jia, Y. Eichhornia crassipes: Agro-waster for a novel thermostable laccase production by Pycnoporus sanguineus SYBC-L1. J. Biosci. Bioeng., 2017, 123(2), 163-169.
[http://dx.doi.org/10.1016/j.jbiosc.2016.09.005] [PMID: 27964864]
[54]
Othman, A.M.; Elsayed, M.A.; Elshafei, A.M.; Hassan, M.M. Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization. Int. J. Biol. Macromol., 2018, 113, 1142-1148.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.043] [PMID: 29545062]
[55]
Shanmugam, S.; Hari, A.; Ulaganathan, P.; Yang, F.; Krishnaswamy, S.; Wu, Y.R. Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int. J. Hydrogen Energy, 2018, 43(7), 3618-3628.
[http://dx.doi.org/10.1016/j.ijhydene.2018.01.016]
[56]
Rezaei, S.; Shahverdi, A.R.; Faramarzi, M.A. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour. Technol., 2017, 230, 67-75.
[http://dx.doi.org/10.1016/j.biortech.2017.01.036] [PMID: 28161622]
[57]
Basheer, S.; Rashid, N.; Ashraf, R.; Akram, M.S.; Siddiqui, M.A.; Imanaka, T.; Akhtar, M. Identification of a novel copper-activated and halide-tolerant laccase in Geobacillus thermopakistaniensis. Extremophiles, 2017, 21(3), 563-571.
[http://dx.doi.org/10.1007/s00792-017-0925-3] [PMID: 28314922]
[58]
Weirick, T.; Sahu, S.S.; Mahalingam, R.; Kaundal, R. LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches. BMC Bioinformatics, 2014, 15(Suppl. 11), S15.
[http://dx.doi.org/10.1186/1471-2105-15-S11-S15] [PMID: 25350584]
[59]
Sirim, D.; Wagner, F.; Wang, L.; Schmid, R.D.; Pleiss, J. The Laccase Engineering Database: A classification and analysis system for laccases and related multicopper oxidases. Database (Oxford), 2011, 2011, 006.
[http://dx.doi.org/10.1093/database/bar006]
[60]
Yang, C.H.; Guo, J.Y.; Chu, D.; Ding, T.B.; Wei, K.K.; Cheng, D.F.; Wan, F.H. Secretory laccase 1 in Bemisia tabaci MED is involved in whitefly-plant interaction. Sci. Rep., 2017, 7(1), 3623.
[http://dx.doi.org/10.1038/s41598-017-03765-y] [PMID: 28620217]
[61]
Li, Q.; Wang, X.; Korzhev, M.; Schröder, H.C.; Link, T.; Tahir, M.N.; Diehl-Seifert, B.; Müller, W.E.G. Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component. Biochim. Biophys. Acta, 2015, 1850(1), 118-128.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.007] [PMID: 25459515]
[62]
Othman, A.M.; Elshafei, A.M.; Hassan, M.M.; Haroun, B.M.; Elsayed, M.A.; Farrag, A.A. Purification, biochemical characterization and applications of Pleurotus ostreatus ARC280 laccase. Br. Microbiol. Res. J., 2014, 4(12), 1418.
[http://dx.doi.org/10.9734/BMRJ/2014/11218]
[63]
Ng, T.B.; Wang, H.X. A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochem. Biophys. Res. Commun., 2004, 313(1), 37-41.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.087] [PMID: 14672694]
[64]
Hu, D.D.; Zhang, R.Y.; Zhang, G.Q.; Wang, H.X.; Ng, T.B. A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea. Phytomedicine, 2011, 18(5), 374-379.
[http://dx.doi.org/10.1016/j.phymed.2010.07.004] [PMID: 20739163]
[65]
Wang, H.X.; Ng, T.B. Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem. Biophys. Res. Commun., 2004, 315(2), 450-454.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.064] [PMID: 14766229]
[66]
Sun, J.; Wang, H.; Ng, T.B. Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom). Indian J. Biochem. Biophys., 2011, 48(2), 88-94.
