Effects of Polyphenol-Rich Fruit Extracts on Diet-Induced Obesity in Rodents: Systematic Review and Meta-Analysis

Author(s): Cíntia R. Ballard, Tais F. Galvão, Cinthia B.B. Cazarin, Mário R. Maróstica*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 32 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Obesity is a complex condition of high prevalence and cost to the public health system. Recent research has demonstrated the potential of natural products, such as polyphenol-rich fruit extracts, for use in the treatment of obesity. The goal of this systematic review and meta-analysis is to determine the metabolic effects of polyphenol-rich fruit extracts on diet-induced obesity (DIO) in rodents.

Methods: We searched MEDLINE, EMBASE, and Web of Science databases to identify preclinical studies that assessed polyphenol-rich fruit extracts compared to placebo on DIO in rodents in December 2018. Two researchers selected the studies, extracted the data, and assessed the quality of studies. Meta-analyses of standardized mean difference (SMD) of outcomes were calculated in Stata 11, and causes of heterogeneity were assessed by meta-regression.

Results: We included 14 studies in the systematic review and 13 studies with 21 matched groups in the metaanalysis. Polyphenol-rich fruit extracts reduced the total body weight gain (SMD = -1.48; confidence interval: - 1.95, -1.01), energy intake (SMD = -0.42; -0.67, -0.17), visceral adipose tissue (SMD = -0.96; -1.25, -0.66), triglycerides (SMD = -1.00; -1.39, -0.62), cholesterol (SMD = -1.18, -1.66, -0.69), LDL- c (SMD = -1.15; -1.65, - 0.65), fasting glucose (SMD = -1.05; -1.65, -0.46), and fasting insulin (SMD = -1.40; -1.80, -1.00) when compared to vehicle.

Conclusion: Polyphenol-rich fruit extract had positive effects on weight gain, dyslipidaemia, insulin resistance at different doses, and fruit source in male mice.

Keywords: Weight gain, adipose tissue, dyslipidemia, insulin resistance, bioactive compounds, antiobesity agents, plant extracts, phenolic compounds.

