Mexican Traditional Plant-Foods: Polyphenols Bioavailability, Gut Microbiota Metabolism and Impact Human Health

Author(s): Gilberto Mercado-Mercado, Francisco J. Blancas-Benítez, Victor M. Zamora-Gasga, Sonia G. Sáyago-Ayerdi*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 32 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Functional foods have been used worldwide since ancient times, particularly, the prehispanic civilizations used several plants as medicinal foods. Nowadays, many Mexicans populations preserve their traditions and dietary patterns based on corn, beans, besides other endemic vegetables, mainly diverse varieties of chili, tomatoes and other plant-foods. It is well known that each species has a special complex mixture of bioactive compounds (BC) in which each component contributes to its overall bioactivity. These BC are plant metabolites that benefit human health by means of anti-inflammatory, immune-modulatory, and antioxidant effects. However, it becomes bioactive at human body when these BC must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. Thus, the intestinal microbiota is the key factor in the mediation of the physiological functions of dietary polyphenols. In fact, limited information is available, especially on dietary phytochemicals and metabolism in commonly available Mexican plant-foods. In this review, the bioaccesibility and bioavailability major BC from traditional Mexican plant-foods products and its potential health benefits will be discussed. Besides, we compile the scientific reports and the evidence of the impact of some Mexican plant-foods on the gut microbiota dynamic composition, specific microbial metabolites and its possible contributions to human health.

Keywords: Bioactive compounds, food digestion, gut metabolites, mexican plant-food, microbiota, polyphenols bioaccessibility.

[1]
Borah WW. New Spain’s century of depression. University of California Press Berkeley 1951.
[2]
Gallardo Arias P. Los especialistas de la curación. Curanderos teenek y nahuas de Aquismón. An Antropol 2004; 38(1): 179-200.
[http://dx.doi.org/10.22201/iia.24486221e.2004.1.16589]
[3]
Ríos Castillo T, Quijano L, Reyes Chilpa R. Algunas reflexiones actuales sobre la herbolaria prehispánica desde el punto de vista químico. Rev Latinoam Quím 2012; 40(2): 41-64.
[4]
Charisse-Carr J. The quest for authenticity in L.A. Mexican food: A preliminaty study. Int J Food Studies 2013; 2(1): 45-51.
[5]
Cruz M, Cerdán ML, Schatan C. Pequeñas empresas, productos étnicos y de nostalgia: oportunidades en el mercado internacional. Ed. CEPAL 2004.
[6]
Palma-Tanango MSM-CR, Soto-Hernández RM. Aromatic and medicinal plants in Mexico. In: Aromatic and medicinal plants: back to nature Intech Open 1st ed. 2017.
[http://dx.doi.org/10.5772/66507]
[7]
Kashina S, Balleza M, Kozhemyakina N, Flores-Villavicencio L, Sabanero M. Traditional foods of Mexico: Advances in discovering of their medicinal properties. Entretextos 2016; 7: 1-8.
[8]
Govea-Salas M, Morlett-Chávez J, Rodríguez-Herrera R, Ascacio-Valdés J. Some Mexican plants used in traditional medicine. In: Intech Open (Ed), Aromatic and medicinal plants: Back to nature. 2017; 1: pp. 191-200.
[http://dx.doi.org/10.5772/66637]
[9]
del Castillo M, Iriondo-DeHond A, Martirosyan D. Are functional foods essential for sustainable health? Ann Nutr Food Sci 2018; 2(1): 1015.
[10]
Luchese CL, Brum LFW, Piovesana A, Caetano K, Flôres SH. Bioactive compounds incorporation into the production of functional biodegradable films-A review. Poly Renew Resour 2017; 8(4): 151-76.
[http://dx.doi.org/10.1177/204124791700800402]
[11]
Flatlandsmo K. Documentation of beneficial effects of bioactive plant compounds in food and feed Bioactive compounds in plants- Benefits and risks for man and animals. The Norwegian Academy of Science and Letters 2010; p. 192.
[12]
Chang SK, Alasalvar C, Shahidi F. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. J Funct Foods 2016; 21: 113-32.
[http://dx.doi.org/10.1016/j.jff.2015.11.034]
[13]
Teng H, Chen L. Polyphenols and bioavailability: an update. Crit Rev Food Sci Nutr 2019; 59(13): 2040-51.
[http://dx.doi.org/10.1080/10408398.2018.1437023] [PMID: 29405736]
[14]
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016; 8(2): 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[15]
Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B. Phenolics in human health. Int J Chem Eng Appl 2014; 5(5): 393-6.
[http://dx.doi.org/10.7763/IJCEA.2014.V5.416]
[16]
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010; 2(12): 1231-46.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[17]
Zilić S, Serpen A, Akıllıoğlu G, Gökmen V, Vančetović J. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 2012; 60(5): 1224-31.
[http://dx.doi.org/10.1021/jf204367z] [PMID: 22248075]
[18]
Leváková Ľ, Lacko-Bartošová M. Phenolic acids and antioxidant activity of wheat species: a review. Agriculture 2017; 63(3): 92-101.
[http://dx.doi.org/10.1515/agri-2017-0009]
[19]
Cárdenas-Castro AP, del Carmen Perales-Vázquez G, Laura A, et al. Sauces: An undiscovered healthy complement in Mexican cuisine. Int J Gastron Food Sci 2019; 17100154
[http://dx.doi.org/10.1016/j.ijgfs.2019.100154]
[20]
Alonso-Castro AJ. Medicinal plants from Mexico, Central America, and the Caribbean used as immunostimulants. Evid Based Complement Alternat Med 2016; 20164017676
[http://dx.doi.org/10.1155/2016/4017676]
[21]
Santos L, Marín Sillué S, Sanchís Almenar V, Ramos Girona AJ. Mycotoxin in medicinal/aromatic herbs-A review. Bol Latinoam Caribe Plantas Med Aromat 2013; 12(2): 119-42.
[22]
Opara EI, Chohan M. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci 2014; 15(10): 19183-202.
[http://dx.doi.org/10.3390/ijms151019183] [PMID: 25340982]
[23]
Hernández M, Ventura J, Castro C, et al. Uplc-esi-qtof-ms2-based identification and antioxidant activity assessment of phenolic compounds from red corn cob (Zea mays L.). Molecules 2018; 23(6): 1425.
[http://dx.doi.org/10.3390/molecules23061425] [PMID: 29895792]
[24]
Luthria DL, Pastor-Corrales MA. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J Food Compos Anal 2006; 19(2-3): 205-11.
[http://dx.doi.org/10.1016/j.jfca.2005.09.003]
[25]
Díaz-Batalla L, Widholm JM, Fahey GC Jr, Castaño-Tostado E, Paredes-López O. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J Agric Food Chem 2006; 54(6): 2045-52.
[http://dx.doi.org/10.1021/jf051706l] [PMID: 16536573]
[26]
Lin L-Z, Harnly JM, Pastor-Corrales MS, Luthria DL. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 2008; 107(1): 399-410.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.038] [PMID: 25544796]
[27]
Yang QQ, Gan RY, Ge YY, Zhang D, Corke H. Polyphenols in common beans (Phaseolus vulgaris L.): Chemistry, analysis, and factors affecting composition. Compr Rev Food Sci Food Saf 2018; 17(6): 1518-36.
