Nopal (Opuntia spp.) and its Effects on Metabolic Syndrome: New Insights for the Use of a Millenary Plant

Author(s): Paola Isabel Angulo-Bejarano, María del Rocío Gómez-García, Maria Elena Valverde, Octavio Paredes-López*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 32 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Nopal (Opuntia spp.) is by excellence the most utilized cactus in human and animal nutrition. It is also a very noble plant; its main physicochemical, nutritional and nutraceutical characteristics allow the use of nopal in diverse food applications. Special focus has been given over the past decades in the use of Opuntia for the treatment of metabolic syndrome (MetS), which is predominantly related to Diabetes Mellitus. In this sense, the prevalence of MetS is increasing at a worldwide level. This in turn has led to a notorious demand for natural and nutraceutical food sources.

Methods: The objective of this work was to summarize the main contributions in the field of Opuntia spp. research highlighting the potential use of nopal fruits or cladodes in MetS treatment, providing the reader with historical and novel information in this field. Nevertheless, the present work is not a meta-analysis. We included mainly information from recognized scientific databases, such as PubMed, Scopus, Web of Science and Google Scholar. No homeopathic based studies were included since they lack scientific validation. To the best of our knowledge, this is the first review that fairly categorizes the majority of the information in this field into subsections, which can be of interest for the reader, such as the effect of nopal against cardiovascular disease, type 2 diabetes mellitus, and obesity among others.

Conclusion: Nopal constitutes one of the most studied members of the Cactaceae family; its potential effects on human health have been described since ancient times, mostly through traditional medicine. The present work highlights the importance of this plant in the treatment of MetS related maladies and points out the importance of elucidating new compounds and their validation for the interactions of nutraceutical compounds which could be related to MetS.

Keywords: Diabetes, hypercholesterolemia, metabolic syndrome, nopal, obesity, Cactaceae family.

[1]
Anaya-Pérez MA, Bautista-Zane R. El nopal forrajero en México: del siglo XVI al siglo XX. Agric Soc Desarro 2008; 5(2): 167-83.
[2]
Berdan F, Anawalt PR. The Codex Mendoza. University of California Press 1992.
[3]
Barbera G. Agroecología, cultivo y usos del nopal: FAO; 1999.
[4]
Ibañez-Camacho R, Roman-Ramos R. Hypoglycemic effect of Opuntia cactus. Arch Invest Med (Mex) 1979; 10(4): 223-30.
[PMID: 539865]
[5]
Stintzing FC, Carle R. Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Mol Nutr Food Res 2005; 49(2): 175-94.
[http://dx.doi.org/10.1002/mnfr.200400071] [PMID: 15729672]
[6]
[7]
Angulo-Bejarano P, Martínez-Cruz O, Paredes-López O. Phytochemical content, nutraceutical potential and biotechnological applications of an ancient Mexican plant: nopal (Opuntia ficus-indica). Curr Nutr Food Sci 2014; 10(3): 196-217.
[http://dx.doi.org/10.2174/157340131003140828121015]
[8]
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20(2): 12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[9]
Rodríguez-Monforte M, Sánchez E, Barrio F, Costa B, Flores-Mateo G. Metabolic syndrome and dietary patterns: a systematic review and meta-analysis of observational studies. Eur J Nutr 2017; 56(3): 925-47.
[http://dx.doi.org/10.1007/s00394-016-1305-y] [PMID: 27605002]
[10]
Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016; 26(4): 364-73.
[http://dx.doi.org/10.1016/j.tcm.2015.10.004] [PMID: 26654259]
[12]
Bello-Chavolla OY, Rojas-Martinez R, Aguilar-Salinas CA, Hernández-Avila M. Epidemiology of diabetes mellitus in Mexico Nutri Revs 2017; 75(suppl_1): 4-12.
[http://dx.doi.org/10.1093/nutrit/nuw030]
[14]
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol 2018; 6(3): 223-36.
[http://dx.doi.org/10.1016/S2213-8587(17)30200-0] [PMID: 28919064]
[15]
Bentham J. Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 2019; 569(7755): 260-4.
[http://dx.doi.org/10.1038/s41586-019-1171-x] [PMID: 31068725]
[16]
[17]
Williams AL, Jacobs SB, Moreno-Macías H, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 2014; 506(7486): 97-101.
[http://dx.doi.org/10.1038/nature12828] [PMID: 24390345]
[18]
Estrada K, Aukrust I, Bjørkhaug L, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 2014; 311(22): 2305-14.
[http://dx.doi.org/10.1001/jama.2014.6511] [PMID: 24915262]
[19]
Hernández EAG, Segura-Cobos D, López-Sánchez P. Plants present in Mexico with studies in metabolic syndrome. J Med Plants Res 2016; 4(6): 95-103.
