Switching from Conventional to Nano-natural Phytochemicals to Prevent and Treat Cancers: Special Emphasis on Resveratrol

Author(s): Salman Ul Islam, Muhammad B. Ahmed, Mazhar Ul-Islam, Adeeb Shehzad, Young S. Lee*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 34 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Natural phytochemicals and their derivatives have been used in medicine since prehistoric times. Natural phytochemicals have potential uses against various disorders, including cancers. However, due to low bioavailability, their success in clinical trials has not been reproduced. Nanotechnology has played a vital role in providing new directions for diagnosis, prevention, and treatment of different disorders, and of cancer in particular. Nanotechnology has demonstrated the capability to deliver conventional natural products with poor solubility or a short half-life to target specific sites in the body and regulate the release of drugs. Among the natural products, the phytoalexin resveratrol has demonstrated therapeutic effects, including antioxidant, antiinflammatory, and anti-proliferative effects, as well as the potential to inhibit the initiation and promotion of cancer. However, low water solubility and extensive first-pass metabolism lead to poor bioavailability of resveratrol, hindering its potential. Conventional dosage forms of resveratrol, such as tablets, capsules, dry powder, and injections, have met with limited success. Nanoformulations are now being investigated to improve the pharmacokinetic characteristics, as well as to enhance the bioavailability and targetability of resveratrol.

Objectives: This review details the therapeutic effectiveness, mode of action, and pharmacokinetic limitations of resveratrol, as well as discusses the successes and challenges of resveratrol nanoformulations. Modern nanotechnology techniques to enhance the encapsulation of resveratrol within nanoparticles and thereby enhance its therapeutic effects are emphasized.

Conclusion: To date, no resveratrol-based nanosystems are in clinical use, and this review would provide a new direction for further investigations on innovative nanodevices that could consolidate the anticancer potential of resveratrol.

Keywords: Cancer, phytochemicals, resveratrol, nanotechnology, solid lipid nanoparticles, liposomes, cyclodextrins, polymeric nanoparticles.

[1]
Desai AG, Qazi GN, Ganju RK, et al. Medicinal plants and cancer chemoprevention. Curr Drug Metab 2008; 9(7): 581-91.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[2]
Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003; 20(5): 357-403.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20]
[3]
Luo Y, Prestwich GD. Cancer-targeted polymeric drugs. Curr Cancer Drug Targets 2002; 2(3): 209-26.
[http://dx.doi.org/10.2174/1568009023333836] [PMID: 12188908]
[4]
Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc) 2000; 65(1): 95-106.
[5]
Blanco E, Hsiao A, Mann AP, Landry MG, Meric-Bernstam F, Ferrari M. Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci 2011; 102(7): 1247-52.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01941.x] [PMID: 21447010]
[6]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[7]
Ahmad I, Kamal T, Khan SB, Asiri AM. An efficient and easily retrievable dip catalyst based on silver nanoparticles/chitosan-coated cellulose filter paper. Cellulose 2016; 23: 3577-88.
[http://dx.doi.org/10.1007/s10570-016-1053-4]
[8]
Ahmad I, Khan SB, Kamal T, Asiri AM. Visible light activated degradation of organic pollutants using zinc-iron selenide. J Mol Liq 2017; 229: 429-35.
[http://dx.doi.org/10.1016/j.molliq.2016.12.061]
[9]
Ali F, Khan SB, Kamal T, Alamry KA, Asiri AM. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci Rep 2018; 8(1): 6260.
[http://dx.doi.org/10.1038/s41598-018-24311-4] [PMID: 29674721]
[10]
Ali F, Khan SB, Kamal T, Alamry KA, Asiri AM, Sobahi TRA. Chitosan coated cotton cloth supported zero-valent nanoparticles: simple but economically viable, efficient and easily retrievable catalysts. Sci Rep 2017; 7(1): 16957.