[http://dx.doi.org/10.1111/1541-4337.12391]
[28]
Van Der Werf R, Dal S, Le Grandois J, et al. Determination of active radical scavenging compounds in polar fruit and vegetable extracts by an on-line HPLC method. Lebensm Wiss Technol 2015; 62(1): 152-9.
[http://dx.doi.org/10.1016/j.lwt.2015.01.004]
[29]
Erba D, Casiraghi MC, Ribas-Agustí A, Cáceres R, Marfà O, Castellari M. Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J Food Compos Anal 2013; 31(2): 245-51.
[http://dx.doi.org/10.1016/j.jfca.2013.05.014]
[30]
Bakari S, Daoud A, Felhi S, Smaoui S, Gharsallah N, Kadri A. Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of cactus cladode. Food Sci Technol 2017; 37(2): 286-93.
[http://dx.doi.org/10.1590/1678-457x.20116]
[31]
Poovarodom S, Haruenkit R, Vearasilp S, et al. Comparative characterisation of durian, mango and avocado. Int J Food Sci Technol 2010; 45(5): 921-9.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02227.x]
[32]
Shehata M, Soltan SS. Effects of bioactive component of kiwi fruit and avocado (fruit and seed) on hypercholesterolemic rats. World J Dairy Food Sci 2013; 8(1): 82-93.
[http://dx.doi.org/10.5829/idosi.wjdfs.2013.8.1.1121]
[33]
Blancas-Benitez FJ, Mercado-Mercado G, Quirós-Sauceda AE, Montalvo-González E, González-Aguilar GA, Sáyago-Ayerdi SG. Bioaccessibility of polyphenols associated with dietary fiber and in vitro kinetics release of polyphenols in Mexican ‘Ataulfo’ mango (Mangifera indica L.) by-products. Food Funct 2015; 6(3): 859-68.
[http://dx.doi.org/10.1039/C4FO00982G] [PMID: 25608953]
[34]
Schieber A, Ullrich W, Carle R. Characterization of polyphenols in mango puree concentrate by HPLC with diode array and mass spectrometric detection. Innov Food Sci Emerg Technol 2000; 1(2): 161-6.
[http://dx.doi.org/10.1016/S1466-8564(00)00015-1]
[35]
Hussah-Abdullah AS, Mohammed AS, Abdullah R. Identification and quantification of phenolic compounds in Mangifera indica Waterlily kernel and their free radical scavenging activity. J Adv Agric Technol 2015; 2(1): 1-7.
[http://dx.doi.org/10.12720/joaat.2.1.1-7]
[36]
Araújo HM, Rodrigues FFG, Costa WD, et al. Chemical profile and antioxidant capacity verification of Psidium guajava (Myrtaceae) fruits at different stages of maturation. EXCLI J 2015; 14: 1020-30.
[http://dx.doi.org/10.17179/excli2015-522] [PMID: 26933403]
[37]
Chang CH, Hsieh CL, Wang HE, Peng CC, Chyau CC, Peng RY. Unique bioactive polyphenolic profile of guava (Psidium guajava) budding leaf tea is related to plant biochemistry of budding leaves in early dawn. J Sci Food Agric 2013; 93(4): 944-54.
[http://dx.doi.org/10.1002/jsfa.5832] [PMID: 22926797]
[38]
Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Health effects of Psidium guajava L. leaves: an overview of the last decade. Int J Mol Sci 2017; 18(4): 897.
[http://dx.doi.org/10.3390/ijms18040897] [PMID: 28441777]
[39]
Rodrigues CA, Nicácio AE, Jardim IC, Visentainer JV, Maldaner L. Determination of phenolic compounds in red sweet pepper (Capsicum annuum L.) using a modified QuEChERS method and UHPLC-MS/MS analysis and its relation to antioxidant activity. J Braz Chem Soc 2019; 30(6): 1229-40.
[http://dx.doi.org/10.21577/0103-5053.20190018]
[40]
Moreno-Ramírez YDR, Martínez-Ávila GCG, González-Hernández VA, Castro-López C, Torres-Castillo JA. Free radical-scavenging capacities, phenolics and capsaicinoids in wild piquin chili (Capsicum annuum var. Glabriusculum). Molecules 2018; 23(10): 2655.
[http://dx.doi.org/10.3390/molecules23102655] [PMID: 30332792]
[41]
Materska M. Flavone C-glycosides from Capsicum annuum L.: relationships between antioxidant activity and lipophilicity. Eur Food Res Technol 2015; 240(3): 549-57.
[http://dx.doi.org/10.1007/s00217-014-2353-2]
[42]
Materska M, Perucka I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L). J Agric Food Chem 2005; 53(5): 1750-6.
[http://dx.doi.org/10.1021/jf035331k] [PMID: 15740069]
[43]
Rezig L, Chouaibi M, Msaada K, Hamdi S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind Crops Prod 2012; 37(1): 82-37.
[http://dx.doi.org/10.1016/j.indcrop.2011.12.004]
[44]
Akomolafe SF, Oboh G, Oyeleye SI, Molehin OR, Ogunsuyi OB. Phenolic composition and inhibitory ability of methanolic extract from pumpkin (Cucurbita pepo L.) seeds on fe-induced thiobarbituric acid reactive species in albino rat’s testicular tissue in-vitro. J Appl Pharm Sci 2016; 6(9): 115-20.
[http://dx.doi.org/10.7324/JAPS.2016.60917]
[45]
Coelho MS, Salas-Mellado M. Chemical characterization of chia (Salvia hispanica L.) for use in food products. J Food Nutr Res 2014; 2(5): 263-9.
[http://dx.doi.org/10.12691/jfnr-2-5-9]
[46]
da Silva BP, Anunciação PC, Matyelka JCDS, Della Lucia CM, Martino HSD. Pinheiro-Sant’Ana HM. Chemical composition of Brazilian chia seeds grown in different places. Food Chem 2017; 221: 1709-16.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.115] [PMID: 27979151]
[47]
Stintzing FC, Kammerer D, Schieber A, Adama H, Nacoulma OG, Carle R. Betacyanins and phenolic compounds from Amaranthus spinosus L. and Boerhavia erecta L. Z Natforsch C J Biosci 2004; 59(1-2): 1-8.
[http://dx.doi.org/10.1515/znc-2004-1-201] [PMID: 15018042]
[48]
Ogrodowska D, Czaplicki S, Zadernowski R, Mattila P, Hellström J, Naczk M. Phenolic acids in seeds and products obtained from Amaranthus cruentus. J Food Nutr Res 2012; 5(2): 96-101.
[49]
Repo-Carrasco-Valencia R, Hellström JK, Pihlava J-M, Mattila PH. Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem 2010; 120(1): 128-33.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.087]
[50]
Chitindingu K, Ndhlala AR, Chapano C, Benhura MA, Muchuweti M. Phenolic compound content, profiles and antioxidant activities of Amaranthus hybridus (Pigweed), Brachiaria brizantha (Upright brachiaria) and Panicum maximum (Guinea grass). J Food Biochem 2007; 31(2): 206-2016.