[PMID: 21682139]
[67]
Wu, X.; Huang, C.; Chen, Q.; Wang, H.; Zhang, J. A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae. Biomed. Chromatogr., 2014, 28(4), 548-553.
[http://dx.doi.org/10.1002/bmc.3068] [PMID: 24136666]
[68]
Zou, Y.J.; Wang, H.X.; Ng, T.B.; Huang, C.Y.; Zhang, J.X. Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J. Microbiol., 2012, 50(1), 72-78.
[http://dx.doi.org/10.1007/s12275-012-1372-6] [PMID: 22367940]
[69]
Zhu, M.; Zhang, G.; Meng, L.; Wang, H.; Gao, K.; Ng, T. Purification and characterization of a white laccase with pronounced dye decolorizing ability and HIV-1 reverse transcriptase inhibitory activity from Lepista nuda. Molecules, 2016, 21(4), 415.
[http://dx.doi.org/10.3390/molecules21040415] [PMID: 27023513]
[70]
El-Fakharany, E.M.; Haroun, B.M.; Ng, T.B.; Redwan, E.R. Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept. Lett., 2010, 17(8), 1031-1039.
[http://dx.doi.org/10.2174/092986610791498948] [PMID: 20156183]
[71]
Rashid, S.; Unyayar, A.; Mazmanci, M.A.; McKeown, S.R.; Worthington, J.; Banat, I.M. Potential of a Funalia trogii laccase enzyme as an anticancer agent. Ann. Microbiol., 2015, 65(1), 175-183.
[http://dx.doi.org/10.1007/s13213-014-0848-5]
[72]
Rashid, S.; Unyayar, A.; Mazmanci, M.A.; McKeown, S.R.; Banat, I.M.; Worthington, J. A study of anti-cancer effects of Funalia trogii in vitro and in vivo. Food Chem. Toxicol., 2011, 49(7), 1477-1483. [http://dx.doi.org/10.1016/j.fct.2011.02.008] [PMID: 21333711]
[http://dx.doi.org/10.1016/j.fct.2011.02.008] [PMID: 21333711]
[73]
Sun, J.; Chen, Q.J.; Cao, Q.Q.; Wu, Y.Y.; Xu, L.J.; Zhu, M.J.; Ng, T.B.; Wang, H.X.; Zhang, G.Q. A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces. J. Biomed. Biotechnol., 2012. 2012736472
[http://dx.doi.org/10.1155/2012/736472] [PMID: 23093860]
[74]
Li, M.; Zhang, G.; Wang, H.; Ng, T. Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum. J. Microbiol. Biotechnol., 2010, 20(7), 1069-1076.
[http://dx.doi.org/10.4014/jmb.0912.12033] [PMID: 20668399]
[75]
Matuszewska, A.; Karp, M.; Jaszek, M.; Janusz, G.; Osińska-Jaroszuk, M.; Sulej, J.; Stefaniuk, D.; Tomczak, W.; Giannopoulos, K. Laccase purified from Cerrena unicolor exerts antitumor activity against leukemic cells. Oncol. Lett., 2016, 11(3), 2009-2018.
[http://dx.doi.org/10.3892/ol.2016.4220] [PMID: 26998114]
[76]
Wang, H.X.; Ng, T.B. A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. Biochem. Biophys. Res. Commun., 2004, 322(1), 17-21.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.075] [PMID: 15313167]
[77]
Wang, H.X.; Ng, T.B. A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus). Biochem. Biophys. Res. Commun., 2004, 319(2), 381-385.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.011] [PMID: 15178417]
[78]
Wang, H.X.; Ng, T.B. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl. Microbiol. Biotechnol., 2006, 69(5), 521-525.
[http://dx.doi.org/10.1007/s00253-005-0086-7] [PMID: 16075291]
[79]
Wong, J.H.; Ng, T.B.; Jiang, Y.; Liu, F.; Sze, S.C.; Zhang, K.Y. Purification and characterization of a Laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Protein Pept. Lett., 2010, 17(8), 1040-1047.