[http://dx.doi.org/10.1038/s41598-017-16815-2] [PMID: 29209040]
[11]
Ali F, Khan SB, Kamal T, et al. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr Polym 2018; 192: 217-30.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.029] [PMID: 29691016]
[12]
Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM. Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Chemosphere 2017; 188: 588-98.
[http://dx.doi.org/10.1016/j.chemosphere.2017.08.118] [PMID: 28917211]
[13]
Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM. Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr Polym 2017; 173: 676-89.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.074] [PMID: 28732913]
[14]
Ali N. Awais, Kamal T, et al. Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int J Biol Macromol 2018; 111: 832-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.092] [PMID: 29355628]
[15]
Ali N, Ismail M, Khan A, Khan H, Haider S, Kamal T. Spectrophotometric methods for the determination of urea in real samples using silver nanoparticles by standard addition and 2nd order derivative methods. Spectrochim Acta A Mol Biomol Spectrosc 2018; 189: 110-5.
[16]
Al-Mubaddel FS, Haider S, Aijaz MO, et al. Preparation of the chitosan/polyacrylonitrile semi-IPN hydrogel via glutaraldehyde vapors for the removal of Rhodamine B dye. Polym Bull 2017; 74: 1535-51.
[http://dx.doi.org/10.1007/s00289-016-1788-y]
[17]
Haider A, Haider S, Kang IK, et al. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. Int J Biol Macromol 2018; 108: 455-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.022] [PMID: 29222019]
[18]
Haider S, Kamal T, Khan SB, et al. Natural polymers supported copper nanoparticles for pollutants degradation. Appl Surf Sci 2016; 387: 1154-61.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.133]
[19]
Kamal T. High performance NiO decorated graphene as a potential H-2 gas sensor. J Alloys Compd 2017; 729: 1058-63.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.124]
[20]
Kamal T, Ahmad I, Khan SB, Asiri AM. Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydr Polym 2017; 157: 294-302.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.078] [PMID: 27987930]
[21]
Kavitha T, Kumar S, Prasad V, Asiri AM, Kamal T, Ul-Islam M. NiO powder synthesized through nickel metal complex degradation for water treatment. Desalination Water Treat 2019; 155: 216-24.
[http://dx.doi.org/10.5004/dwt.2019.24054]
[22]
Khan MSJ, Khan SB, Kamal T, Asiri AM. Agarose biopolymer coating on polyurethane sponge as host for catalytic silver metal nanoparticles. Polym Test 2019; 78105983
[http://dx.doi.org/10.1016/j.polymertesting.2019.105983]
[23]
Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9: 257-88.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[24]
Niemeyer CM. Semi-synthetic nucleic acid-protein conjugates: applications in life sciences and nanobiotechnology. J Biotechnol 2001; 82(1): 47-66.
[PMID: 11999713]
[25]
Kamal T, Ahmad I, Khan SB, Asiri AM. Agar hydrogel supported metal nanoparticles catalyst for pollutants degradation in water. Desalination Water Treat 2018; 136: 290-8.
[http://dx.doi.org/10.5004/dwt.2018.23230]
[26]
Kamal T, Ali N, Naseem AA, Khan SB, Asiri AM. Polymer nanocomposite membranes for antifouling nanofiltration. Recent Pat Nanotechnol 2016; 10(3): 189-201.
[http://dx.doi.org/10.2174/1872210510666160429145704] [PMID: 27136927]
[27]
Kamal T, Anwar Y, Khan SB, Chani MTS, Asiri AM. Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydr Polym 2016; 148: 153-60.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.042] [PMID: 27185126]
[28]
Kamal T, Khan SB, Asiri AM. Nickel nanoparticles-chitosan composite coated cellulose filter paper: an efficient and easily recoverable dip-catalyst for pollutants degradation. Environ Pollut 2016; 218: 625-33.
[http://dx.doi.org/10.1016/j.envpol.2016.07.046] [PMID: 27481647]
[29]
Kamal T, Khan SB, Asiri AM. Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose 2016; 23: 1911-23.
