Early-life Programming of Type 2 Diabetes Mellitus: Understanding the Association between Epigenetics/Genetics and Environmental Factors

Author(s): Fatma Z. Kadayifci, Sage Haggard, Sookyoung Jeon, Katie Ranard, Dandan Tao, Yuan- Xiang Pan*

Journal Name: Current Genomics

Volume 20 , Issue 6 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Type 2 Diabetes Mellitus is an increasing public health problem that poses a severe social and economic burden affecting both developed and developing countries. Defects in insulin signaling itself are among the earliest indications that an individual is predisposed to the development of insulin resistance and subsequently Type 2 Diabetes Mellitus. To date, however, the underlying molecular mechanisms which result in resistance to the actions of insulin are poorly understood. Furthermore, it has been shown that maternal obesity is associated with an increased risk of obesity and insulin resistance in the offspring. However, the genetic and/or epigenetic modifications within insulin-sensitive tissues such as the liver and skeletal muscle, which contribute to the insulin-resistant phenotype, still remain unknown. More importantly, a lack of in-depth understanding of how the early life environment can have long-lasting effects on health and increased risk of Type 2 Diabetes Mellitus in adulthood poses a major limitation to such efforts. The focus of the current review is thus to discuss recent experimental and human evidence of an epigenetic component associated with components of nutritional programming of Type 2 Diabetes Mellitus, including altered feeding behavior, adipose tissue, and pancreatic beta-cell dysfunction, and transgenerational risk transmission.

Keywords: IUGR, protein deficiency, high fat diet, pancreas, diabetes mellitus, insulin resistance.

Green, L.R.; Hester, R.L. American Physiological Society. (1887), Parental obesity: Intergenerational programming and consequences. Springer, 2016. xii.
Alwan, A. Global Status Report on Noncommunicable Diseases 2010., 2011.
Jaacks, L.M.; Siegel, K.R.; Gujral, U.P.; Narayan, K.M. Type 2 diabetes: A 21st century epidemic. Best Pract. Res. Clin. Endocrinol. Metab., 2016, 30(3), 331-343.
[http://dx.doi.org/10.1016/j.beem.2016.05.003] [PMID: 27432069]
Wilmot, E.; Idris, I. Early onset type 2 diabetes: Risk factors, clinical impact and management. Ther. Adv. Chronic Dis., 2014, 5(6), 234-244.
[http://dx.doi.org/10.1177/2040622314548679] [PMID: 25364491]
Nielsen, J.H.; Haase, T.N.; Jaksch, C.; Nalla, A.; Søstrup, B.; Nalla, A.A.; Larsen, L.; Rasmussen, M.; Dalgaard, L.T.; Gaarn, L.W.; Thams, P.; Kofod, H.; Billestrup, N. Impact of fetal and neonatal environment on beta cell function and development of diabetes. Acta Obstet. Gynecol. Scand., 2014, 93(11), 1109-1122.
[http://dx.doi.org/10.1111/aogs.12504] [PMID: 25225114]
Ly, M.; Laremore, T.N.; Linhardt, R.J. Proteoglycomics: Recent progress and future challenges. OMICS, 2010, 14(4), 389-399.
[http://dx.doi.org/10.1089/omi.2009.0123] [PMID: 20450439]
Reusens, B.; Theys, N.; Dumortier, O.; Goosse, K.; Remacle, C. Maternal malnutrition programs the endocrine pancreas in progeny. Am. J. Clin. Nutr., 2011, 94(Suppl. 6), 1824S-1829S.
[http://dx.doi.org/10.3945/ajcn.110.000729] [PMID: 21562089]
Green, A.S.; Rozance, P.J.; Limesand, S.W. Consequences of a compromised intrauterine environment on islet function. J. Endocrinol., 2010, 205(3), 211-224.
[http://dx.doi.org/10.1677/JOE-09-0399] [PMID: 20223861]
Salam, R.A.; Das, J.K.; Bhutta, Z.A. Impact of intrauterine growth restriction on long-term health. Curr. Opin. Clin. Nutr. Metab. Care, 2014, 17(3), 249-254.