[http://dx.doi.org/10.2174/092986610791498966] [PMID: 19807674]
[80]
Zhang, G.Q.; Wang, Y.F.; Zhang, X.Q.; Ng, T.B.; Wang, H.X. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem., 2010, 45(5), 627-633.
[http://dx.doi.org/10.1016/j.procbio.2009.12.010]
[81]
Zhang, G.Q.; Tian, T.; Liu, Y.P.; Wang, H.X.; Chen, Q.J. A laccase with anti-proliferative activity against tumor cells from a white root fungus Abortiporus biennis. Process Biochem., 2011, 46(12), 2336-2340.
[http://dx.doi.org/10.1016/j.procbio.2011.09.020]
[82]
Xu, L.; Wang, H.; Ng, T. A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus. J. Biomed. Biotechnol., 2012, 2012 536725
[http://dx.doi.org/10.1155/2012/536725] [PMID: 22536022]
[83]
Zhao, S.; Rong, C.B.; Kong, C.; Liu, Y.; Xu, F.; Miao, Q.J.; Wang, S.X.; Wang, H.X.; Zhang, G.Q. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus. BioMed Res. Int., 2014, 2014 417461
[84]
Aljawish, A.; Chevalot, I.; Madad, N.; Paris, C.; Muniglia, L. Laccase mediated-synthesis of hydroxycinnamoyl-peptide from ferulic acid and carnosine. J. Biotechnol., 2016, 227, 83-93.
[http://dx.doi.org/10.1016/j.jbiotec.2016.04.021] [PMID: 27084055]
[85]
Abdel-Mohsen, H.T.; Conrad, J.; Harms, K.; Nohr, D.; Beifuss, U. Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Advances, 2017, 7(28), 17427-17441.
[http://dx.doi.org/10.1039/C6RA28102H]
[86]
Schroeder, M.; Aichernig, N.; Guebitz, G.M.; Kokol, V. Enzymatic coating of lignocellulosic surfaces with polyphenols. Biotechnol. J., 2007, 2(3), 334-341.
[http://dx.doi.org/10.1002/biot.200600209] [PMID: 17260331]
[87]
Fillat, A.; Gallardo, O.; Vidal, T.; Pastor, F.I.J.; Díaz, P.; Roncero, M.B. Enzymatic grafting of natural phenols to flax fibres: Development of antimicrobial properties. Carbohydr. Polym., 2012, 87, 146-152.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.030]
[88]
Widsten, P.; Heathcote, C.; Kandelbauer, A.; Guebitz, G.; Nyanhongo, G.S.; Prasetyo, E.N.; Kudanga, T. Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochem., 2010, 45(7), 1072-1081.
[http://dx.doi.org/10.1016/j.procbio.2010.03.022]
[89]
Thakur, K.; Kalia, S.; Kaith, B.S.; Pathania, D.; Kumar, A.; Thakur, P.; Knittel, C.E.; Schauer, C.L.; Totaro, G. The development of antibacterial and hydrophobic functionalities in natural fibers for fiber-reinforced composite materials. J. Environ. Chem. Eng., 2016, 4(2), 1743-1752.
[http://dx.doi.org/10.1016/j.jece.2016.02.032]
[90]
Thakur, K.; Kalia, S.; Sharma, N.; Pathania, D. Laccase-mediated biografting of p-coumaric acid for development of antibacterial and hydrophobic properties in coconut fibers. J. Mol. Catal., B Enzym., 2015, 122, 289-295.
[http://dx.doi.org/10.1016/j.molcatb.2015.10.002]
[91]
Silva, C.; Matamá, T.; Kim, S.; Padrão, J.; Prasetyo, E.N.; Kudanga, T.; Nyanhongo, G.S.; Guebitz, G.M.; Casal, M.; Cavaco-Paulo, A. Antimicrobial and antioxidant linen via laccase-assisted grafting. React. Funct. Polym., 2011, 71, 713-720.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2011.03.011]
[92]
Kudanga, T.; Prasetyo, E.N.; Sipilä, J.; Nousiainen, P.; Widsten, P.; Kandelbauer, A.; Nyanhongo, G.S.; Gübitz, G. Laccase‐mediated wood surface functionalization. Eng. Life Sci., 2008, 8(3), 297-302.