[http://dx.doi.org/10.1007/s10570-016-0919-9]
[30]
Kamal T, Khan SB, Haider S, Alghamdi YG, Asiri AM. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles Int J Biol Macromol 2017; 104(Pt A): 56-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.157] [PMID: 28571736]
[31]
Kamal T, Ul-Islam M, Khan SB, Asiri AM. Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. Int J Biol Macromol 2015; 81: 584-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.060] [PMID: 26321421]
[32]
Kavitha T, Haider S, Kamal T, Ul-Islam M. Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: antibacterial activity and mechanism. J Alloys Compd 2017; 704: 296-302.
[http://dx.doi.org/10.1016/j.jallcom.2017.01.306]
[33]
Khan FU. Asimullah , Khan SB, et al. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Int J Biol Macromol 2017; 102: 868-77.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.062] [PMID: 28428128]
[34]
Khan SA, Khan SB, Kamal T, Asiri AM, Akhtar K. Recent development of chitosan nanocomposites for environmental applications. Recent Pat Nanotechnol 2016; 10(3): 181-8.
[http://dx.doi.org/10.2174/1872210510666160429145339] [PMID: 27136929]
[35]
Khan SA, Khan SB, Kamal T, Yasir M, Asiri AM. Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int J Biol Macromol 2016; 91: 744-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.018] [PMID: 27287771]
[36]
Khan SB, Ali F, Kamal T, Anwar Y, Asiri AM, Seo J. CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int J Biol Macromol 2016; 88: 113-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.026] [PMID: 26993528]
[37]
Khan SB, Khan SA, Marwani HM, et al. Anti-bacterial PES-cellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol. RSC Advances 2016; 6: 110077-90.
[http://dx.doi.org/10.1039/C6RA21626A]
[38]
Pervaiz M, Ahmad I, Yousaf M, et al. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim Acta A Mol Biomol Spectrosc 2019; 206: 642-9.
[39]
Ul-Islam M, Wajid Ullah M, Khan S, et al. Recent advancement in cellulose based nanocomposite for addressing environmental challenges. Recent Pat Nanotechnol 2016; 10(3): 169-80.
[http://dx.doi.org/10.2174/1872210510666160429144916] [PMID: 27136931]
[40]
Khan MSJ, Kamal T, Ali F, Asiri AM, Khan SB. Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int J Biol Macromol 2019; 132: 772-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.205] [PMID: 30928377]
[41]
Kamal T, Ahmad I, Khan SB, Asiri AM. Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. Int J Biol Macromol 2019; 135: 1162-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.057] [PMID: 31145951]
[42]
Nishiyama N. Nanomedicine: nanocarriers shape up for long life. Nat Nanotechnol 2007; 2(4): 203-4.
[http://dx.doi.org/10.1038/nnano.2007.88] [PMID: 18654260]
[43]
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[44]
Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008; 58(2): 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[45]
Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006; 107(3): 459-66.
[http://dx.doi.org/10.1002/cncr.22035] [PMID: 16795065]
[46]
McNeil SE. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(3): 264-71.
[http://dx.doi.org/10.1002/wnan.6] [PMID: 20049796]
[47]
Siddiqui IA, Adhami VM, Bharali DJ, et al. Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 2009; 69(5): 1712-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3978] [PMID: 19223530]
[48]
Siddiqui IA, Mukhtar H. Nanochemoprevention by bioactive food components: a perspective. Pharm Res 2010; 27(6): 1054-60.
[http://dx.doi.org/10.1007/s11095-010-0087-9] [PMID: 20221894]
[49]
Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 2014; 9: 467-83.
[PMID: 24531078]
[50]
Bachrach U, Wang Y-C. Cancer therapy and prevention by green tea: role of ornithine decarboxylase. Amino Acids 2002; 22(1): 1-13.
[http://dx.doi.org/10.1007/s726-002-8197-9] [PMID: 12025870]
[51]
Narayan S. Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting β-catenin-mediated transactivation and cell-cell adhesion pathways. J Mol Histol 2004; 35(3): 301-7.