[1]
Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017; 390(10113): 2627-42.
[http://dx.doi.org/10.1016/s0140-6736(17)32129-3]
[2]
Ladabaum U, Mannalithara A, Myer PA, Singh G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am J Med 2014; 127(8): 717-727.e12.
[http://dx.doi.org/10.1016/j.amjmed.2014.02.026]
[3]
De Figueiredo PRL, de Albuquerque Siebera AL, de Lacerda Neto LJ, et al. Obesity and natural products. J Food Nutr Res 2015; 3(8): 540-9.
[4]
Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient-2013 update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring) 2013; 21(S1)(Suppl. 1): S1-S27.
[http://dx.doi.org/10.1002/oby.20461] [PMID: 23529939]
[5]
Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract 2016; 22(S3)(Suppl. 3): 1-203.
[http://dx.doi.org/10.4158/EP161365.GL] [PMID: 27219496]
[6]
Kang JG, Park C-Y. Anti-obesity drugs: A review about their effects and safety. Diabetes Metab J 2012; 36(1): 13-25.
[http://dx.doi.org/10.4093/dmj.2012.36.1.13] [PMID: 22363917]
[7]
Kang S-I, Shin H-S, Kim H-M, et al. Immature Citrus sunki peel extract exhibits antiobesity effects by β-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull 2012; 35(2): 223-30.
[http://dx.doi.org/10.1248/bpb.35.223] [PMID: 22293353]
[8]
da Costa GFF, Santos IB, de Bem GF, et al. The beneficial effect of anthocyanidin-rich Vitis vinifera L. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phytother Res 2017; 31(10): 1621-32.
[http://dx.doi.org/10.1002/ptr.5898] [PMID: 28840618]
[9]
Santos IB, de Bem GF, Cordeiro VSC, et al. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice. Nutr Res 2017; 43: 69-81.
[http://dx.doi.org/10.1016/j.nutres.2017.05.007] [PMID: 28739056]
[10]
Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 2011; 50(3): 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137]
[11]
Anhê FF, Varin TV, Le Barz M, et al. Arctic berry extracts target the gut-liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice. Diabetologia 2018; 61(4): 919-31.
[http://dx.doi.org/10.1007/s00125-017-4520-z] [PMID: 29270816]
[12]
Lim DW, Song M, Park J, et al. Anti-obesity effect of HT048, a herbal combination, in high fat diet-induced obese rats. Molecules 2012; 17(12): 14765-77.
[http://dx.doi.org/10.3390/molecules171214765] [PMID: 23519251]
[13]
Donado-Pestana CM, Belchior T, Genovese MII. Phenolic compounds from cagaita (Eugenia dysenterica DC.) fruit prevent body weight and fat mass gain induced by a high-fat, high-sucrose diet. Food Res Int 2018; 103: 177-85.
[http://dx.doi.org/10.3390/molecules171214765]
[14]
Donado-Pestana CM, Belchior T, Festuccia WT, Genovese MII. Phenolic compounds from cambuci (Campomanesia phaea O. Berg) fruit attenuate glucose intolerance and adipose tissue inflammation induced by a high-fat, high-sucrose diet. Food Res Int 2015; 69: 170-8.
[http://dx.doi.org/10.1016/j.foodres.2014.12.032]
[15]
Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015; 64(6): 872-83.
[http://dx.doi.org/10.1136/gutjnl-2014-307142] [PMID: 25080446]
[16]
Song H, Lai J, Tang Q, Zheng X. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice. Nutr Res 2016; 36(7): 710-8.
[http://dx.doi.org/10.1016/j.nutres.2016.01.011] [PMID: 27262537]
[17]
Sung Y-Y, Kim D-S, Kim HK. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes. J Ethnopharmacol 2015; 168: 17-24.
[http://dx.doi.org/10.1016/j.jep.2015.03.051] [PMID: 25835369]
[18]
Moura MHC, Cunha MG, Alezandro MR, Genovese MI. Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Res Int 2018; 107: 48-60.
[http://dx.doi.org/10.1016/j.foodres.2018.01.071] [PMID: 29580510]
[19]
Su D, Zhang R, Hou F, et al. Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet. Food Funct 2017; 8(2): 808-15.
[http://dx.doi.org/10.1039/C6FO01507G] [PMID: 28121324]
[20]
Jia S, Gao Z, Yan S, et al. Anti-obesity and hypoglycemic effects of Poncirus trifoliata L. Extracts in high-fat diet C57BL/6 mice. Food Res Int 2018; 107(4): 453.
[http://dx.doi.org/10.3390/molecules21040453] [PMID: 27058520]
[21]
Watanabe M, Gangitano E, Francomano D, et al. Mangosteen extract shows a potent insulin sensitizing effect in obese female patients: A prospective randomized controlled pilot study. Nutr 2018; 10(5): 586.
[http://dx.doi.org/10.3390/nu10050586] [PMID: 29747432]
[22]