[http://dx.doi.org/10.1002/elsc.200800011]
[93]
Kim, S.; Requejo, K.I.; Nakamatsu, J.; Gonzales, K.N.; Torres, F.G.; Cavaco-Paulo, A. Modulating antioxidant activity and the controlled release capability of laccase mediated catechin grafting of chitosan. Process Biochem., 2017, 59, 65-76.
[http://dx.doi.org/10.1016/j.procbio.2016.12.002]
[94]
Aljawish, A.; Chevalot, I.; Piffaut, B.; Rondeau-Mouro, C.; Girardin, M.; Jasniewski, J.; Scher, J.; Muniglia, L. Functionalization of chitosan by laccase-catalyzed oxidation of ferulic acid and ethyl ferulate under heterogeneous reaction conditions. Carbohydr. Polym., 2012, 87(1), 537-544.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.016]
[95]
Bozic, M.; Gorgieva, S.; Kokol, V. Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties. Carbohydr. Polym., 2012, 87, 2388-2398.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.006]
[96]
Božič, M.; Gorgieva, S.; Kokol, V. Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydr. Polym., 2012, 89(3), 854-864.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.021] [PMID: 24750872]
[97]
Gonçalves, I.; Matamá, T.; Cavaco-Paulo, A.; Silva, C. Laccase coating of catheters with poly(catechin) for biofilm reduction. Biocatal. Biotransform., 2014, 32(1), 2-12.
[http://dx.doi.org/10.3109/10242422.2013.828711]
[98]
Diaz Blanco, C.; Ortner, A.; Dimitrov, R.; Navarro, A.; Mendoza, E.; Tzanov, T. Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach. ACS Appl. Mater. Interfaces, 2014, 6(14), 11385-11393.
[http://dx.doi.org/10.1021/am501961b] [PMID: 24955478]
[99]
Schumm, K.; Lam, T.B.L. Types of urethral catheters for management of short-term voiding problems in hospitalized adults: a short version Cochrane review. Neurourol. Urodyn., 2008, 27(8), 738-746.
[http://dx.doi.org/10.1002/nau.20645] [PMID: 18951451]
[100]
Schubert, M.; Engel, J.; Thöny-Meyer, L.; Schwarze, F.W.; Ihssen, J. Protection of wood from microorganisms by laccase-catalyzed iodination. Appl. Environ. Microbiol., 2012, 78(20), 7267-7275.
[http://dx.doi.org/10.1128/AEM.01856-12] [PMID: 22865075]
[101]
Ihssen, J.; Schubert, M.; Thöny-Meyer, L.; Richter, M. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity. PLoS One, 2014, 9(3) e89924
[http://dx.doi.org/10.1371/journal.pone.0089924] [PMID: 24594755]
[102]
Grover, N.; Borkar, I.V.; Dinu, C.Z.; Kane, R.S.; Dordick, J.S. Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Enzyme Microb. Technol., 2012, 50(6-7), 271-279.
[http://dx.doi.org/10.1016/j.enzmictec.2012.01.006] [PMID: 22500892]
[103]
Hossain, KhM.; González, M.D.; Lozano, G.R.; Tzanov, T. Multifunctional modification of wool using an enzymatic process in aqueous-organic media. J. Biotechnol., 2009, 141(1-2), 58-63.