[http://dx.doi.org/10.1023/B:HIJO.0000032361.98815.bb] [PMID: 15339049]
[52]
Jagtap S, Meganathan K, Wagh V, Winkler J, Hescheler J, Sachinidis A. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr Med Chem 2009; 16(12): 1451-62.
[http://dx.doi.org/10.2174/092986709787909578] [PMID: 19355899]
[53]
Lee KW, Bode AM, Dong Z. Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer 2011; 11(3): 211-8.
[http://dx.doi.org/10.1038/nrc3017] [PMID: 21326325]
[54]
Half E, Arber N. Colon cancer: preventive agents and the present status of chemoprevention. Expert Opin Pharmacother 2009; 10(2): 211-9.
[http://dx.doi.org/10.1517/14656560802560153] [PMID: 19236194]
[55]
Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett 2007; 255(2): 170-81.
[http://dx.doi.org/10.1016/j.canlet.2007.03.005] [PMID: 17448598]
[56]
Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 2008; 65(11): 1631-52.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[57]
Kurd SK, Smith N, VanVoorhees A, et al. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: a prospective clinical trial. J Am Acad Dermatol 2008; 58(4): 625-31.
[http://dx.doi.org/10.1016/j.jaad.2007.12.035] [PMID: 18249471]
[58]
Ghoneum M, Gollapudi S. Synergistic apoptotic effect of arabinoxylan rice bran (MGN-3/Biobran) and curcumin (turmeric) on human multiple myeloma cell line U266 in vitro. Neoplasma 2011; 58(2): 118-23.
[http://dx.doi.org/10.4149/neo_2011_02_118] [PMID: 21275460]
[59]
Sung B, Kunnumakkara AB, Sethi G, Anand P, Guha S, Aggarwal BB. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol Cancer Ther 2009; 8(4): 959-70.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0905] [PMID: 19372569]
[60]
Shehzad A, Ul Islam S, Lee J, Lee YS. Prostaglandin E2 reverses curcumin-induced inhibition of survival signal pathways in human colorectal carcinoma (HCT-15) cell lines. Mol Cells 2014; 37(12): 899-906.
[http://dx.doi.org/10.14348/molcells.2014.0212] [PMID: 25431425]
[61]
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003; 23(1A): 363-98.
[PMID: 12680238]
[62]
Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 2009; 37(3-4): 223-30.
[http://dx.doi.org/10.1016/j.ejps.2009.02.019] [PMID: 19491009]
[63]
Prajakta D, Ratnesh J, Chandan K, et al. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J Biomed Nanotechnol 2009; 5(5): 445-55.
[http://dx.doi.org/10.1166/jbn.2009.1038] [PMID: 20201417]
[64]
Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351(1): 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[65]
Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol 2008; 32(5): 1119-23.
[http://dx.doi.org/10.3892/ijo.32.5.1119] [PMID: 18425340]
[66]
Li J, Wang Y, Yang C, et al. Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol Pharmacol 2009; 76(1): 81-90.
[http://dx.doi.org/10.1124/mol.109.054551] [PMID: 19395473]
[67]
Gera M, Sharma N, Ghosh M, et al. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 2017; 8(39): 66680-98.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[68]
Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 2009; 29(10): 3867-75.
[PMID: 19846921]
[69]
Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 2010; 29(3): 405-34.
[http://dx.doi.org/10.1007/s10555-010-9235-2] [PMID: 20737283]
[70]
Wu Y-Y, Chang J-Y, Chao T-Y. Paclitaxel and carboplatin-induced complete remission in peritoneal carcinomatosis of unknown origin: a report of two cases and review of the literature. Tumori 2010; 96(2): 336-9.