[20]
Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[21]
Angulo-Bejarano PI, Paredes-López O. Nopal: A perspective view on its nutraceutical potentialHispanic foods: chemistry and bioactive compounds. ACS Publications 2012; pp. 113-59.
[http://dx.doi.org/10.1021/bk-2012-1109.ch009]
[22]
Griffith MP. The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Am J Bot 2004; 91(11): 1915-21.
[http://dx.doi.org/10.3732/ajb.91.11.1915] [PMID: 21652337]
[23]
Caruso M, Currò S, Las Casas G, La Malfa S, Gentile A. Microsatellite markers help to assess genetic diversity among Opuntia ficus indica cultivated genotypes and their relation with related species. Plant Syst Evol 2010; 290(1-4): 85-97.
[http://dx.doi.org/10.1007/s00606-010-0351-9]
[24]
Ortiz-Escobar TB, Valverde-González ME, Paredes-López O. Determination of the folate content in cladodes of nopal (Opuntia ficus indica) by microbiological assay utilizing Lactobacillus casei (ATCC 7469) and enzyme-linked immunosorbent assay. J Agric Food Chem 2010; 58(10): 6472-5.
[http://dx.doi.org/10.1021/jf100503v] [PMID: 20441169]
[25]
Hernández-Pérez T, Carrillo-López A, Guevara-Lara F, Cruz-Hernández A, Paredes-López O. Biochemical and nutritional characterization of three prickly pear species with different ripening behavior. Plant Foods Hum Nutr 2005; 60(4): 195-200.
[http://dx.doi.org/10.1007/s11130-005-8618-y] [PMID: 16395631]
[26]
Castellar MR, Solano F, Obón JM. Betacyanin and other antioxidants production during growth of Opuntia stricta (Haw.) fruits. Plant Foods Hum Nutr 2012; 67(4): 337-43.
[http://dx.doi.org/10.1007/s11130-012-0316-y] [PMID: 23065426]
[27]
Betancourt-Domínguez MA, Hernández-Pérez T, García-Saucedo P, Cruz-Hernández A, Paredes-López O. Physico-chemical changes in cladodes (nopalitos) from cultivated and wild cacti (Opuntia spp.). Plant Foods Hum Nutr 2006; 61(3): 115-9.
[http://dx.doi.org/10.1007/s11130-006-0008-6] [PMID: 17031603]
[28]
Rodríguez-Garcia ME, de Lira C, Hernández-Becerra E, et al. Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation. Plant Foods Hum Nutr 2007; 62(3): 107-12.
[http://dx.doi.org/10.1007/s11130-007-0049-5] [PMID: 17674207]
[29]
Figueroa-Pérez MG, Pérez-Ramírez IF, Paredes-López O, Mondragón-Jacobo C, Reynoso-Camacho R. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. Int J Food Prop 2018; 21(1): 1728-42.
[http://dx.doi.org/10.1080/10942912.2016.1206126]
[30]
Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel) 2015; 2(3): 251-86.
[http://dx.doi.org/10.3390/medicines2030251] [PMID: 28930211]
[31]
Aruwa CE, Amoo SO, Kudanga T. Opuntia (Cactaceae) plant compounds, biological activities and prospects - A comprehensive review. Food Res Int 2018; 112: 328-44.
[http://dx.doi.org/10.1016/j.foodres.2018.06.047] [PMID: 30131144]
[32]
Stintzing FC, Herbach KM, Mosshammer MR, et al. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 2005; 53(2): 442-51.
[http://dx.doi.org/10.1021/jf048751y] [PMID: 15656686]
[33]
Tesoriere L, Attanzio A, Allegra M, Livrea MA. Dietary indicaxanthin from cactus pear (Opuntia ficus-indica L. Mill) fruit prevents eryptosis induced by oxysterols in a hypercholesterolaemia-relevant proportion and adhesion of human erythrocytes to endothelial cell layers. Br J Nutr 2015; 114(3): 368-75.
[http://dx.doi.org/10.1017/S0007114515002111] [PMID: 26169206]
[34]
Mata A, Ferreira JP, Semedo C, Serra T, Duarte CM, Bronze MR. Contribution to the characterization of Opuntia spp. juices by LC-DAD-ESI-MS/MS. Food Chem 2016; 210: 558-65.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.033] [PMID: 27211682]
[35]
Mena P, Tassotti M, Andreu L, et al. Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis. Food Res Int 2018; 108: 301-8.