[http://dx.doi.org/10.1097/MCO.0000000000000051] [PMID: 24613859]
Um, S.H.; Sticker-Jantscheff, M.; Chau, G.C.; Vintersten, K.; Mueller, M.; Gangloff, Y.G.; Adams, R.H.; Spetz, J.F.; Elghazi, L.; Pfluger, P.T.; Pende, M.; Bernal-Mizrachi, E.; Tauler, A.; Tschöp, M.H.; Thomas, G.; Kozma, S.C. S6K1 controls pancreatic β cell size independently of intrauterine growth restriction. J. Clin. Invest., 2015, 125(7), 2736-2747.
[http://dx.doi.org/10.1172/JCI77030] [PMID: 26075820]
Hales, C.N.; Barker, D.J. The thrifty phenotype hypothesis. Br. Med. Bull., 2001, 60, 5-20.
[http://dx.doi.org/10.1093/bmb/60.1.5] [PMID: 11809615]
Kasuga, M. Insulin resistance and pancreatic beta cell failure. J. Clin. Invest., 2006, 116(7), 1756-1760.
[http://dx.doi.org/10.1172/JCI29189] [PMID: 16823472]
Rozance, P.J.; Hay, W.W. Pancreatic islet hepatocyte growth factor and vascular endothelial growth factor A signaling in growth restricted fetuses. Mol. Cell. Endocrinol., 2016, 435, 78-84.
[http://dx.doi.org/10.1016/j.mce.2016.01.025] [PMID: 26820125]
Matveyenko, A.V.; Singh, I.; Shin, B-C.; Georgia, S.; Devaskar, S.U. Differential effects of prenatal and postnatal nutritional environment on ß-cell mass development and turnover in male and female rats. Endocrinology, 2010, 151(12), 5647-5656.
[http://dx.doi.org/10.1210/en.2010-0978] [PMID: 21047942]
Nissen, P. M.; Nebel, C.; Oksbjerg, N.; Bertram, H. C. Metabolomics reveals relationship between plasma inositols and birth weight: Possible markers for fetal programming of type 2 diabetes. BioMed Res. Int., 2010, 2011
Blondeau, B.; Lesage, J.; Czernichow, P.; Dupouy, J.P.; Bréant, B. Glucocorticoids impair fetal β-cell development in rats. Am. J. Physiol. Endocrinol. Metab., 2001, 281(3), E592-E599.
[http://dx.doi.org/10.1152/ajpendo.2001.281.3.E592] [PMID: 11500315]
Valtat, B.; Dupuis, C.; Zenaty, D.; Singh-Estivalet, A.; Tronche, F.; Bréant, B.; Blondeau, B. Genetic evidence of the programming of beta cell mass and function by glucocorticoids in mice. Diabetologia, 2011, 54(2), 350-359.
[http://dx.doi.org/10.1007/s00125-010-1898-2] [PMID: 20857084]
Valtat, B.; Riveline, J-P.; Zhang, P.; Singh-Estivalet, A.; Armanet, M.; Venteclef, N.; Besseiche, A.; Kelly, D.P.; Tronche, F.; Ferré, P.; Gautier, J-F.; Bréant, B.; Blondeau, B. Fetal PGC-1α overexpression programs adult pancreatic β-cell dysfunction. Diabetes, 2013, 62(4), 1206-1216.
[http://dx.doi.org/10.2337/db12-0314] [PMID: 23274887]
Lee, Y.Y.; Lee, H-J.; Lee, S-S.; Koh, J.S.; Jin, C.J.; Park, S-H.; Yi, K.H.; Park, K.S.; Lee, H.K. Taurine supplementation restored the changes in pancreatic islet mitochondria in the fetal protein-malnourished rat. Br. J. Nutr., 2011, 106(8), 1198-1206.
[http://dx.doi.org/10.1017/S0007114511001632] [PMID: 21736818]
Poher, A.L.; Arsenijevic, D.; Asrih, M.; Dulloo, A.G.; Jornayvaz, F.R.; Rohner-Jeanrenaud, F.; Veyrat-Durebex, C. Preserving of postnatal leptin signaling in obesity-resistant Lou/C rats following a perinatal high-fat diet. PLoS One, 2016, 11(9)e0162517
[http://dx.doi.org/10.1371/journal.pone.0162517] [PMID: 27618559]
Wang, X.M. Early life programming and metabolic syndrome. World J. Pediatr., 2013, 9(1), 5-8.