Han HJ, Jung UJ, Kim H-J, et al. Combined supplementation with grape pomace and omija fruit ethanol extracts dose-dependently improves body composition, plasma lipid profiles, inflammatory status, and antioxidant capacity in overweight and obese subjects. J Med Food 2016; 19(2): 170-80.
[http://dx.doi.org/10.1089/jmf.2015.3488] [PMID: 26796927]
[23]
Rosenthal N, Brown S. The mouse ascending: Perspectives for human-disease models. Nat Cell Biol 2007; 9(9): 993-9.
[http://dx.doi.org/10.1038/ncb437] [PMID: 17762889]
[24]
Higgins J, Green S, Eds. Cochrane Handbook for Systematic Reviews of Interventions Version 510. The Cochrane Collaboration 2011.
[25]
Hooijmans C, Wever K, de Vries R. SYRCLE’s starting guide for systematic reviews of preclinical animal interventions studies 2016.
[26]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg 2010; 8(5): 336-41.
[27]
Vickers SP, Jackson HC, Cheetham SC. The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol 2011; 164(4): 1248-62.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01245.x] [PMID: 21265828]
[28]
Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123(11): 1939-51.
[http://dx.doi.org/10.1093/jn/123.11.1939] [PMID: 8229312]
[29]
National Research Council (US). In: Nutrient requirements of laboratory animals. 4th ed. Washington, DC: The National Academies Press 1995.
[30]
Compendium Herbal Medicines. Guideline for Assigning Titles to USP Herbal Medicines Compendium Monographs 2014; 1-5.
[31]
Simpson MG. Plant Morphology Plant Systematics. 2nd ed. Elsevier 2010.
[32]
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[PMID: 14907713]
[33]
National Research Council (US). In: Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, D.C: National Academies Press 2011.
[34]
Niu C, Chen C, Chen L, Cheng K, Yeh C, Cheng J. Decrease of blood lipids induced by Shan-Zha (fruit of Crataegus pinnatifida) is mainly related to an increase of PPARα in liver of mice fed high-fat diet. Horm Metab Res 2011; 43(9): 625-30.
[http://dx.doi.org/10.1055/s-0031-1283147] [PMID: 21823058]
[35]
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[36]
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7(3): 177-88.
[http://dx.doi.org/10.1016/0197-2456(86)90046-2] [PMID: 3802833]
[37]
Anhê FF, Nachbar RT, Varin TV, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 2018; 68(3): 453-64.
[http://dx.doi.org/10.1136/gutjnl-2017-315565] [PMID: 30064988]
[38]
Deng J, Yang H, Capanoglu E, Cao H, Xiao J. Technological aspects and stability of polyphenols Polyphenols: Properties, recovery, and applications. Woodhead Publishing 2018; pp. 295-323.
[http://dx.doi.org/10.1016/B978-0-12-813572-3.00009-9]
[39]
Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr 2019; 7: 1-34.
[http://dx.doi.org/10.1080/10408398.2018.1546669] [PMID: 30614249]
[40]
Pounis G, Costanzo S, Bonaccio M, et al. Moli-sani Investigators.Reduced mortality risk by a polyphenol-rich diet: An analysis from the Moli-sani study. Nutr 2018; 48: 87-95.
[http://dx.doi.org/10.1016/j.nut.2017.11.012] [PMID: 29469027]
[41]
Lee Y-M, Yoon Y, Yoon H, Park H-M, Song S, Yeum K-J. Dietary anthocyanins against obesity and inflammation. Nutr 2017; 9(10): 1089.
[http://dx.doi.org/10.3390/nu9101089] [PMID: 28974032]
[42]
Snyder SM, Zhao B, Luo T, et al. Consumption of quercetin and quercetin-containing apple and cherry extracts affects blood glucose concentration, hepatic metabolism, and gene expression patterns in obese C57BL/6J high fat-fed mice. J Nutr 2016; 146(5): 1001-7.
[http://dx.doi.org/10.3945/jn.115.228817] [PMID: 27052533]
[43]
Zhao L, Zhang Q, Ma W, Tian F, Shen H, Zhou M. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct 2017; 8(12): 4644-56.
[http://dx.doi.org/10.1039/C7FO01383C] [PMID: 29152632]
[44]
Porras D, Nistal E, Martínez-Flórez S, et al. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med 2017; 102: 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[45]
Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: A mechanistic review. J Nutr Biochem 2011; 22(1): 1-7.
[http://dx.doi.org/10.1016/j.jnutbio.2010.06.006] [PMID: 21115335]
[46]
Panda V, Shinde P. Appetite suppressing effect of Spinacia oleracea in rats: Involvement of the short term satiety signal cholecystokinin. Appetite 2017; 113: 224-30.
[http://dx.doi.org/10.1016/j.appet.2017.02.030] [PMID: 28238891]
[47]
Lee SW, Son JY, Kim JM, Hwang SS, Han JS, Heo NJ. Body fat distribution is more predictive of all-cause mortality than overall adiposity. Diabetes Obes Metab 2018; 20(1): 141-7.