[http://dx.doi.org/10.1016/j.foodres.2018.03.062] [PMID: 29735062]
[36]
Alves FAL, de Andrade AP. Genetic diversity and seasonal chemical profile by 1H-NMR and cytotoxic activity in Opuntia and Nopalea genres. J Med Plants Res 2016; 10(40): 732-47.
[http://dx.doi.org/10.5897/JMPR2016.6207]
[37]
Yeilaghi H, Arzani A, Ghaderian M, Fotovat R, Feizi M, Pourdad SS. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem 2012; 130(3): 618-25.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.085]
[38]
Camarena-Rangel NG, Barba-De la Rosa AP, Herrera-Corredor JA, del Socorro Santos-Diaz M. Enhanced production of metabolites by elicitation in Opuntia ficus-indica, Opuntia megacantha, and Opuntia streptacantha callus. Plant Cell Tissue Organ Cult 2017; 129(2): 289-98.
[http://dx.doi.org/10.1007/s11240-017-1177-8]
[39]
Astello-García MG, Cervantes I, Nair V, et al. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J Food Compos Anal 2015; 43: 119-30.
[http://dx.doi.org/10.1016/j.jfca.2015.04.016]
[40]
Ibañez-Camacho R, Meckes-Lozoya M, Mellado-Campos V. The hypoglucemic effect of Opuntia streptacantha studied in different animal experimental models. J Ethnopharmacol 1983; 7(2): 175-81.
[http://dx.doi.org/10.1016/0378-8741(83)90019-3] [PMID: 6865450]
[41]
Frati-Munari AC, Gordillo BE, Altamirano P, Ariza CR. Hypoglycemic effect of Opuntia streptacantha Lemaire in NIDDM. Diabetes Care 1988; 11(1): 63-6.
[http://dx.doi.org/10.2337/diacare.11.1.63] [PMID: 3276479]
[42]
Frati-Munari AC, Del Valle-Martínez LM, Ariza-Andraca CR, Islas-Andrade S, Chávez-Negrete A. Hypoglycemic action of different doses of nopal (Opuntia streptacantha Lemaire) in patients with type II diabetes mellitus. Arch Invest Med (Mex) 1989; 20(2): 197-201.
[PMID: 2557805]
[43]
Frati Munari AC, Vera Lastra O, Ariza Andraca CR. Evaluation of nopal capsules in diabetes mellitus. Gac Med Mex 1992; 128(4): 431-6.
[PMID: 1307994]
[44]
Trejo-González A, Gabriel-Ortiz G, Puebla-Pérez AM, et al. A purified extract from prickly pear cactus (Opuntia fuliginosa) controls experimentally induced diabetes in rats. J Ethnopharmacol 1996; 55(1): 27-33.
[http://dx.doi.org/10.1016/S0378-8741(96)01467-5] [PMID: 9121164]
[45]
Bwititi P, Musabayane CT, Nhachi CF. Effects of Opuntia megacantha on blood glucose and kidney function in streptozotocin diabetic rats. J Ethnopharmacol 2000; 69(3): 247-52.
[http://dx.doi.org/10.1016/S0378-8741(99)00123-3] [PMID: 10722207]
[46]
Laurenz JC, Collier CC, Kuti JO. Hypoglycaemic effect of Opuntia lindheimeri Englem in a diabetic pig model. Phytother Res 2003; 17(1): 26-9.
[http://dx.doi.org/10.1002/ptr.1052] [PMID: 12557242]
[47]
Wolfram RM, Kritz H, Efthimiou Y, Stomatopoulos J, Sinzinger H. Effect of prickly pear (Opuntia robusta) on glucose- and lipid-metabolism in non-diabetics with hyperlipidemia-a pilot study. Wien Klin Wochenschr 2002; 114(19-20): 840-6.
[PMID: 12503475]
[48]
Pimienta-Barrios E, Méndez-Morán L, Ramírez-Hernández BC, García de Alba-García JE, Domínguez-Arias RM. Efecto de la ingestión del fruto de xoconostle (Opuntia joconostle Web.) sobre la glucosa y lípidos séricos. Agrociencia 2008; 42(6): 645-53.
[49]
Abdallah IZ. Evaluation of hypoglycemic activity of Opuntia dillenii haw fruit juice in streptozotocin-induced diabetic rats. Egyptian J Hosp Med 2008; 33: 544-58.
[50]
Paiz RC, Juárez-Flores BI, Cecilia JRARN, et al. Glucose-lowering effect of xoconostle (Opuntia joconostle A. Web., Cactaceae) in diabetic rats. J Med Plants Res 2010; 4(22): 2326-33.