[http://dx.doi.org/10.1111/j.1745-4514.2007.00108.x]
[51]
Szychowski KA, Rybczyńska-Tkaczyk K, Gaweł-Bęben K, et al. Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Pol J Food Nutr Sci 2018; 68(1): 73-81.
[http://dx.doi.org/10.1515/pjfns-2017-0005]
[52]
Msaada K, Jemia MB, Salem N, et al. Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab J Chem 2017; 10(Suppl. 2): S3176-83.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.011]
[53]
Luthria DL, Mukhopadhyay S, Kwansa AL. A systematic approach for extraction of phenolic compounds using parsley (Petroselinum crispum) flakes as a model substrate. J Sci Food Agric 2006; 86(9): 1350-8.
[http://dx.doi.org/10.1002/jsfa.2521]
[54]
Jesus RS, Piana M, Freitas RB, et al. In vitro antimicrobial and antimycobacterial activity and HPLC-DAD screening of phenolics from Chenopodium ambrosioides L. Braz J Microbiol 2018; 49(2): 296-302.
[http://dx.doi.org/10.1016/j.bjm.2017.02.012] [PMID: 29037505]
[55]
Radušienė J, Ivanauskas L, Janulis V, Jakštas V. Composition and variability of phenolic compounds in Origanum vulgare from Lithuania. Biologija (Vilnius) 2008; 54(1): 45-9.
[http://dx.doi.org/10.2478/v10054-008-0009-5]
[56]
González M, Luis C, Lanzelotti P. Polyphenolic profile of Origanum vulgare L. ssp. viridulum from Argentina. Phyton (B Aires) 2016; 83(1): 179-84.
[57]
Zhang SI, Deng P, Xu YC, Lu SW, Wang J. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors. J Integr Agric 2016; 15(9): 2175-81.
[http://dx.doi.org/10.1016/S2095-3119(16)61385-0]
[58]
Fredotović Ž, Šprung M, Soldo B, et al. Chemical composition and biological activity of Allium cepa L. and Allium cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules 2017; 22(3): 448.
[http://dx.doi.org/10.3390/molecules22030448] [PMID: 28287477]
[59]
Mercado-Mercado G, Blancas-Benitez FJ, Velderrain-Rodríguez GR, et al. Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction residues of Roselle Hibiscus sabdariffa L J Funct Foods. 2015; 18(Part A): 171-81.
[http://dx.doi.org/10.1016/j.jff.2015.07.001]
[60]
Ifie I, Marshall LJ, Ho P, Williamson G. Hibiscus sabdariffa (Roselle) extracts and wine: phytochemical profile, physicochemical properties, and carbohydrase inhibition. J Agric Food Chem 2016; 64(24): 4921-31.
[http://dx.doi.org/10.1021/acs.jafc.6b01246] [PMID: 27226105]
[61]
Larbi A, El-Mostafa K, Bouchra EA, et al. Evaluation of antioxidant activity and phenolic composition of Opuntia ficus-indica cladodes collected from Moroccan Settat Region. Eusarian J Anal Chem 2017; 12(1): 105-17.
[http://dx.doi.org/10.12973/ejac.2017.00148a]
[62]
Figueroa-Pérez MG, Pérez-Ramírez IF, Paredes-López O, Mondragón-Jacobo C, Reynoso-Camacho R. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. Int J Food Prop 2018; 21(1): 1728-42.
[http://dx.doi.org/10.1080/10942912.2016.1206126]
[63]
Almaraz-Abarca N, del Socorro González-Elizondo M, da Graça Campos M, Ávila-Sevilla ZE, Delgado-Alvarado EA, Ávila-Reyes JA. Variability of the foliar phenol profiles of the agave Victoriae-reginae Complex (Agavaceae). Bot Sci 2013; 91(3): 295-306.
[http://dx.doi.org/10.17129/botsci.9]
[64]
Magana AA, Wrobel K, Elguera JCT, Escobosa ARC, Wrobel K. Determination of small phenolic compounds in tequila by liquid chromatography with ion trap mass spectrometry detection. Food Anal Methods 2015; 8(4): 864-72.
[http://dx.doi.org/10.1007/s12161-014-9967-7]
[65]
Kern SM, Bennett RN, Mellon FA, Kroon PA, Garcia-Conesa M-T. Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J Agric Food Chem 2003; 51(20): 6050-5.
[http://dx.doi.org/10.1021/jf0302299] [PMID: 13129315]
[66]
Hu QP, Xu JG. Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation. J Agric Food Chem 2011; 59(5): 2026-33.
[http://dx.doi.org/10.1021/jf104149q] [PMID: 21299221]
[67]
Pandey R, Singh A, Maurya S, Singh U, Singh M. Phenolic acids in different preparation of maize (Zea mays) and their role in human health. Int J Curr Microbiol Appl Sci 2013; 2(6): 84-92.
[68]
Cui L, Gao R, Dong S, et al. Effects of ear shading on the anthocyanin contents and quality of kernels in various genotypes of maize. Aust J Crop Sci 2012; 6(4): 704-10.
[69]
Salinas Y, García C, Coutiño B, Vidal V. Variabilidad en contenido y tipos de antocianinas en granos de color azul/morado de poblaciones mexicanas de maíz. Rev Fitotec Mex 2013; 36(Supl 3-A): 285-94.
[70]
Žilić S, Mogol BA, Akıllıoğlu G, Serpen A, Babić M, Gökmen V. Effects of infrared heating on phenolic compounds and Maillard reaction products in maize flour. J Cereal Sci 2013; 58(1): 1-7.
[http://dx.doi.org/10.1016/j.jcs.2013.05.003]
[71]
Aoki H, Kuze N, Kato Y, Gen S. Anthocyanins isolated from purple corn (Zea mays L.). Food Food Ingred J Japan 2002; 199: 41-5.
[72]
González-Paramás AM, Esteban-Ruano S, Santos-Buelga C, de Pascual-Teresa S, Rivas-Gonzalo JC. Flavanol content and antioxidant activity in winery byproducts. J Agric Food Chem 2004; 52(2): 234-8.
[http://dx.doi.org/10.1021/jf0348727] [PMID: 14733501]
[73]
Harakotr B, Suriharn B, Tangwongchai R, Scott MP, Lertrat K. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking. Food Chem 2014; 164: 510-7.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.069] [PMID: 24996364]
[74]
Serna-Saldívar SO, Gutiérrez-Uribe JA, Mora-Rochin S, García-Lara S. Potencial nutracéutico de los maíces criollos y cambios durante el procesamiento tradicional y con extrusión. Rev Fitotec Mex 2013; 36(Supl 3-A): 295-304.
[75]
Mora-Rochín S, Gaxiola-Cuevas N, Gutiérrez-Uribe JA, et al. Effect of traditional nixtamalization on anthocyanin content and profile in Mexican blue maize (Zea mays L.) landraces. Lebensm Wiss Technol 2016; 68: 563-9.
[http://dx.doi.org/10.1016/j.lwt.2016.01.009]
[76]
Lara-Flores M. El cultivo del frijol en México. Rdu Rev Dig Univ 2016; 16(2)
[77]
Ganesan K, Xu B. Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 2017; 18(11): 2331.