[http://dx.doi.org/10.1007/s12519-013-0403-7] [PMID: 23389329]
Williams, A.M.; Suchdev, P.S. Assessing and improving childhood nutrition and growth globally. Pediatr. Clin. North Am., 2017, 64(4), 755-768.
[http://dx.doi.org/10.1016/j.pcl.2017.03.001] [PMID: 28734508]
Cerf, M.E. High fat programming of beta cell compensation, exhaustion, death and dysfunction. Pediatr. Diabetes, 2015, 16(2), 71-78.
[http://dx.doi.org/10.1111/pedi.12137] [PMID: 25682938]
Vuguin, P.M.; Hartil, K.; Kruse, M.; Kaur, H.; Lin, C-L.V.; Fiallo, A.; Glenn, A.S.; Patel, A.; Williams, L.; Seki, Y.; Katz, E.B.; Charron, M.J. Shared effects of genetic and intrauterine and perinatal environment on the development of metabolic syndrome. PLoS One, 2013, 8(5)e63021
[http://dx.doi.org/10.1371/journal.pone.0063021] [PMID: 23690974]
Dabelea, D.; Crume, T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes, 2011, 60(7), 1849-1855.
[http://dx.doi.org/10.2337/db11-0400] [PMID: 21709280]
Marangoni, F.; Cetin, I.; Verduci, E.; Canzone, G.; Giovannini, M.; Scollo, P.; Corsello, G.; Poli, A. Maternal diet and nutrient requirements in pregnancy and breastfeeding. An Italian Consensus Document. Nutrients, 2016, 8(10), 629.
[http://dx.doi.org/10.3390/nu8100629] [PMID: 27754423]
Aleliunas, R.E.; Aljaadi, A.M.; Laher, I.; Glier, M.B.; Green, T.J.; Murphy, M.; Miller, J.W.; Devlin, A.M. Folic acid supplementation of female mice, with or without vitamin B-12, before and during pregnancy and lactation programs adiposity and vascular health in adult male offspring. J. Nutr., 2016. jn227629
[PMID: 26962174]
Vaiserman, A.M. Early-life nutritional programming of type 2 diabetes: Experimental and quasi-experimental evidence. Nutrients, 2017, 9(3), 236.
[http://dx.doi.org/10.3390/nu9030236] [PMID: 28273874]
Lumey, L.H.; Khalangot, M.D.; Vaiserman, A.M. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932-33: A retrospective cohort study. Lancet Diabetes Endocrinol., 2015, 3(10), 787-794.
[http://dx.doi.org/10.1016/S2213-8587(15)00279-X] [PMID: 26342852]
Garg, M.; Thamotharan, M.; Dai, Y.; Thamotharan, S.; Shin, B-C.; Stout, D.; Devaskar, S.U. Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity. Diabetes, 2012, 61(6), 1391-1398.
[http://dx.doi.org/10.2337/db11-1347] [PMID: 22461568]
Eckardt, M.J.; File, S.E.; Gessa, G.L.; Grant, K.A.; Guerri, C.; Hoffman, P.L.; Kalant, H.; Koob, G.F.; Li, T.K.; Tabakoff, B. Effects of moderate alcohol consumption on the central nervous system. Alcohol. Clin. Exp. Res., 1998, 22(5), 998-1040.
[http://dx.doi.org/10.1111/j.1530-0277.1998.tb03695.x] [PMID: 9726269]
Windham, G.C.; Von Behren, J.; Fenster, L.; Schaefer, C.; Swan, S.H. Moderate maternal alcohol consumption and risk of spontaneous abortion. Epidemiology, 1997, 8(5), 509-514.
[http://dx.doi.org/10.1097/00001648-199709000-00007] [PMID: 9270952]
Ouellette, E.M.; Rosett, H.L.; Rosman, N.P.; Weiner, L. Adverse effects on offspring of maternal alcohol abuse during pregnancy. N. Engl. J. Med., 1977, 297(10), 528-530.