[http://dx.doi.org/10.5897/jmpr10.294]
[51]
Luo C, Zhang W, Sheng C, Zheng C, Yao J, Miao Z. Chemical composition and antidiabetic activity of Opuntia Milpa Alta extracts. Chem Biodivers 2010; 7(12): 2869-79.
[http://dx.doi.org/10.1002/cbdv.201000077] [PMID: 21161999]
[52]
Butterweck V, Semlin L, Feistel B, Pischel I, Bauer K, Verspohl EJ. Comparative evaluation of two different Opuntia ficus-indica extracts for blood sugar lowering effects in rats. Phytother Res 2011; 25(3): 370-5.
[http://dx.doi.org/10.1002/ptr.3271] [PMID: 20687136]
[53]
Godard MP, Ewing BA, Pischel I, Ziegler A, Benedek B, Feistel B. Acute blood glucose lowering effects and long-term safety of OpunDia supplementation in pre-diabetic males and females. J Ethnopharmacol 2010; 130(3): 631-4.
[http://dx.doi.org/10.1016/j.jep.2010.05.047] [PMID: 20621660]
[54]
Hahm S-W, Park J, Son Y-S. Opuntia humifusa stems lower blood glucose and cholesterol levels in streptozotocin-induced diabetic rats. Nutr Res 2011; 31(6): 479-87.
[http://dx.doi.org/10.1016/j.nutres.2011.05.002] [PMID: 21745630]
[55]
Andrade-Cetto A, Wiedenfeld H. Anti-hyperglycemic effect of Opuntia streptacantha Lem. J Ethnopharmacol 2011; 133(2): 940-3.
[http://dx.doi.org/10.1016/j.jep.2010.11.022] [PMID: 21111796]
[56]
Zhao LY, Lan QJ, Huang ZC, Ouyang LJ, Zeng FH. Antidiabetic effect of a newly identified component of Opuntia dillenii polysaccharides. Phytomedicine 2011; 18(8-9): 661-8.
[http://dx.doi.org/10.1016/j.phymed.2011.01.001] [PMID: 21300531]
[57]
Becerra-Jiménez J, Andrade-Cetto A. Effect of Opuntia streptacantha Lem. on alpha-glucosidase activity. J Ethnopharmacol 2012; 139(2): 493-6.
[http://dx.doi.org/10.1016/j.jep.2011.11.039] [PMID: 22155472]
[58]
Nuñez-López MA, Paredes-López O, Reynoso-Camacho R. Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. J Agric Food Chem 2013; 61(46): 10981-6.
[http://dx.doi.org/10.1021/jf403834x] [PMID: 24164385]
[59]
Berraaouan A, Ziyyat A, Mekhfi H, et al. Evaluation of antidiabetic properties of cactus pear seed oil in rats. Pharm Biol 2014; 52(10): 1286-90.
[http://dx.doi.org/10.3109/13880209.2014.890230] [PMID: 25026333]
[60]
López-Romero P, Pichardo-Ontiveros E, Avila-Nava A, et al. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts. J Acad Nutr Diet 2014; 114(11): 1811-8.
[http://dx.doi.org/10.1016/j.jand.2014.06.352] [PMID: 25132122]
[61]
Gao J, Han Y-L, Jin Z-Y, et al. Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats. Carbohydr Polym 2015; 124: 25-34.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.068] [PMID: 25839790]
[62]
Berraaouan A, Abderrahim Z, Hassane M, Abdelkhaleq L, Mohammed A, Mohamed B. Evaluation of protective effect of cactus pear seed oil (Opuntia ficus-indica L. MILL.) against alloxan-induced diabetes in mice. Asian Pac J Trop Med 2015; 8(7): 532-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.06.013] [PMID: 26276283]
[63]
Leem K-H, Kim M-G, Hahm Y-T, Kim HK. Hypoglycemic effect of Opuntia ficus-indica var. saboten is due to enhanced peripheral glucose uptake through activation of AMPK/p38 MAPK pathway. Nutrients 2016; 8(12): 800.
[http://dx.doi.org/10.3390/nu8120800] [PMID: 27941667]
[64]
Sutariya B, Saraf M. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway. J Ethnopharmacol 2017; 198: 432-43.
[http://dx.doi.org/10.1016/j.jep.2016.12.048] [PMID: 28111218]
[65]
Hwang SH, Kang I-J, Lim SS. Antidiabetic effect of fresh nopal (Opuntia ficus-indica) in low-dose streptozotocin-induced diabetic rats fed a high-fat diet. Evid Based Complement Alternat Med 2017; 20174380721
[http://dx.doi.org/10.1155/2017/4380721] [PMID: 28303158]
[66]
Chahdoura H, Adouni K, Khlifi A, et al. Hepatoprotective effect of Opuntia microdasys (Lehm.) Pfeiff flowers against diabetes type II induced in rats. Biomed Pharmacother 2017; 94: 79-87.