[http://dx.doi.org/10.3390/ijms18112331] [PMID: 29113066]
[78]
García-Díaz YD, Aquino-Bolaños EN, Chávez-Servia JL, Vera-Guzmán AM, Carrillo-Rodríguez JC. Bioactive compounds and antioxidant activity in the common bean are influenced by cropping season and genotype. Chil J Agric Res 2018; 78(2): 255-65.
[http://dx.doi.org/10.4067/S0718-58392018000200255]
[79]
Wang X, Hansen C, Allen K. Identification of anthocyanins isolated from black bean canning wastewater by macroporous resin using optimized conditions. Food Nutr Sci 2013; 4(8A): 174-81.
[http://dx.doi.org/10.4236/fns.2013.48A021]
[80]
Aquino-Bolaños EN, García-Díaz YD, Chavez-Servia JL, Carrillo-Rodríguez JC, Vera-Guzmán AM, Heredia-García E. Anthocyanin, polyphenol, and flavonoid contents and antioxidant activity in Mexican comon vean (Phseolus vulgaris L.) landraces. Emir J Food Agric 2016; 28(8): 581-8.
[http://dx.doi.org/10.9755/ejfa.2016-02-147]
[81]
Bergougnoux V. The history of tomato: from domestication to biopharming. Biotechnol Adv 2014; 32(1): 170-89.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.003] [PMID: 24211472]
[82]
Medina-Medrano JR, Vázquez-Sánchez M, Villar-Luna E, Cortez-Madrigal H, Angoa-Pérez MV, Cázares-Álvarez E. Total phenolic content, total flavonoids, and antioxidant capacity extracts from Salanum ferugineum Jacq. (Solanaceae). J Chem Bio Phy Sci Sec B 2016; 6(4): 1135-44.
[83]
Vallverdú-Queralt A, Regueiro J, de Alvarenga JF, Torrado X, Lamuela-Raventos RM. Carotenoid profile of tomato sauces: effect of cooking time and content of extra virgin olive oil. Int J Mol Sci 2015; 16(5): 9588-99.
[http://dx.doi.org/10.3390/ijms16059588] [PMID: 25927580]
[84]
Vallverdú-Queralt A, Martínez-Huélamo M, Casals-Ribes I, Lamuela-Raventós RM. Differences in the carotenoid profile of commercially available organic and conventional tomato-based products. J Berry Res 2014; 4(2): 69-77.
[http://dx.doi.org/10.3233/JBR-140069]
[85]
Martínez-Valverde I, Periago MJ, Provan G, Chesson A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J Sci Food Agric 2002; 82(3): 323-30.
[http://dx.doi.org/10.1002/jsfa.1035]
[86]
Raffo A, Leonardi C, Fogliano V, et al. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J Agric Food Chem 2002; 50(22): 6550-6.
[http://dx.doi.org/10.1021/jf020315t] [PMID: 12381148]
[87]
Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018; 21(5): 439-48.
[http://dx.doi.org/10.22038/ijbms.2018.25200.6238] [PMID: 29922422]
[88]
Aguirre-Hernández E, Muñoz-Ocotero V. El chile como alimento. Ciencia 2016; 1: 16-23.
[89]
Castellón-Martínez É, Chávez-Servia JL, Carrillo-Rodríguez JC, Vera-Guzman AM. Preferencias de consumo de chiles (Capsicum annuum L.) nativos en los valles centrales de Oaxaca, México. Rev Fitotec Mex 2012; 35(5): 27-35.
[90]
Medina-Juárez LÁ, Molina-Quijada DM, Sánchez CLDT, González-Aguilar GA, Gámez-Meza N. Antioxidant activity of peppers (Capsicum annuum L.) extracts and characterization of their phenolic constituents. Interciencia 2012; 38(8): 588-93.
[91]
Zahra N, Alim-un-Nisa IK, Hina S, et al. Estimation of capsaicin in different chilli varieties using different extraction techniques and HPLC method: A review. Pak J Food Sci 2016; 26(1): 54-60.
[92]
Arimboor R, Natarajan RB, Menon KR, Chandrasekhar LP, Moorkoth V. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability-a review. J Food Sci Technol 2015; 52(3): 1258-71.
[http://dx.doi.org/10.1007/s13197-014-1260-7] [PMID: 25745195]
[93]
Chope GA, Terry LA, White PJ. Effect of controlled atmosphere storage on abscisic acid concentration and other biochemical attributes of onion bulbs. Postharvest Biol Technol 2006; 39(3): 233-42.
[http://dx.doi.org/10.1016/j.postharvbio.2005.10.010]
[94]
Rose P, Whiteman M, Moore PK, Zhu YZ. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 2005; 22(3): 351-68.
[http://dx.doi.org/10.1039/b417639c] [PMID: 16010345]
[95]
Munday R, Munday CM. Relative activities of organosulfur compounds derived from onions and garlic in increasing tissue activities of quinone reductase and glutathione transferase in rat tissues. Nutr Cancer 2001; 40(2): 205-10.
[http://dx.doi.org/10.1207/S15327914NC402_18] [PMID: 11962257]
[96]
Sangwan A, Kawatra A, Sehgal S. Bio-chemical analysis of coriander leaves powder prepared using various drying methods. J Dairy Foods Home Sci 2011; 30(3): 202-5.
[97]
Lachman J, Pronek D, Hejtmánková A, Dudjak J, Pivec V, Faitová K. Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Hortic Sci (Prague) 2003; 30(4): 142-7.
[http://dx.doi.org/10.17221/3876-HORTSCI]
[98]
Liguori L, Califano R, Albanese D, Raimo F, Crescitelli A, Di Matteo M. Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J Food Qual 2017; 6873651: 9.
[http://dx.doi.org/10.1155/2017/6873651]
[99]
Farzaei MH, Abbasabadi Z, Ardekani MRS, Rahimi R, Farzaei F. Parsley: a review of ethnopharmacology, phytochemistry and biological activities. J Tradit Chin Med 2013; 33(6): 815-26.
[http://dx.doi.org/10.1016/S0254-6272(14)60018-2] [PMID: 24660617]
[100]
Nawel O, Ahmed H. Phytochemical analysis and antimicrobial bioactivity of the Algerian parsley essential oil (Petroselinum crispum). Afr J Microbiol Res 2014; 8(11): 1157-69.
[http://dx.doi.org/10.5897/AJMR12.1021]
[101]
Gómez-Castellanos JR. Epazote (Chenopodium ambrosioides). Revisión a sus características morfológicas, actividad farmacológica, y biogénesis de su principal principio activo, ascaridol. Bol Latinoam Caribe Plantas Med Aromat 2008; 7(1): 3-9.
[102]
Aborisade AB, Adetitu A, Owoade AO. Phytochemical and proximate analysis of some medicinal leaves. Clin Med Res 2017; 6(6): 209-14.
[http://dx.doi.org/10.11648/j.cmr.20170606.16]
[103]
Ajaib M, Hussain T, Farroq S, Ashiq M. Analysis of antimicrobial and antioxidant activities of Chenopodium ambrosioide: An ethnomedicinal plant. J Chem 2016; 4827157: 11.
[http://dx.doi.org/10.1155/2016/4827157]
[104]
Singh P, Kothiyal P, Ratan P. Pharmacological and phytochemical studies of Origanum vulgare: A review. Int Re J Pharm 2018; 9(6): 30-6.