[http://dx.doi.org/10.1016/j.jbiotec.2009.02.011] [PMID: 19428731]
[104]
Iqbal, H.M.N.; Kyazze, G.; Locke, I.C.; Tron, T.; Keshavarz, T. Poly(3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. Int. J. Biol. Macromol., 2015, 81, 552-559.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.040] [PMID: 26314909]
[105]
Stefanov, I.; Pérez-Rafael, S.; Hoyo, J.; Cailloux, J.; Santana Pérez, O.O.; Hinojosa-Caballero, D.; Tzanov, T. Multifunctional Enzymatically Generated Hydrogels for Chronic Wound Application. Biomacromolecules, 2017, 18(5), 1544-1555.
[http://dx.doi.org/10.1021/acs.biomac.7b00111] [PMID: 28421746]
[106]
Sampaio, L.M.P.; Padrão, J.; Faria, J.; Silva, J.P.; Silva, C.J.; Dourado, F.; Zille, A. Laccase immobilization on bacterial nanocellulose membranes: Antimicrobial, kinetic and stability properties. Carbohydr. Polym., 2016, 145, 1-12.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.009] [PMID: 27106145]
[107]
Muzzarelli, R.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym., 2009, 76(2), 167-182.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.002]
[108]
Rocasalbas, G.; Francesko, A.; Touriño, S.; Fernández-Francos, X.; Guebitz, G.M.; Tzanov, T. Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydr. Polym., 2013, 92(2), 989-996.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.045] [PMID: 23399119]
[109]
Huber, D.; Grzelak, A.; Baumann, M.; Borth, N.; Schleining, G.; Nyanhongo, G.S.; Guebitz, G.M. Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-O-carboxymethyl chitosan hydrogels. N. Biotechnol., 2018, 40(Pt B), 236-244.
[http://dx.doi.org/10.1016/j.nbt.2017.09.004]
[110]
Huber, D.; Tegl, G.; Baumann, M.; Sommer, E.; Gorji, E.G.; Borth, N.; Schleining, G.; Nyanhongo, G.S.; Guebitz, G.M. Chitosan hydrogel formation using laccase activated phenolics as cross-linkers. Carbohydr. Polym., 2017, 157, 814-822.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.012] [PMID: 27987995]
[111]
Fernández-Fernández, M.; Sanromán, M.A.; Moldes, D. Recent developments and applications of immobilized laccase. Biotechnol. Adv., 2013, 31(8), 1808-1825.
[http://dx.doi.org/10.1016/j.biotechadv.2012.02.013] [PMID: 22398306]
[112]
Dehghanifard, E.; Jonidi Jafari, A.; Rezaei Kalantary, R.; Mahvi, A.H.; Faramarzi, M.A.; Esrafili, A. Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iran. J. Environ. Health Sci. Eng., 2013, 10(1), 25.
[http://dx.doi.org/10.1186/1735-2746-10-25] [PMID: 23547870]
[113]
Mogharabi, M.; Nassiri-Koopaei, N.; Bozorgi-Koushalshahi, M.; Nafissi-Varcheh, N.; Bagherzadeh, G.; Faramarzi, M.A. Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorg. Chem. Appl., 2012. 2012823830
[http://dx.doi.org/10.1155/2012/823830] [PMID: 22899898]
[114]
Kim, S.; Lee, H.; Kim, J.; Oliveira, F.; Souto, P.; Kim, H.; Nakamatsu, J. Laccase‐mediated grafting of polyphenols onto cationized cotton fibers to impart UV protection and antioxidant activities. J. Appl. Polym. Sci., 2018, 135(6), 45801.
[http://dx.doi.org/10.1002/app.45801]
[115]
Liu, N.; Ni, S.; Ragauskas, A.J.; Meng, X.; Hao, N.; Fu, Y. Laccase-mediated functionalization of chitosan with 4-hexyloxyphenol enhances antioxidant and hydrophobic properties of copolymer. J. Biotechnol., 2018, 269, 8-15.
[http://dx.doi.org/10.1016/j.jbiotec.2018.01.015] [PMID: 29408201]
[116]
Božič, M.; Štrancar, J.; Kokol, V. Laccase-initiated reaction between phenolic acids and chitosan. React. Funct. Polym., 2013, 73(10), 1377-1383.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2013.01.005]
[117]
Chung, J.E.; Kurisawa, M.; Uyama, H.; Kobayashi, S. Enzymatic synthesis and antioxidant property of gelatin-catechin conjugates. Biotechnol. Lett., 2003, 25(23), 1993-1997.