[http://dx.doi.org/10.1016/j.biopha.2017.07.093] [PMID: 28755576]
[67]
Chahdoura H, Khlifi A, Lamine JB, et al. Protective potential of Opuntia microdasys flower decoction on fructose-alloxan-induced diabetic rats on kidney and pancreas: chemical and immunohistochemical analyses. Environ Sci Pollut Res Int 2018; 25(33): 33645-55.
[http://dx.doi.org/10.1007/s11356-018-3290-6] [PMID: 30276684]
[68]
Kotadiya CR, Patel UD, Patel HB, Modi CM, Fefar DT. Evaluation of effects of Opuntia elatior Mill. fruit juice and quercetin on biochemical parameters and histopathological changes in diabetic rats. Indian J Tradit Knowl 2018; 17(3): 576-83.
[69]
Kalungia AC, Mataka M, Kaonga P, Bwalya AG, Prashar L, Munkombwe D. Opuntia stricta cladode extract reduces blood glucose levels in alloxan-induced diabetic mice. Int J Diabetes Res 2018; 7(1): 1-11.
[http://dx.doi.org/10.5923/j.diabetes.20180701.01]
[70]
Bouzghaya S, Zarroug MB, Borgi MA, Sami S. Hypoglycemic and antioxidant effects of Opuntia streptacantha cladodes juice in alloxan-induced diabetic rats. Elixir Food Sci 2016; 96: 41790-5.
[71]
Ruiz-León AM, Lapuente M, Estruch R, Casas R. Clinical advances in immunonutrition and atherosclerosis: A review. Front Immunol 2019; 10: 837.
[http://dx.doi.org/10.3389/fimmu.2019.00837] [PMID: 31068933]
[72]
Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol 2015; 15(2): 104-16.
[http://dx.doi.org/10.1038/nri3793] [PMID: 25614320]
[73]
Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation 2018; 137(12): e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[74]
Yao L, Heubi JE, Buckley DD, et al. Separation of micelles and vesicles within lumenal aspirates from healthy humans: solubilization of cholesterol after a meal. J Lipid Res 2002; 43(4): 654-60.
[PMID: 11907149]
[75]
Fernandez ML, Trejo A, McNamara DJ. Pectin isolated from prickly pear (Opuntia sp.) modifies low density lipoprotein metabolism in cholesterol-fed guinea pigs. J Nutr 1990; 120(11): 1283-90.
[http://dx.doi.org/10.1093/jn/120.11.1283] [PMID: 2231018]
[76]
Fernandez ML, Lin EC, Trejo A, McNamara DJ. Prickly pear (Opuntia sp.) pectin reverses low density lipoprotein receptor suppression induced by a hypercholesterolemic diet in guinea pigs. J Nutr 1992; 122(12): 2330-40.
[http://dx.doi.org/10.1093/jn/122.12.2330] [PMID: 1333520]
[77]
Fernandez ML, Lin EC, Trejo A, McNamara DJ. Prickly pear (Opuntia sp.) pectin alters hepatic cholesterol metabolism without affecting cholesterol absorption in guinea pigs fed a hypercholesterolemic diet. J Nutr 1994; 124(6): 817-24.
[http://dx.doi.org/10.1093/jn/124.6.817] [PMID: 8207539]
[78]
Budinsky A, Wolfram R, Oguogho A, Efthimiou Y, Stamatopoulos Y, Sinzinger H. Regular ingestion of opuntia robusta lowers oxidation injury. Prostaglandins Leukot Essent Fatty Acids 2001; 65(1): 45-50.
[http://dx.doi.org/10.1054/plef.2001.0287] [PMID: 11487308]
[79]
Wolfram R, Budinsky A, Efthimiou Y, Stomatopoulos J, Oguogho A, Sinzinger H. Daily prickly pear consumption improves platelet function. Prostaglandins Leukot Essent Fatty Acids 2003; 69(1): 61-6.
[http://dx.doi.org/10.1016/S0952-3278(03)00057-7] [PMID: 12878452]
[80]
Galati E, Tripodo M, Trovato A, d’Aquino A, Monforte M. Biological activity of Opuntia ficus indica cladodes II: Effect on experimental hypercholesterolemia in rats. Pharm Biol 2003; 41(3): 175-9.
[http://dx.doi.org/10.1076/phbi.41.3.175.15087]
[81]
Oh P-S, Lim K-T. Glycoprotein (90 kDa) isolated from Opuntia ficus-indica var. saboten MAKINO lowers plasma lipid level through scavenging of intracellular radicals in Triton WR-1339-induced mice. Biol Pharm Bull 2006; 29(7): 1391-6.