[http://dx.doi.org/10.7897/2230-8407.09685]
[105]
Suzuki-Érika Y. soldati-Pedro P, Chaves-Maro das Gracas AM, Reposo-Nádia R. Essential oil from Origanum vulgare Linnaeus: an alternative against microorganisms responsable for bad perpiration Odour. J Young Pharm 2015; 7(1): 12-20.
[http://dx.doi.org/10.5530/jyp.2015.1.4]
[106]
Cervato G, Carabelli M, Gervasio S, Cittera A, Cazzola R, Cestaro B. Antioxidant properties of oregano (Origanum vulgare L.) leaf extracts. J Food Biochem 2000; 24(6): 453-65.
[http://dx.doi.org/10.1111/j.1745-4514.2000.tb00715.x]
[107]
Saleem M, Kim HJ, Han CK, Jin C, Lee YS. Secondary metabolites from Opuntia ficus-indica var. saboten. Phytochemistry 2006; 67(13): 1390-4.
[http://dx.doi.org/10.1016/j.phytochem.2006.04.009] [PMID: 16762382]
[108]
Kuti JO. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem 2004; 85(4): 527-33.
[http://dx.doi.org/10.1016/S0308-8146(03)00184-5]
[109]
Sarbojeet J. Nutraceutical and functional properties of cactus pear (Opuntia spp.) and its utilization for food applications. J Eng Res Stud 2012; 3(2): 60-6.
[110]
Vallverdú-Queralt A, de Alvarenga JF, Estruch R, Lamuela-Raventos RM. Bioactive compounds present in the Mediterranean sofrito. Food Chem 2013; 141(4): 3365-72.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.032] [PMID: 23993494]
[111]
Figueroa-Cares I, Martínez-Damián MT, Rodríguez-Pérez E, et al. Contenido de pigmentos, otros compuestos y capacidad antioxidante en 12 cultivares de tuna (Opuntia spp.) de México. Agrociencia 2010; 44(7): 763-71.
[112]
Pérez-Álvarez S, Ávila-Quezada G, Coto-Arbelo O. Avocado (Perea americana Mill). Cult Trop 2015; 36(2): 111-23.
[113]
Wall-Medrano A, Olivas-Aguirre FJ, Velderrain-Rodríguez GR, et al. El mango: aspectos agroindustriales, valor nutricional/funcional y efectos en la salud. Nutr Hosp 2014; 31(1): 67-75.
[http://dx.doi.org/10.3305/nh.2015.31.1.7701] [PMID: 25561099]
[114]
SAGARPA. (2017). Aumenta producción de mango mexicano 36 por ciento en tres años, consultado el 1 de mayo de 2017.
[115]
Berardini N, Carle R, Schieber A. Characterization of gallotannins and benzophenone derivatives from mango (Mangifera indica L. cv. ‘Tommy Atkins’) peels, pulp and kernels by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 2004; 18(19): 2208-16.
[http://dx.doi.org/10.1002/rcm.1611] [PMID: 15384138]
[116]
Oliveira BG, Costa HB, Ventura JA, et al. Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS). Food Chem 2016; 204: 37-45.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.117] [PMID: 26988473]
[117]
Chiari-Andréo BG, Trovatti E, Marto J, et al. Garrigues, Borges-Isaac V. Guava: Phytochemical composition of potential sources of antioxidants for cosmetic and/or dermatological applications. Braz J Pharm Sci 2017; 53(2)e16141
[http://dx.doi.org/10.1590/s2175-97902017000216141]
[118]
Akin G, Arsian FN, Karuk-Elmasa SN, Yilmaz I. Cold-pressed pumpkin seed (Curcubita pepo L.) oils from the central Anatolia region of Turkey: Characterization of phytosterols, aqualene, tocols, phenolic acids, carotenoids and fatty acid bioactive compounds. Grasas Aceites 2018; 69(1)e232
[http://dx.doi.org/10.3989/gya.0668171]
[119]
Petkova ZhY, Antova GA. Changes in the composition of pumpkin seeds (Cucurbita moschata) during development and maturation. Grasas Aceites 2015; 66(1)e058
[http://dx.doi.org/10.3989/gya.0706142]
[120]
Marcinek K, Krejpcio Z. Chia seeds (Salvia hispanica): Health promoting properties and therapeutic applications - A review. Rocz Panstw Zakl Hig 2017; 68(2): 123-9.
[121]
Parker J, Schellenberger AN, Roe AL, Oketch-Rabah H, Calderón AI. Therapeutic perspectives on chia seed and its oil: a review. Planta Med 2018; 84(9-10): 606-12.
[http://dx.doi.org/10.1055/a-0586-4711] [PMID: 29534257]
[122]
Caselato-Sousa VM, Amaya-Farfán J. State of knowledge on amaranth grain: a comprehensive review. J Food Sci 2012; 77(4): R93-R104.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02645.x] [PMID: 22515252]
[123]
Kachiguma NA, Mwase W, Maliro M, Damaliphetsa A. Chemical and mineral composition of amaranth (Amaranthus L.) species collected from central Malawi. J Food Res 2015; 4(4): 92-102.
[http://dx.doi.org/10.5539/jfr.v4n4p92]
[124]
Conforti F, Marrelli M, Carmela C, et al. Bioactive phytonutrients (omega fatty acids, tocopherols, polyphenols), in vitro inhibition of nitric oxide production and free radical scavenging activity of non-cultivated Mediterranean vegetables. Food Chem 2011; 129(4): 1413-9.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.085]
[125]
Sáyago-Ayerdi SG, Arranz S, Serrano J, Goñi I. Dietary fiber content and associated antioxidant compounds in Roselle flower (Hibiscus sabdariffa L.) beverage. J Agric Food Chem 2007; 55(19): 7886-90.
[http://dx.doi.org/10.1021/jf070485b] [PMID: 17705439]
[126]
Castañeda R, Cáceres A. Compuestos bioactivos y propiedades terapéuticas de los cálices de rosa de jamaica (Hibiscus sabdariffa Linn.). Revista Científica de la Facultad de Ciencias Químicas y Farmacia 2014; 23(1): 7-24.
[127]
Lemos-Alves FA, Pereira-de Andrade A, Alcántara-Bruno Rde L, de Vasconcelos-Silva MG, Vanderlei-de Souza Mde F, dos-Santos DC. Seasonal variability of phenolic compiunds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci Technol (Campinas) 2017; 37(4): 536-43.
[http://dx.doi.org/10.1590/1678-457x.19316]
[128]
Pérez-Sánchez RE, Delgado-Sánchez LA, García-Saucedo PA, Pulido J, Ortíz-Rodríguez R. Characterization, morphological modeling and proximate analysis of Opuntia ficus-indica and O. atropes during the dry and rainy seasons. Nova Sci 2015; 7(15): 133-52.
[http://dx.doi.org/10.21640/ns.v7i15.312]
[129]
Ahumada-Santos YP, Montes-Avila J, Uribe-Beltrán Mde J, et al. Chemical characterization, antioxidant and antibacterial activities of six Agave species from Sinaloa, Mexico. Ind Crops Prod 2013; 49: 143-9.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.050]
[130]
Romero-López MR, Osorio-Díaz P, Flores-Morales A, Robledo N, Mora-Escobedo R. Chemical composition, antioxidant capacity and prebiotic effect of aguamel (Agave atrovirens) during in vitro fermentation. Rev Mex Ing Quim 2015; 14(2): 281-92.