[http://dx.doi.org/10.1177/030089161009600225] [PMID: 20572596]
[71]
George J, Banik NL, Ray SK. Combination of taxol and Bcl-2 siRNA induces apoptosis in human glioblastoma cells and inhibits invasion, angiogenesis and tumour growth. J Cell Mol Med 2009; 13(10): 4205-18.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00539.x] [PMID: 19473291]
[72]
Fonseca C, Simões S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 2002; 83(2): 273-86.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[73]
Feng S-S, Mu L, Win KY, Huang G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr Med Chem 2004; 11(4): 413-24.
[http://dx.doi.org/10.2174/0929867043455909] [PMID: 14965222]
[74]
Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 2004; 112(2): 335-40.
[http://dx.doi.org/10.1002/ijc.20405] [PMID: 15352049]
[75]
Basu A, Sanchez K, Leyva MJ, et al. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr 2010; 29(1): 31-40.
[http://dx.doi.org/10.1080/07315724.2010.10719814] [PMID: 20595643]
[76]
Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea--a review. J Am Coll Nutr 2006; 25(2): 79-99.
[http://dx.doi.org/10.1080/07315724.2006.10719518] [PMID: 16582024]
[77]
Shutava TG, Balkundi SS, Vangala P, et al. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 2009; 3(7): 1877-85.
[http://dx.doi.org/10.1021/nn900451a] [PMID: 19534472]
[78]
Zu YG, Yuan S, Zhao XH, Zhang Y, Zhang XN, Jiang R. [Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles Yao Xue Xue Bao 2009; 44(5): 525-31.
[PMID: 19618731]
[79]
Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004; 24(5A): 2783-840.
[PMID: 15517885]
[80]
Dong Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat Res 2003; 523-524: 145-50.
[http://dx.doi.org/10.1016/S0027-5107(02)00330-5] [PMID: 12628512]
[81]
Brisdelli F, D’Andrea G, Bozzi A. Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab 2009; 10(6): 530-46.
[http://dx.doi.org/10.2174/138920009789375423] [PMID: 19702538]
[82]
Rossi D, Guerrini A, Bruni R, et al. trans-Resveratrol in nutraceuticals: issues in retail quality and effectiveness. Molecules 2012; 17(10): 12393-405.
[http://dx.doi.org/10.3390/molecules171012393] [PMID: 23090020]
[83]
Islam SU, Shehzad A, Sonn JK, Lee YS. PRPF overexpression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. Oncotarget 2017; 8(34): 56659-71.
[http://dx.doi.org/10.18632/oncotarget.17855] [PMID: 28915620]
[84]
Islam SU, Ahmed MB, Lee SJ, et al. PRP4 kinase induces actin rearrangement and epithelial-mesenchymal transition through modulation of the actin-binding protein cofilin. Exp Cell Res 2018; 369(1): 158-65.
[http://dx.doi.org/10.1016/j.yexcr.2018.05.018] [PMID: 29787735]
[85]
van Ginkel PR, Darjatmoko SR, Sareen D, et al. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction. Invest Ophthalmol Vis Sci 2008; 49(4): 1299-306.
[http://dx.doi.org/10.1167/iovs.07-1233] [PMID: 18385041]
[86]
Piotrowska H, Myszkowski K, Ziółkowska A, et al. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV-3 and A-2780 cancer cells. Toxicol Appl Pharmacol 2012; 263(1): 53-60.
[http://dx.doi.org/10.1016/j.taap.2012.05.023] [PMID: 22687606]
[87]
Islam SU, Shehzad A, Lee YS. Prostaglandin E2 inhibits resveratrol-induced apoptosis through activation of survival signaling pathways in HCT-15 cell lines. Anim Cells Syst 2015; 19: 374-84.
[http://dx.doi.org/10.1080/19768354.2015.1101398]
[88]
Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB. Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 2011; 1215: 150-60.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05852.x] [PMID: 21261654]
[89]
Shankar S, Chen Q, Siddiqui I, Sarva K, Srivastava RK. Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4′, 5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential. J Mol Signal 2007; 2: 7.