[http://dx.doi.org/10.1248/bpb.29.1391] [PMID: 16819175]
[82]
Ennouri M, Fetoui H, Bourret E, Zeghal N, Attia H. Evaluation of some biological parameters of Opuntia ficus indica. 1. Influence of a seed oil supplemented diet on rats. Bioresour Technol 2006; 97(12): 1382-6.
[http://dx.doi.org/10.1016/j.biortech.2005.07.010] [PMID: 16129601]
[83]
Ennouri M, Fetoui H, Bourret E, Zeghal N, Guermazi F, Attia H. Evaluation of some biological parameters of Opuntia ficus indica. 2. Influence of seed supplemented diet on rats. Bioresour Technol 2006; 97(16): 2136-40.
[http://dx.doi.org/10.1016/j.biortech.2005.09.031] [PMID: 16290138]
[84]
Chang S-F, Hsieh C-L, Yen G-C. The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds. Food Chem 2008; 106(2): 569-75.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.017]
[85]
Yang N, Zhao M, Zhu B, et al. Anti-diabetic effects of polysaccharides from Opuntia monacantha cladode in normal and streptozotocin-induced diabetic rats. Innov Food Sci Emerg Technol 2008; 9(4): 570-4.
[http://dx.doi.org/10.1016/j.ifset.2007.12.003]
[86]
Zhao L-Y, Huang W, Yuan Q-X, et al. Hypolipidaemic effects and mechanisms of the main component of Opuntia dillenii Haw. polysaccharides in high-fat emulsion-induced hyperlipidaemic rats. Food Chem 2012; 134(2): 964-71.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.001] [PMID: 23107714]
[87]
Tesoriere L, Attanzio A, Allegra M, Gentile C, Livrea MA. Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca(2+) increase and oxidative stress. Br J Nutr 2013; 110(2): 230-40.
[http://dx.doi.org/10.1017/S000711451200493X] [PMID: 23228674]
[88]
Osorio-Esquivel O, Ortiz-Moreno A, Garduño-Siciliano L, Álvarez VB, Hernández-Navarro MD. Antihyperlipidemic effect of methanolic extract from Opuntia joconostle seeds in mice fed a hypercholesterolemic diet. Plant Foods Hum Nutr 2012; 67(4): 365-70.
[http://dx.doi.org/10.1007/s11130-012-0320-2] [PMID: 23135897]
[89]
Padilla-Camberos E, Flores-Fernandez JM, Fernandez-Flores O, et al. Hypocholesterolemic effect and in vitro pancreatic lipase inhibitory activity of an Opuntia ficus-indica extract. BioMed Res Int 2015; 2015837452
[http://dx.doi.org/10.1155/2015/837452] [PMID: 26078966]
[90]
Garoby-Salom S, Guéraud F, Camaré C, et al. Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice. J Physiol Biochem 2016; 72(1): 59-70.
[http://dx.doi.org/10.1007/s13105-015-0461-5] [PMID: 26704378]
[91]
Keller J, Camaré C, Bernis C, et al. Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model. J Physiol Biochem 2015; 71(3): 577-87.
[http://dx.doi.org/10.1007/s13105-015-0408-x] [PMID: 25840808]
[92]
Rodríguez-Rodríguez C, Torres N, Gutiérrez-Uribe JA, et al. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct 2015; 6(3): 805-15.
[http://dx.doi.org/10.1039/C4FO01092B] [PMID: 25588195]
[93]
A Chavez-Santoscoy R, Olmos-Nakamura A, A Gutiérrez-Uribe J, O Serna-Saldívar S. An extract from prickly pear peel (Opuntia ficus-indica) affects cholesterol excretion and hepatic cholesterol levels in hamsters fed hyperlipidemic diets. Curr Bioact Compd 2016; 12(1): 10-6.
[http://dx.doi.org/10.2174/1573407212666151231183553]
[94]
Ressaissi A, Attia N, Falé PL, et al. Isorhamnetin derivatives and piscidic acid for hypercholesterolemia: cholesterol permeability, HMG-CoA reductase inhibition, and docking studies. Arch Pharm Res 2017; 40(11): 1278-86.
[http://dx.doi.org/10.1007/s12272-017-0959-1] [PMID: 28936788]
[95]
Khouloud A, Abedelmalek S, Chtourou H, Souissi N. The effect of Opuntia ficus-indica juice supplementation on oxidative stress, cardiovascular parameters, and biochemical markers following yo-yo intermittent recovery test. Food Sci Nutr 2017; 6(2): 259-68.