[131]
Olvera-García V, Granado-Serrano B, Jové M, et al. Characterization of antioxidant properties and metabolite profile of Agave atrovirens extracts. bioRxiv 2017.184226
[http://dx.doi.org/10.1101/184226]
[132]
Le Grandois J, Guffond D, Hamon E, Marchioni E, Werner D. Combined microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals synergetic and antagonist effects of their lipophilic antioxidative components. Food Chem 2017; 223: 62-71.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.008] [PMID: 28069124]
[133]
Eken A, Ünlü-Endirlik B, Baldemis A, İlgün S, Soykut B. Erdem, Akay C. Antioxidant capacity and metal content of Physalis peruviana L. fruit sold in markets. J Clin Anal Med 2016; 7(3): 291-4.
[http://dx.doi.org/10.4328/JCAM.2709]
[134]
Narváez-Cuenca CE, Mateus-Gómez A, Restrepo-Sánchez L. Antioxidant capacity and total phenolic content of air-dried cape goopesberry (Physalis peruviana L.) at different ripeness stages. Agron Colomb 2014; 32(2): 232-7.
[http://dx.doi.org/10.15446/agron.colomb.v32n2.43731]
[135]
Zdunić GM, Menković NR, Jadranin MB, Novaković MM, Šavikin KP, Živkovic J. Phenolic compounds and carotenoids in pumpkin fruit and related traditional products. Hem Ind 2016; 70(4): 429-33.
[http://dx.doi.org/10.2298/HEMIND150219049Z]
[136]
Kulaitienė J, Černiauskienė J, Jarienė E, Danilčenko H, Levickiene D. Antioxidant activity and other quality parameters of cold pressing pumpkin seed oil. Not Bot Horti Agrobot Cluj-Napoca 2018; 46(1): 161-6.
[http://dx.doi.org/10.15835/nbha46110845]
[137]
Corona-Jiménez E, Martínez-Navarrete N, Ruiz-Espinosa H, Carranza-Conchas J. Ultrasound-assisted extraction of phenolic compounds from chia (Salvia hispánica L.) sedes and their antioxidant activity. Agrociencia 2016; 50: 403-12.
[138]
Perales-Sánchez JXK, Reyes-Moreno C, Gómez-Favela MA, et al. Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum Nutr 2014; 69(3): 196-202.
[http://dx.doi.org/10.1007/s11130-014-0430-0] [PMID: 24958279]
[139]
Benkeblia N. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Brazilian Arch Biol Technol Int J 2005; 48(5): 753-9.
[http://dx.doi.org/10.1590/S1516-89132005000600011]
[140]
Gupta D. Comparative analysis of spices for their phenolic content, flavonoid content and antioxidant capacity. Am Int J Res Formal Appl Nat Sci 2013; 13: 38-42.
[141]
Ertekin-Filiz B, Korkmaz N, Budak NH, Ceydim AC, Guzel-Seydim Z. Antioxidant activity and phenolic acid content of selected vegetable broth. Czech J Food Sci 2017; 35(6): 469-75.
[http://dx.doi.org/10.17221/458/2016-CJFS]
[142]
Kaiser A. Brinkmann, Carle R, Kammerer DR. Influence of thermal treatment on color, enzyme activities, and antioxidant capacity of innovative paste like parsley products. J Agric Food Chem 2012; 60(12): 3291-301.
[http://dx.doi.org/10.1021/jf205098q] [PMID: 22375822]
[143]
Bubueanu C, Nicu I, Pirvu L. Chromatographic fingerprint analysis and bioactivity of Origanum vulgare extracts. Malays J Med Biol Res 2015; 2(2): 157-60.
[144]
Quiroga PR, Grosso NR, Lante A, Lomolino G, Zygadlo JA, Nepote V. Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. Int J Food Sci Technol 2013; 48(3): 642-9.
[http://dx.doi.org/10.1111/ijfs.12011]
[145]
Anokwuru CP, Esiaba I, Ajibaye O, Adesuyi AO. Polyphenolic content and antioxidant activity of Hibiscus sabdariffa calyx. Res J Med Plant 2011; 5(5): 557-66.
[http://dx.doi.org/10.3923/rjmp.2011.557.566]
[146]
Ramírez-Ramos M, García-Mateos Mdel R, Corrales-García J, Ybarra-Moncada C, Castillo-González A. Compuestos antioxidantes en variedades pigmentadas de tuna (Opuntia sp.). Rev Fitotec Mex 2015; 38(4): 349-57.
[147]
D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 2010; 11(4): 1321-42.
[http://dx.doi.org/10.3390/ijms11041321] [PMID: 20480022]
[148]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[149]
Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med 2004; 36(7): 829-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.002] [PMID: 15019968]
[150]
Yang CS, Lee MJ, Chen L. Compuestos antioxidantes en variedades pigmentadas de tuna (Opuntia sp.). Rev Fitotec Mex 2015; 38(4): 349-57.
[151]
Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol 2003; 65(7): 1199-206.
[http://dx.doi.org/10.1016/S0006-2952(03)00039-X] [PMID: 12663055]
[152]
Lafay S, Gil-Izquerdo A. Bioavailability of phenolic acids. Phytochem Rev 2008; 7(2): 301-11.
[http://dx.doi.org/10.1007/s11101-007-9077-x]
[153]
Blancas-Benítez FJ, Montalvo-González E, González-Aguilar GA, Sáyago-Ayerdi S. In vitro bioaccessibility and release kinetics of phenolic compounds from guava (Psidium guajava L.) and soursop (Annona muricata L.) pulp. TIP Rev Esp Ciencias Químico-Biológicas 2019; 22(1): 1-7.
[http://dx.doi.org/10.22201/fesz.23958723e.2019.0.169]
[154]
Kamiloglu S, Demirci M, Selen S, Toydemir G, Boyacioglu D, Capanoglu E. Home processing of tomatoes (Solanum lycopersicum): effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. J Sci Food Agric 2014; 94(11): 2225-33.
[http://dx.doi.org/10.1002/jsfa.6546] [PMID: 24375495]
[155]
Ovando-Martínez M, Gámez-Meza N, Molina-Domínguez CC, Hayano-Kanashiro C, Medina-Juárez LA. Simulated gastrointestinal digestión, bioaccessibility and antioxidant capacity of polyphenols from Red Chiltepin (Capsicum annum L. Var glabriusculum) grown in Northwest Mexico. Plant Foods Hum Nutr 2018; 73(2): 116-21.
[http://dx.doi.org/10.1007/s11130-018-0669-y] [PMID: 29700672]
[156]
Juániz I, Ludwig IL, Bresciani L, et al. Catabolism of raw and cooked Green pepper (Capsicum annuum) (poly)phenolic compounds after simulated gastrointestinal digestión and fecal fermentation. J Food Func 2016; 27: 201-13.
[http://dx.doi.org/10.1016/j.jff.2016.09.006]
[157]
Pellegrini M, Lucas-González R, Sayas-Barberá E, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M. Bioaccessibility of phenolic compounds and antioxidant capacity of chia (Salvia hispánica L.) seeds. Plant Foods Hum Nutr 2018; 73(1): 47-53.