[http://dx.doi.org/10.1186/1750-2187-2-7] [PMID: 17718901]
[90]
Shankar S, Siddiqui I, Srivastava RK. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem 2007; 304(1-2): 273-85.
[http://dx.doi.org/10.1007/s11010-007-9510-x] [PMID: 17636462]
[91]
Harati K, Slodnik P, Chromik AM, et al. Resveratrol induces apoptosis and alters gene expression in human fibrosarcoma cells. Anticancer Res 2015; 35(2): 767-74.
[PMID: 25667456]
[92]
Ma L, Li W, Wang R, et al. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int J Oncol 2015; 47(4): 1460-8.
[http://dx.doi.org/10.3892/ijo.2015.3124] [PMID: 26314326]
[93]
Cai Y, Zhao L, Qin Y, Zhang M, He Y. Resveratrol inhibits proliferation and induces apoptosis of nasopharyngeal carcinoma cell line C666-1 through AMPK activation. Pharmazie 2015; 70(6): 399-403.
[PMID: 26189302]
[94]
Liao P-C, Ng L-T, Lin L-T, Richardson CD, Wang G-H, Lin C-C. Resveratrol arrests cell cycle and induces apoptosis in human hepatocellular carcinoma Huh-7 cells. J Med Food 2010; 13(6): 1415-23.
[http://dx.doi.org/10.1089/jmf.2010.1126] [PMID: 20946021]
[95]
Kuo P-L, Chiang L-C, Lin C-C. Resveratrol- induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells. Life Sci 2002; 72(1): 23-34.
[http://dx.doi.org/10.1016/S0024-3205(02)02177-X] [PMID: 12409142]
[96]
Adhami VM, Afaq F, Ahmad N. Involvement of the retinoblastoma (pRb)-E2F/DP pathway during antiproliferative effects of resveratrol in human epidermoid carcinoma (A431) cells. Biochem Biophys Res Commun 2001; 288(3): 579-85.
[http://dx.doi.org/10.1006/bbrc.2001.5819] [PMID: 11676482]
[97]
Almeida L, Vaz-da-Silva M, Falcão A, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 2009; 53(Suppl. 1): S7-S15.
[http://dx.doi.org/10.1002/mnfr.200800177] [PMID: 19194969]
[98]
Peñalva R, Morales J, González-Navarro CJ, et al. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. Int J Mol Sci 2018; 19(9): 2816.
[http://dx.doi.org/10.3390/ijms19092816] [PMID: 30231546]
[99]
da Rocha Lindner G, Khalil NM, Mainardes RM. Resveratrol-loaded polymeric nanoparticles: validation of an HPLC-PDA method to determine the drug entrapment and evaluation of its antioxidant activity. ScientificWorldJournal 2013; 2013506083
[http://dx.doi.org/10.1155/2013/506083]
[100]
Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 2012; 7: 1841-50.
[http://dx.doi.org/10.2147/IJN.S29710] [PMID: 22605933]
[101]
Venuti V, Cannavà C, Cristiano MC, et al. A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids Surf B Biointerfaces 2014; 115: 22-8.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.025] [PMID: 24321846]
[102]
Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. In: eds, Polymer Drugs in the Clinical Stage. Springer, 2004; pp. 29-49.
[http://dx.doi.org/10.1007/0-306-47932-X_2]
[103]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17-18): 812-8.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[104]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[105]
Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001; 46(1-3): 169-85.
[http://dx.doi.org/10.1016/S0169-409X(00)00134-4] [PMID: 11259839]
[106]
Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009; 71(3): 409-19.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[107]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[108]
Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2012; 2: 80-102.
[109]
Souto EB, Müller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. In: eds., Drug delivery. Springer, 2010; pp. 115-141.
[http://dx.doi.org/10.1007/978-3-642-00477-3_4]
[110]
Teskac K, Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 2010; 390(1): 61-9.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.011] [PMID: 19833178]
[111]
Jenning V, Lippacher A, Gohla SH. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul 2002; 19(1): 1-10.