[http://dx.doi.org/10.1002/fsn3.529] [PMID: 29564091]
[96]
Harrat NEI, Louala S, Bensalah F, Affane F, Chekkal H, Lamri-Senhadji M. Anti-hypertensive, anti-diabetic, hypocholesterolemic and antioxidant properties of prickly pear nopalitos in type 2 diabetic rats fed a high-fat diet. Nutr Food Sci 2019; 49(3): 476-90.
[http://dx.doi.org/10.1108/NFS-06-2018-0169]
[97]
Attanzio A, Frazzitta A, Busa R, Tesoriere L, Livrea MA, Allegra M. Indicaxanthin from Opuntia ficus indica (L. Mill) inhibits oxidized LDL-mediated human endothelial cell dysfunction through inhibition of NF-κB activation. Oxid Med Cell Longev 2019; 20193457846
[http://dx.doi.org/10.1155/2019/3457846]
[98]
Westerterp M, Murphy AJ, Wang M, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res 2013; 112(11): 1456-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301086] [PMID: 23572498]
[99]
Onakpoya IJ, O’Sullivan J, Heneghan CJ. The effect of cactus pear (Opuntia ficus-indica) on body weight and cardiovascular risk factors: a systematic review and meta-analysis of randomized clinical trials. Nutrition 2015; 31(5): 640-6.
[http://dx.doi.org/10.1016/j.nut.2014.11.015] [PMID: 25837206]
[100]
Schetz M, De Jong A, Deane AM, et al. Obesity in the critically ill: a narrative review. Intensive Care Med 2019; 45(6): 757-69.
[http://dx.doi.org/10.1007/s00134-019-05594-1] [PMID: 30888440]
[101]
Pischon T, Nimptsch K. Obesity and risk of cancer: an introductory overview. Recent Results Cancer Res 2016; 208: 1-5.
[http://dx.doi.org/10.1007/978-3-319-42542-9_1]
[102]
Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019; 92: 121-35.
[http://dx.doi.org/10.1016/j.metabol.2018.11.001] [PMID: 30445141]
[103]
Aragona M, Lauriano ER, Pergolizzi S, Faggio C. Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition. Nat Prod Res 2018; 32(17): 2037-49.
[http://dx.doi.org/10.1080/14786419.2017.1365073] [PMID: 28805459]
[104]
Chong P-W, Lau K-Z, Gruenwald J, Uebelhack R. A review of the efficacy and safety of Litramine IQP-G-002AS, an Opuntia ficus-indica derived fiber for weight management. Evid Based Complement Alternat Med 2014; 2014943713
[http://dx.doi.org/10.1155/2014/943713] [PMID: 25254061]
[105]
Morán-Ramos S, Avila-Nava A, Tovar AR, Pedraza-Chaverri J, López-Romero P, Torres N. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats. J Nutr 2012; 142(11): 1956-63.
[http://dx.doi.org/10.3945/jn.112.165563] [PMID: 23014486]
[106]
Moran-Ramos S, He X, Chin EL, et al. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats. PLoS One 2017; 12(2)e0171672
[http://dx.doi.org/10.1371/journal.pone.0171672] [PMID: 28196086]
[107]
Grube B, Chong PW, Lau KZ, Orzechowski HD. A natural fiber complex reduces body weight in the overweight and obese: a double-blind, randomized, placebo-controlled study. Obesity (Silver Spring) 2013; 21(1): 58-64.
[http://dx.doi.org/10.1002/oby.20244] [PMID: 23505169]
[108]
Uebelhack R, Busch R, Alt F, Beah Z-M, Chong P-W. Effects of cactus fiber on the excretion of dietary fat in healthy subjects: a double blind, randomized, placebo-controlled, crossover clinical investigation. Curr Ther Res Clin Exp 2014; 76: 39-44.
[http://dx.doi.org/10.1016/j.curtheres.2014.02.001] [PMID: 25067985]
[109]
Aiello A, Di Bona D, Candore G, et al. Targeting aging with functional food: Pasta with Opuntia single-arm pilot study. Rejuvenation Res 2018; 21(3): 249-56.
[http://dx.doi.org/10.1089/rej.2017.1992] [PMID: 28851251]
[110]
Alonso-Castro AJ, Domínguez F, Zapata-Morales JR, Carranza-Álvarez C. Plants used in the traditional medicine of Mesoamerica (Mexico and Central America) and the Caribbean for the treatment of obesity. J Ethnopharmacol 2015; 175: 335-45.