[http://dx.doi.org/10.1111/dom.13050] [PMID: 28671751]
[48]
Mele L, Bidault G, Mena P, et al. Dietary (poly)phenols, brown adipose tissue activation, and energy expenditure: A narrative review. Adv Nutr 2017; 8(5): 694-704.
[http://dx.doi.org/10.3945/an.117.015792] [PMID: 28916570]
[49]
Xing T, Kang Y, Xu X, Wang B, Du M, Zhu M-J. Raspberry supplementation improves insulin signaling and promotes brown like adipocyte development in white adipose tissue of obese mice. Mol Nutr Food Res 2018; 62(5)1701035
[http://dx.doi.org/10.1002/mnfr.201701035] [PMID: 29322691]
[50]
Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 2013; 40(1): 195-211.
[http://dx.doi.org/10.1016/j.pop.2012.11.003] [PMID: 23402469]
[51]
Kwon E-K, Lee D-Y, Lee H, et al. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme. J Agric Food Chem 2010; 58(2): 882-6.
[http://dx.doi.org/10.1021/jf903515f] [PMID: 20038104]
[52]
Mollace V, Scicchitano M, Paone S, et al. Hypoglycemic and Hypolipemic effects of a new lecithin formulation of Bergamot Polyphenolic Fraction: A double blind, randomized, placebo-controlled study. Endocr Metab Immune Disord Drug Targets 2019; 19(2): 136-43.
[http://dx.doi.org/10.2174/1871530319666181203151513]
[53]
Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019; 73(24): 3168-209.
[http://dx.doi.org/10.1016/j.jacc.2018.11.002] [PMID: 30423391]
[54]
Kim Y, Keogh JB, Clifton PM. Polyphenols and glycemic control. Nutr 2016; 8(1)E17
[http://dx.doi.org/10.3390/nu8010017] [PMID: 26742071]
[55]
Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev 2010; 23(2): 270-99.
[http://dx.doi.org/10.1017/S0954422410000168] [PMID: 20977819]
[56]
Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 2007; 15(4): 798-808.
[http://dx.doi.org/10.1038/oby.2007.608] [PMID: 17426312]
[57]
Yang Y, Smith DL Jr, Keating KD, Allison DB, Nagy TR. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity (Silver Spring) 2014; 22(10): 2147-55.
[http://dx.doi.org/10.1002/oby.20811] [PMID: 24942674]
[58]
Kang S-I, Shin H-S, Kim H-M, et al. Immature Citrus sunki peel extract exhibits antiobesity effects by β-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull 2012; 35: 223-30.
[59]
Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015; 64: 872-83.
[60]
Donado-Pestana CM, Belchior T, Festuccia WT, Genovese MII. Phenolic compounds from cambuci (Campomanesia phaea O. Berg) fruit attenuate glucose intolerance and adipose tissue inflammation induced by a high-fat, high-sucrose diet. Food Res Int 2015; 69: 170-8.
[61]
Donado-Pestana CM, Belchior T, Genovese MII. Phenolic compounds from cagaita (Eugenia dysenterica DC.) fruit prevent body weight and fat mass gain induced by a high-fat, high-sucrose diet. Food Res Int 2015; 77: 177-85.
[62]
Sung Y-Y, Kim D-S, Kim HK. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes. J Ethnopharmacol 2015; 168: 17-24.
[63]
Jia S, Gao Z, Yan S, Chen Y, Sun C, Li X, et al. Anti-obesity and hypoglycemic effects of Poncirus trifoliata L. extracts in high-fat diet C57BL/6 mice. Molecules 2016; 21: 453.
[64]
Song H, Lai J, Tang Q, Zheng X. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice. Nutr Res 2016; 36: 710-8.
[65]
da Costa GFF, Santos IB, de Bem GF, et al. The beneficial effect of anthocyanidin-rich Vitis vinifera L. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phytother Res 2017; 31: 1621-32.
[66]
Santos IB, de Bem GF, Cordeiro VSC, et al. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice. Nutr Res 2017; 43: 69-81.
[67]
Su D, Zhang R, Hou F, et al. Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet. Food Funct 2017; 8: 808-15.
[68]
Anhê FF, Varin TV, Le Barz M, et al. Arctic berry extracts target the gut-liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice. Diabetolgia 2018; 61: 919-31.
[69]
Anhê FF, Nachbar RT, Varin T V, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 2018. gutjnl-2017-315565
[70]
Moura MHC, Cunha MG, Alezandro MR, Genovese MI. Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Res Int 2018; 107: 48-60.
[71]
Lim D, Song M, Park J, et al. Anti-obesity effect of HT048, a herbal combination, in high fat diet-induced obese rats. Molecules 2012; 17: 14765-77.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 32
Year: 2019
Published on: 15 November, 2019
Page: [3484 - 3497]
Pages: 14
DOI: 10.2174/1381612824666191010170100
Price: $65

Article Metrics

PDF: 42
HTML: 9