[http://dx.doi.org/10.1023/B:BILE.0000004391.27564.8e] [PMID: 14719812]
[118]
Adelakun, O.E.; Kudanga, T.; Green, I.R.; le Roes-Hill, M.; Burton, S.G. Enzymatic modification of 2, 6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity. Process Biochem., 2012, 47(12), 1926-1932.
[http://dx.doi.org/10.1016/j.procbio.2012.06.027]
[119]
Adelakun, O.E.; Kudanga, T.; Parker, A.; Green, I.R.; le Roes-Hill, M.; Burton, S.G. Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. J. Mol. Catal., B Enzym., 2012, 74(1-2), 29-35.
[http://dx.doi.org/10.1016/j.molcatb.2011.08.010]
[120]
Kurisawa, M.; Chung, J.E.; Uyama, H.; Kobayashi, S. Enzymatic synthesis and antioxidant properties of poly(rutin). Biomacromolecules, 2003, 4(5), 1394-1399.
[http://dx.doi.org/10.1021/bm034136b] [PMID: 12959611]
[121]
Botta, L.; Brunori, F.; Tulimieri, A.; Piccinino, D.; Meschini, R.; Saladino, R. Laccase-mediated enhancement of the antioxidant activity of propolis and poplar bud exudates. ACS Omega, 2017, 2(6), 2515-2523.
[http://dx.doi.org/10.1021/acsomega.7b00294] [PMID: 30023668]
[122]
Li, Z.; Zhang, J.; Qin, L.; Ge, Y. Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustain. Chem.& Eng., 2018, 6(2), 2591-2595.
[http://dx.doi.org/10.1021/acssuschemeng.7b04070]
[123]
Asif, M.B.; Hai, F.I.; Singh, L.; Price, W.E.; Nghiem, L.D. Degradation of pharmaceuticals and personal care products by white-rot fungi-A critical review. Curr. Pollutt. Reports, 2017, 3(2), 88-103.
[http://dx.doi.org/10.1007/s40726-017-0049-5]
[124]
Liang, S.; Luo, Q.; Huang, Q. Degradation of sulfadimethoxine catalyzed by laccase with soybean meal extract as natural mediator: Mechanism and reaction pathway. Chemosphere, 2017, 181, 320-327.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.100] [PMID: 28453964]
[125]
Bilal, M.; Rasheed, T.; Nabeel, F.; Iqbal, H.M.N.; Zhao, Y. Hazardous contaminants in the environment and their laccase-assisted degradation - A review. J. Environ. Manage., 2019, 234, 253-264.
[http://dx.doi.org/10.1016/j.jenvman.2019.01.001] [PMID: 30634118]
[126]
Singh, J.; Saharan, V.; Kumar, S.; Gulati, P.; Kapoor, R.K. Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology. Crit. Rev. Biotechnol., 2018, 38(6), 883-901.
[http://dx.doi.org/10.1080/07388551.2017.1417234] [PMID: 29281904]
[127]
Guardado, A.L.P.; Belleville, M.P.; Alanis, M.J.R.; Saldivar, R.P.; Sanchez-Marcano, J. Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study. Process Biochem., 2019, 78, 123-131.
[http://dx.doi.org/10.1016/j.procbio.2018.12.032]
[128]
Sun, K.; Huang, Q.; Li, S. Transformation and toxicity evaluation of tetracycline in humic acid solution by laccase coupled with 1-hydroxybenzotriazole. J. Hazard. Mater., 2017, 331, 182-188.
[http://dx.doi.org/10.1016/j.jhazmat.2017.02.058] [PMID: 28273567]
[129]
Yang, J.; Lin, Y.; Yang, X.; Ng, T.B.; Ye, X.; Lin, J. Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. J. Hazard. Mater, 2017, 322(Pt B), 525-531.