[http://dx.doi.org/10.1016/j.jep.2015.09.029] [PMID: 26410815]
[111]
Del Socorro Santos Díaz M, Barba de la Rosa A-P, Héliès-Toussaint C, Guéraud F, Nègre-Salvayre A. Opuntia spp.: characterization and benefits in chronic diseases. Oxid Med Cell Longev 2017; 20178634249
[http://dx.doi.org/10.1155/2017/8634249] [PMID: 28491239]
[112]
de la Garza AL, Milagro FI, Boque N, Campión J, Martínez JA. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med 2011; 77(8): 773-85.
[http://dx.doi.org/10.1055/s-0030-1270924] [PMID: 21412692]
[113]
Guevara-Cruz M, Tovar AR, Aguilar-Salinas CA, et al. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J Nutr 2012; 142(1): 64-9.
[http://dx.doi.org/10.3945/jn.111.147447] [PMID: 22090467]
[114]
Acuña-Alonzo V, Flores-Dorantes T, Kruit JK, et al. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum Mol Genet 2010; 19(14): 2877-85.
[http://dx.doi.org/10.1093/hmg/ddq173] [PMID: 20418488]
[115]
Medina-Vera I, Sanchez-Tapia M, Noriega-López L, et al. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab 2019; 45(2): 122-31.
[http://dx.doi.org/10.1016/j.diabet.2018.09.004] [PMID: 30266575]
[116]
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332(6037): 1519-23.
[http://dx.doi.org/10.1126/science.1204265] [PMID: 21700865]
[117]
Kang J-W, Shin J-K, Koh E-J, Ryu H, Kim HJ, Lee S-M. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice. Nutr Res 2016; 36(4): 369-79.
[http://dx.doi.org/10.1016/j.nutres.2015.12.007] [PMID: 27001282]
[118]
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5(12): 953-64.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[119]
Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 2007; 15(4): 798-808.
[http://dx.doi.org/10.1038/oby.2007.608] [PMID: 17426312]
[120]
Qiao Y, Sun J, Ding Y, Le G, Shi Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol 2013; 97(4): 1689-97.
[http://dx.doi.org/10.1007/s00253-012-4323-6] [PMID: 22948953]
[121]
Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 2010; 5(8)e12191
[http://dx.doi.org/10.1371/journal.pone.0012191] [PMID: 20808947]
[122]
Kanoski SE, Davidson TL. Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav 2011; 103(1): 59-68.
[http://dx.doi.org/10.1016/j.physbeh.2010.12.003] [PMID: 21167850]
[123]
Kuo S-M. The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv Nutr 2013; 4(1): 16-28.
[http://dx.doi.org/10.3945/an.112.003046] [PMID: 23319119]
[124]
Sánchez-Tapia M, Aguilar-López M, Pérez-Cruz C, et al. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci Rep 2017; 7(1): 4716.
[http://dx.doi.org/10.1038/s41598-017-05096-4] [PMID: 28680065]
[125]
Allegra M, De Cicco P, Ercolano G, et al. Indicaxanthin from Opuntia Ficus Indica (L. Mill) impairs melanoma cell proliferation, invasiveness, and tumor progression. Phytomedicine 2018; 50: 19-24.
[http://dx.doi.org/10.1016/j.phymed.2018.09.171] [PMID: 30466978]
[126]
Antunes-Ricardo M, Hernández-Reyes A, Uscanga-Palomeque AC, Rodríguez-Padilla C, Martínez-Torres AC, Gutiérrez-Uribe JA. Isorhamnetin glycoside isolated from Opuntia ficus-indica (L.) MilI induces apoptosis in human colon cancer cells through mitochondrial damage. Chem Biol Interact 2019; 310108734
[http://dx.doi.org/10.1016/j.cbi.2019.108734] [PMID: 31276661]
[127]
Thi Tran TM, Nguyen Thanh B, Moussa-Ayoub TE, Rohn S, Jerz G. Profiling of polar metabolites in fruits of Opuntia stricta var. dillenii by ion-pair high-performance countercurrent chromatography and off-line electrospray mass-spectrometry injection. J Chromatogr A 2019; 1601: 274-87.
[http://dx.doi.org/10.1016/j.chroma.2019.06.009] [PMID: 31213363]
[128]
Allegra M, Tutone M, Tesoriere L, et al. Indicaxanthin, a multi-target natural compound from Opuntia ficus-indica fruit: From its poly-pharmacological effects to biochemical mechanisms and molecular modelling studies. Eur J Med Chem 2019; 179: 753-64.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.006] [PMID: 31284085]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 32
Year: 2019
Published on: 15 November, 2019
Page: [3457 - 3477]
Pages: 21
DOI: 10.2174/1381612825666191010171819
Price: $65

Article Metrics

PDF: 23
HTML: 4