[http://dx.doi.org/10.1080/713817583] [PMID: 11811751]
[112]
Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008; 16(2): 108-23.
[http://dx.doi.org/10.1080/10611860701794353] [PMID: 18274932]
[113]
Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotech Res 2017; 4: 67-72.
[114]
Carlotti ME, Sapino S, Ugazio E, Gallarate M, Morel S. Resveratrol in solid lipid nanoparticles. J Dispers Sci Technol 2012; 33: 465-71.
[http://dx.doi.org/10.1080/01932691.2010.548274]
[115]
Neves AR, Lúcio M, Martins S, Lima JLC, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 2013; 8: 177-87.
[PMID: 23326193]
[116]
Jose S, Anju SS, Cinu TA, Aleykutty NA, Thomas S, Souto EB. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm 2014; 474(1-2): 6-13.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.003] [PMID: 25102112]
[117]
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[118]
Seguin J, Brullé L, Boyer R, et al. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm 2013; 444(1-2): 146-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[119]
Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010; 17(6): 585-94.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[120]
Lee SC, Lee KE, Kim JJ, Lim SH. The effect of cholesterol in the liposome bilayer on the stabilization of incorporated Retinol. J Liposome Res 2005; 15(3-4): 157-66.
[http://dx.doi.org/10.1080/08982100500364131] [PMID: 16393907]
[121]
Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: an emerging field. Toxicol Pathol 2008; 36(1): 21-9.
[http://dx.doi.org/10.1177/0192623307310960] [PMID: 18337218]
[122]
Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN. Rapid preparation of giant unilamellar vesicles. Proc Natl Acad Sci USA 1996; 93(21): 11443-7.
[http://dx.doi.org/10.1073/pnas.93.21.11443] [PMID: 8876154]
[123]
Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm 1997; 154: 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[124]
Coimbra M, Isacchi B, van Bloois L, et al. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 2011; 416(2): 433-42.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.056] [PMID: 21291975]
[125]
Detoni CB, Souto GD, da Silva ALM, Pohlmann AR, Guterres SS. Photostability and skin penetration of different E-resveratrol-loaded supramolecular structures. Photochem Photobiol 2012; 88(4): 913-21.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01147.x] [PMID: 22443373]
[126]
Isailović BD, Kostić IT, Zvonar A, et al. Resveratrol loaded liposomes produced by different techniques. Innov Food Sci Emerg Technol 2013; 19: 181-9.
[http://dx.doi.org/10.1016/j.ifset.2013.03.006]
[127]
Kristl J, Teskač K, Caddeo C, Abramović Z, Šentjurc M. Improvements of cellular stress response on resveratrol in liposomes. Eur J Pharm Biopharm 2009; 73(2): 253-9.
[http://dx.doi.org/10.1016/j.ejpb.2009.06.006] [PMID: 19527785]
[128]
Doane TL, Chuang C-H, Hill RJ, Burda C. Nanoparticle ζ-potentials. Acc Chem Res 2012; 45(3): 317-26.
[http://dx.doi.org/10.1021/ar200113c] [PMID: 22074988]
[129]
Caddeo C, Teskač K, Sinico C, Kristl J. Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int J Pharm 2008; 363(1-2): 183-91.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.024] [PMID: 18718515]
[130]
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013; 8(9): 1509-28.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[131]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[132]
Lu X-Y, Hu S, Jin Y, Qiu L-Y. Application of liposome encapsulation technique to improve anti-carcinoma effect of resveratrol. Drug Dev Ind Pharm 2012; 38(3): 314-22.
[http://dx.doi.org/10.3109/03639045.2011.602410] [PMID: 21851312]
[133]
Sriwongsitanont S, Ueno M. Effect of freeze-thawing and polyethylene glycol (PEG) lipid on fusion and fission of phospholipid vesicles. Chem Pharm Bull (Tokyo) 2004; 52(5): 641-2.