[http://dx.doi.org/10.1016/j.jhazmat.2016.10.019]
[130]
García‐Delgado, C.; Eymar, E.; Camacho‐Arévalo, R.; Petruccioli, M.; Crognale, S.; D’Annibale, A. Degradation of tetracyclines and sulfonamides by stevensite‐and biochar‐immobilized laccase systems and impact on residual antibiotic activity. J. Chem. Technol. Biotechnol., 2018, 93(12), 3394-3409.
[http://dx.doi.org/10.1002/jctb.5697]
[131]
Zhuo, R.; Yu, H.; Yuan, P.; Fan, J.; Chen, L.; Li, Y.; Ma, F.; Zhang, X. Heterologous expression and characterization of three laccases obtained from Pleurotus ostreatus HAUCC 162 for removal of environmental pollutants. J. Hazard. Mater., 2018, 344, 499-510.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.055] [PMID: 29100130]
[132]
Copete-Pertuz, L.S.; Plácido, J.; Serna-Galvis, E.A.; Torres-Palma, R.A.; Mora, A. Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Sci. Total Environ., 2018, 630, 1195-1204.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.244] [PMID: 29554741]
[133]
Becker, D.; Rodriguez-Mozaz, S.; Insa, S.; Schoevaart, R.; Barceló, D.; De Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; Misovic, A.; Oehlmann, J.; Wagner, M. Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Org. Process Res. Dev., 2017, 21(4), 480-491.
[http://dx.doi.org/10.1021/acs.oprd.6b00361]
[134]
Hachi, M.; Chergui, A.; Yeddou, A.R.; Selatnia, A.; Cabana, H. Removal of acetaminophen and carbamazepine in single and binary systems with immobilized laccase from Trametes hirsuta. Biocatal. Biotransform., 2017, 35(1), 51-62.
[http://dx.doi.org/10.1080/10242422.2017.1280032]
[135]
Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Biotransformation of carbamazepine by laccase-mediator system: Kinetics, by-products and toxicity assessment. Process Biochem., 2018, 67, 147-154.
[http://dx.doi.org/10.1016/j.procbio.2018.02.009]
[136]
Ratanapongleka, K.; Punbut, S. Removal of acetaminophen in water by laccase immobilized in barium alginate. Environ. Technol., 2017, 1-10.
[PMID: 28278092]
[137]
Ba, S.; Haroune, L.; Soumano, L.; Bellenger, J.P.; Jones, J.P.; Cabana, H. A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater. Chemosphere, 2018, 201, 749-755.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.022] [PMID: 29549858]
[138]
Apriceno, A.; Astolfi, M.L.; Girelli, A.M.; Scuto, F.R. A new laccase-mediator system facing the biodegradation challenge: Insight into the NSAIDs removal. Chemosphere, 2019, 215, 535-542.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.086] [PMID: 30340161]
[139]
Huber, D.; Bleymaier, K.; Pellis, A.; Vielnascher, R.; Daxbacher, A.; Greimel, K.J.; Guebitz, G.M. Laccase catalyzed elimination of morphine from aqueous systems. N. Biotechnol., 2018, 42, 19-25.
[http://dx.doi.org/10.1016/j.nbt.2018.01.003] [PMID: 29317354]
[140]
Kudanga, T.; Le Roes-Hill, M. Laccase applications in biofuels production: current status and future prospects. Appl. Microbiol. Biotechnol., 2014, 98(15), 6525-6542.
[http://dx.doi.org/10.1007/s00253-014-5810-8] [PMID: 24841120]
[141]
Adrangi, S.; Faramarzi, M.A. From bacteria to human: a journey into the world of chitinases. Biotechnol. Adv., 2013, 31(8), 1786-1795.
[http://dx.doi.org/10.1016/j.biotechadv.2013.09.012] [PMID: 24095741]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [78 - 98]
Pages: 21
DOI: 10.2174/1389203720666191011105624
Price: $65

Article Metrics

PDF: 23
HTML: 3