[http://dx.doi.org/10.1007/s11130-017-0649-7] [PMID: 29188413]
[158]
Luzardo-Ocampo I, Campos-Vega R, Gaytán-Martínez M, Preciado-Ortíz R, Mendoza S, Loarca-Piña G. Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn (Zea mays L.) and common bean (Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Res Int 2017; 100(Pt 1): 304-11.
[http://dx.doi.org/10.1016/j.foodres.2017.07.018] [PMID: 28873692]
[159]
Ramírez-Moreno E, Hervert-Hernández D, Sánchez-Mata MC, Díez-Marqués C, Goñi I. Intestinal bioaccessibility of polyphenols and antioxidant capacity of pulp and seeds of cactus pear. Int J Food Sci Nutr 2011; 62(8): 839-43.
[http://dx.doi.org/10.3109/09637486.2011.580731] [PMID: 22013923]
[160]
Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. The gut microbiome in human neurological disease: A review. Ann Neurol 2017; 81(3): 369-82.
[http://dx.doi.org/10.1002/ana.24901] [PMID: 28220542]
[161]
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473(7346): 174-80.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[162]
Okumura R, Takeda K. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regen 2018; 38(1): 5.
[http://dx.doi.org/10.1186/s41232-018-0063-z] [PMID: 29619131]
[163]
Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol 2011; 12(1): 5-9.
[http://dx.doi.org/10.1038/ni0111-5] [PMID: 21169997]
[164]
Alonso-Castro AJ, Domínguez F, Maldonado-Miranda JJ, et al. Use of medicinal plants by health professionals in Mexico. J Ethnopharmacol 2017; 198: 81-6.
[http://dx.doi.org/10.1016/j.jep.2016.12.038] [PMID: 28025163]
[165]
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7(1): 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[166]
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165(6): 1332-45.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[167]
Song J-X, Ren H, Gao Y-F, et al. Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob mice. Front Physiol 2017; 8: 602.
[http://dx.doi.org/10.3389/fphys.2017.00602] [PMID: 28890700]
[168]
Shen W, Shen M, Zhao X, et al. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Front Microbiol 2017; 8: 272.
[http://dx.doi.org/10.3389/fmicb.2017.00272] [PMID: 28280490]
[169]
Zamora-Gasga VM, Álvarez-Vidal C, Montalvo-González E, et al. Gut metabolites associated with pH and antioxidant capacity during in vitro colonic fermentation of Mexican corn products. Cereal Chem 2018; 95(3): 399-410.
[http://dx.doi.org/10.1002/cche.10039]
[170]
Cárdenas-Castro AP, Bianchi F, Tallarico-Adorno MA, Montalvo-González E, Sáyago-Ayerdi SG, Sivieri K. In vitro colonic fermentation of Mexican “taco” from corn-tortilla and black beans in a Simulator of Human Microbial Ecosystem (SHIME®) system. Food Res Int 2019; 118: 81-8.
[http://dx.doi.org/10.1016/j.foodres.2018.05.072] [PMID: 30898356]
[171]
Luzardo-Ocampo I, Campos-Vega R, Cuellar-Nuñez ML, et al. Fermented non-digestible fraction from combined nixtamalized corn (Zea mays L.)/cooked common bean (Phaseolus vulgaris L.) chips modulate anti-inflammatory markers on RAW 264.7 macrophages. Food Chem 2018; 259: 7-17.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.096] [PMID: 29680064]
[172]
Alexeev EE, Lanis JM, Kao DJ, et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol 2018; 188(5): 1183-94.
[http://dx.doi.org/10.1016/j.ajpath.2018.01.011] [PMID: 29454749]
[173]
Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 2018; 11(4): 1024-38.
[http://dx.doi.org/10.1038/s41385-018-0019-2] [PMID: 29626198]
[174]
Paturi G, Butts CA, Bentley-Hewitt KL. Influence of dietary avocado on gut health in rats. Plant Foods Hum Nutr 2017; 72(3): 321-3.
[http://dx.doi.org/10.1007/s11130-017-0614-5] [PMID: 28550342]
[175]
Hanske L, Engst W, Loh G, Sczesny S, Blaut M, Braune A. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br J Nutr 2013; 109(8): 1433-41.
[http://dx.doi.org/10.1017/S0007114512003376] [PMID: 22906731]
[176]
Fernandes I, Faria A, de Freitas V, Calhau C, Mateus N. Multiple-approach studies to assess anthocyanin bioavailability. Phytochem Rev 2015; 14(6): 899-919.
[http://dx.doi.org/10.1007/s11101-015-9415-3]
[177]
Tian L, Tan Y, Chen G, et al. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit Rev Food Sci Nutr 2019; 59(6): 982-91.
[http://dx.doi.org/10.1080/10408398.2018.1533517] [PMID: 30595029]
[178]
Gutiérrez TJ. State-of-the-art chocolate manufacture: A review. Compr Rev Food Sci Food Saf 2017; 16(6): 1313-44.
[http://dx.doi.org/10.1111/1541-4337.12301]
[179]
Zheng S, Huang K, Zhao C, et al. Procyanidin attenuates weight gain and modifies the gut microbiota in high fat diet induced obese mice. J Funct Foods 2018; 49: 362-8.
[http://dx.doi.org/10.1016/j.jff.2018.09.007]
[180]
Goverse G, Molenaar R, Macia L, et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol 2017; 198(5): 2172-81.
[http://dx.doi.org/10.4049/jimmunol.1600165] [PMID: 28100682]
[181]
Govindarajan R, Revathi S, Rameshkumar N, Krishnan M, Kayalvizhi N. Microbial tannase: Current perspectives and biotechnological advances. Biocatal Agric Biotechnol 2016; 6: 168-75.
[http://dx.doi.org/10.1016/j.bcab.2016.03.011]
[182]
Barnes RC, Kim H, Fang C, et al. Body mass index as a determinant of systemic exposure to gallotannin metabolites during 6-week consumption of mango (Mangifera indica L.) and modulation of intestinal microbiota in lean and obese individuals. Mol Nutr Food Res 2019; 63(2)e1800512
[http://dx.doi.org/10.1002/mnfr.201800512] [PMID: 30427574]
[183]
Ojo B, El-Rassi GD, Payton ME, et al. Mango supplementation modulates gut microbial dysbiosis and short-chain fatty acid production independent of body weight reduction in C57BL/6 mice fed a high-fat diet. J Nutr 2016; 146(8): 1483-91.
[http://dx.doi.org/10.3945/jn.115.226688] [PMID: 27358411]
[184]
Mercado-Mercado G, Montalvo-González E, González-Aguilar GA, Alvarez-Parrilla E, Sáyago-Ayerdi SG. Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L.‘Ataulfo’) by-products on in vitro bioaccessibility. Food Biosci 2018; 21: 125-31.
[http://dx.doi.org/10.1016/j.fbio.2017.12.012]
[185]
Sáyago-Ayerdi SG, Zamora-Gasga VM, Venema K. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res Int 2019; 118: 89-95.