[http://dx.doi.org/10.1248/cpb.52.641] [PMID: 15133226]
[134]
Bonechi C, Martini S, Ciani L, et al. Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol. PLoS One 2012; 7(8)e41438
[http://dx.doi.org/10.1371/journal.pone.0041438] [PMID: 22936976]
[135]
Guo XX, He W, Zhang XJ, Hu XM. Cytotoxicity of cationic liposomes coated by N-trimethyl chitosan and their in vivo tumor angiogenesis targeting containing doxorubicin. J Appl Polym Sci 2013; 128: 21-7.
[http://dx.doi.org/10.1002/app.37701]
[136]
Krasnici S, Werner A, Eichhorn ME, et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 2003; 105(4): 561-7.
[http://dx.doi.org/10.1002/ijc.11108] [PMID: 12712451]
[137]
Csiszár A, Csiszar A, Pinto JT, et al. Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J Gerontol A Biol Sci Med Sci 2015; 70(3): 303-13.
[http://dx.doi.org/10.1093/gerona/glu029] [PMID: 24642904]
[138]
Catania A, Barrajón-Catalán E, Nicolosi S, Cicirata F, Micol V. Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast Cancer Res Treat 2013; 141(1): 55-65.
[http://dx.doi.org/10.1007/s10549-013-2667-y] [PMID: 23959397]
[139]
Wang X-X, Li Y-B, Yao H-J, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011; 32(24): 5673-87.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.029] [PMID: 21550109]
[140]
Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed research international 2014; 2014424239
[141]
Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: Applications. J Pharm Bioallied Sci 2010; 2(2): 72-9.
[http://dx.doi.org/10.4103/0975-7406.67003] [PMID: 21814436]
[142]
Lu Z, Chen R, Fu R, Xiong J, Hu Y. Cytotoxicity and inhibition of lipid peroxidation activity of resveratrol/cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 2012; 73: 313-20.
[http://dx.doi.org/10.1007/s10847-011-0058-8]
[143]
Peters SA. Physiologically-based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry. John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9781118140291]
[144]
Silva F, Figueiras A, Gallardo E, Nerín C, Domingues FC. Strategies to improve the solubility and stability of stilbene antioxidants: a comparative study between cyclodextrins and bile acids. Food Chem 2014; 145: 115-25.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.034] [PMID: 24128457]
[145]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75: 1-18.
[146]
Singh G, Pai RS. Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert Opin Drug Deliv 2014; 11(5): 647-59.
[http://dx.doi.org/10.1517/17425247.2014.890588] [PMID: 24661109]
[147]
Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm 2013; 10(10): 3871-81.
[http://dx.doi.org/10.1021/mp400342f] [PMID: 23968375]
[148]
Guo W, Li A, Jia Z, Yuan Y, Dai H, Li H. Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur J Pharmacol 2013; 718(1-3): 41-7.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.034] [PMID: 24070814]
[149]
Yin H, Si J, Xu H, et al. Resveratrol-loaded nanoparticles reduce oxidative stress induced by radiation or amyloid-beta in transgenic Caenorhabditis elegans. J Biomed Nanotechnol 2014; 10(8): 1536-44.
[http://dx.doi.org/10.1166/jbn.2014.1897] [PMID: 25016653]
[150]
Lu X, Ji C, Xu H, et al. Resveratrol-loaded polymeric micelles protect cells from Abeta-induced oxidative stress. Int J Pharm 2009; 375(1-2): 89-96.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.021] [PMID: 19481694]
[151]
O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev 2006; 35(11): 1068-83.
[http://dx.doi.org/10.1039/b514858h] [PMID: 17057836]
[152]
Kim S, Shi Y, Kim JY, Park K, Cheng J-X. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 2010 7(1): 49-62.
[http://dx.doi.org/10.1517/17425240903380446] [PMID: 20017660]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 34
Year: 2019
Published on: 19 November, 2019
Page: [3620 - 3632]
Pages: 13
DOI: 10.2174/1381612825666191009161018
Price: $65

Article Metrics

PDF: 28
HTML: 3