[http://dx.doi.org/10.1016/j.foodres.2017.12.024] [PMID: 30898357]
[186]
Herrera-Cazares LA, Ramírez-Jiménez AK, Wall-Medrano A, et al. Untargeted metabolomic evaluation of mango bagasse and mango bagasse based confection under in vitro simulated colonic fermentation. J Funct Foods 2019; 54: 271-80.
[http://dx.doi.org/10.1016/j.jff.2019.01.032]
[187]
Rivera-Huerta M, Lizárraga-Grimes VL, Castro-Torres IG, et al. Functional effects of prebiotic fructans in colon cancer and calcium metabolism in animal models. BioMed Res Int 2017; 9758982: 10.
[http://dx.doi.org/10.1155/2017/9758982]
[188]
Ramnani P, Costabile A, Bustillo AG, Gibson GR. A randomised, double- blind, cross-over study investigating the prebiotic effect of agave fructans in healthy human subjects. J Nutr Sci 2015; 4e10
[http://dx.doi.org/10.1017/jns.2014.68] [PMID: 26090092]
[189]
Zamora-Gasga VM, Loarca-Piña G, Vázquez-Landaverde PA, Ortiz-Basurto RI, Tovar J, Sáyago-Ayerdi SG. In vitro colonic fermentation of food ingredients isolated from Agave tequilana Weber var. azul applied on granola bars. Lebensm Wiss Technol 2015; 60(2): 766-72.
[http://dx.doi.org/10.1016/j.lwt.2014.10.032]
[190]
Gamboa RG, Basurto RIO, Santoyo MC, Madrigal JB, Álvarez BER, Avila MG. In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave: a comparison based on polymerization degree. Lebensm Wiss Technol 2018; 92: 380-7.
[http://dx.doi.org/10.1016/j.lwt.2018.02.051]
[191]
Guevara-Arauza JC, de Jesús Ornelas-Paz J, Pimentel-González DJ, Mendoza SR, Guerra RES, Maldonado LMTP. Prebiotic effect of mucilage and pectic-derived oligosaccharides from nopal (Opuntia ficus-indica). Food Sci Biotechnol 2012; 21(4): 997-1003.
[http://dx.doi.org/10.1007/s10068-012-0130-1]
[192]
Sánchez-Tapia M, Aguilar-López M, Pérez-Cruz C, et al. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci Rep 2017; 7(1): 4716.
[http://dx.doi.org/10.1038/s41598-017-05096-4] [PMID: 28680065]
[193]
Moran-Ramos S, He X, Chin EL, et al. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats. PLoS One 2017; 12(2)e0171672
[http://dx.doi.org/10.1371/journal.pone.0171672] [PMID: 28196086]
[194]
Avila-Nava A, Noriega LG, Tovar AR, et al. Food combination based on a pre-hispanic Mexican diet decreases metabolic and cognitive abnormalities and gut microbiota dysbiosis caused by a sucrose-enriched high-fat diet in rats. Mol Nutr Food Res 2017; 61(1)1501023
[http://dx.doi.org/10.1002/mnfr.201501023] [PMID: 27352915]
[195]
Zamora-Gasga VM, Montalvo-González E, Loarca-Piña G, Vázquez-Landaverde PA, Tovar J, Sáyago-Ayerdi SG. Microbial metabolites profile during in vitro human colonic fermentation of breakfast menus consumed by Mexican school children. Food Res Int 2017; 97: 7-14.
[http://dx.doi.org/10.1016/j.foodres.2017.03.038] [PMID: 28578066]
[196]
Zamora-Gasga VM, Cárdenas-Castro AP, Montalvo-González E, et al. In vitro human colonic fermentation of indigestible fraction isolated from lunch menus: impact on the gut metabolites and antioxidant capacity. Int J Food Sci Nutr 2018; 69(6): 718-28.
[http://dx.doi.org/10.1080/09637486.2017.1416458] [PMID: 29278017]
[197]
Bäckhed F. Meat-metabolizing bacteria in atherosclerosis. Nat Med 2013; 19(5): 533-4.
[http://dx.doi.org/10.1038/nm.3178] [PMID: 23652100]
[198]
Meyer TW, Hostetter TH. Uremic solutes from colon microbes. Kidney Int 2012; 81(10): 949-54.
[http://dx.doi.org/10.1038/ki.2011.504] [PMID: 22318422]
[199]
Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 2015; 39(3): 424-9.
[http://dx.doi.org/10.1038/ijo.2014.153] [PMID: 25109781]
[200]
Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One 2018; 13(7)e0201073
[http://dx.doi.org/10.1371/journal.pone.0201073] [PMID: 30052654]
[201]
Tomaro-Duchesneau C, Saha S, Malhotra M, et al. Probiotic ferulic acid esterase active Lactobacillus fermentum NCIMB 5221 APA microcapsules for oral delivery: preparation and in vitro characterization. Pharmaceuticals (Basel) 2012; 5(2): 236-48.
[http://dx.doi.org/10.3390/ph5020236] [PMID: 24288090]
[202]
Sadar SS, Vyawahare NS, Bodhankar SL. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats. EXCLI J 2016; 15: 482-99.
[http://dx.doi.org/10.17179/excli2016-393] [PMID: 27822176]
[203]
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018; 23(6): 716-24.
[http://dx.doi.org/10.1016/j.chom.2018.05.003] [PMID: 29902437]
[204]
Huć T, Nowinski A, Drapala A, Konopelski P, Ufnal M. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 2018; 130: 172-9.
[http://dx.doi.org/10.1016/j.phrs.2017.12.025] [PMID: 29287686]
[205]
Wang D, Ho L, Faith J, et al. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol Nutr Food Res 2015; 59(6): 1025-40.
[http://dx.doi.org/10.1002/mnfr.201400544] [PMID: 25689033]
[206]
Beaumont M, Andriamihaja M, Lan A, et al. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response. Free Radic Biol Med 2016; 93: 155-64.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.01.028] [PMID: 26849947]
[207]
Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113(10): 1408-18.
[http://dx.doi.org/10.1172/JCI21025] [PMID: 15146238]
[208]
Yamada S, Takashina Y, Watanabe M, et al. Bile acid metabolism regulated by the gut microbiota promotes non-alcoholic steatohepatitis-associated hepatocellular carcinoma in mice. Oncotarget 2018; 9(11): 9925-39.
[http://dx.doi.org/10.18632/oncotarget.24066] [PMID: 29515780]
[209]
Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015; 116(3): 448-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305360] [PMID: 25599331]
[210]
Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 2016; 7(2): e02210-5.
[http://dx.doi.org/10.1128/mBio.02210-15] [PMID: 27048804]
[211]
Subedi L, Ji E, Shin D, Jin J, Yeo JH, Kim SY. Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients 2017; 9(3): 207.
[http://dx.doi.org/10.3390/nu9030207] [PMID: 28264445]
[212]
Muku GE, Murray IA, Espín JC, Perdew GH. Urolithin a is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites 2018; 8(4): 86.
[http://dx.doi.org/10.3390/metabo8040086] [PMID: 30501068]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 32
Year: 2019
Published on: 15 November, 2019
Page: [3434 - 3456]
Pages: 23
DOI: 10.2174/1381612825666191011093753
Price: $65

Article Metrics

PDF: 32
HTML: 6
EPUB: 1