[http://dx.doi.org/10.1056/NEJM197709082971003] [PMID: 887104]
Dobson, C.C.; Mongillo, D.L.; Brien, D.C.; Stepita, R.; Poklewska-Koziell, M.; Winterborn, A.; Holloway, A.C.; Brien, J.F.; Reynolds, J.N. Chronic prenatal ethanol exposure increases adiposity and disrupts pancreatic morphology in adult guinea pig offspring. Nutr. Diabetes, 2012, 2e57
[http://dx.doi.org/10.1038/nutd.2012.31] [PMID: 23247731]
Bhasin, K.K.S.; van Nas, A.; Martin, L.J.; Davis, R.C.; Devaskar, S.U.; Lusis, A.J. Maternal low-protein diet or hypercholesterolemia reduces circulating essential amino acids and leads to intrauterine growth restriction. Diabetes, 2009, 58(3), 559-566.
[http://dx.doi.org/10.2337/db07-1530] [PMID: 19073773]
Berends, L.M.; Fernandez-Twinn, D.S.; Martin-Gronert, M.S.; Cripps, R.L.; Ozanne, S.E. Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue. Int. J. Obes., 2013, 37(8), 1051-1057.
[http://dx.doi.org/10.1038/ijo.2012.196] [PMID: 23229735]
Goyal, R.; Wong, C.; Van Wickle, J.; Longo, L.D. Antenatal maternal protein deprivation: Sexually dimorphic programming of the pancreatic renin-angiotensin system. J. Renin Angiotensin Aldosterone Syst., 2013, 14(2), 137-145.
[http://dx.doi.org/10.1177/1470320312456329] [PMID: 22898440]
Ibáñez, L.; Ong, K.; Dunger, D.B.; de Zegher, F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J. Clin. Endocrinol. Metab., 2006, 91(6), 2153-2158.
[http://dx.doi.org/10.1210/jc.2005-2778] [PMID: 16537681]
Owen, C.G.; Martin, R.M.; Whincup, P.H.; Smith, G.D.; Cook, D.G. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am. J. Clin. Nutr., 2006, 84(5), 1043-1054.
[http://dx.doi.org/10.1093/ajcn/84.5.1043] [PMID: 17093156]
McKnight, L.L.; Myrie, S.B.; Mackay, D.S.; Brunton, J.A.; Bertolo, R.F. Glucose tolerance is affected by visceral adiposity and sex, but not birth weight, in Yucatan miniature pigs. Appl. Physiol. Nutr. Metab., 2012, 37(1), 106-114.
[http://dx.doi.org/10.1139/h11-142] [PMID: 22236284]
Murakami, S.; Fujita, M.; Nakamura, M.; Sakono, M.; Nishizono, S.; Sato, M.; Imaizumi, K.; Mori, M.; Fukuda, N. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats. Clin. Exp. Pharmacol. Physiol., 2016, 43(3), 372-378.
[http://dx.doi.org/10.1111/1440-1681.12534] [PMID: 26710098]
Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. (Lausanne), 2013, 4, 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
Tang, C.; Marchand, K.; Lam, L.; Lux-Lantos, V.; Thyssen, S.M.; Guo, J.; Giacca, A.; Arany, E. Maternal taurine supplementation in rats partially prevents the adverse effects of early-life protein deprivation on β-cell function and insulin sensitivity. Reproduction, 2013, 145(6), 609-620.
[http://dx.doi.org/10.1530/REP-12-0388] [PMID: 23613616]
Harder, T.; Rodekamp, E.; Schellong, K.; Dudenhausen, J.W.; Plagemann, A. Birth weight and subsequent risk of type 2 diabetes: A meta-analysis. Am. J. Epidemiol., 2007, 165(8), 849-857.
[http://dx.doi.org/10.1093/aje/kwk071] [PMID: 17215379]
Marciniak, A.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Marciniak, B.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Fetal programming of the metabolic syndrome. Taiwan. J. Obstet. Gynecol., 2017, 56(2), 133-138.
[http://dx.doi.org/10.1016/j.tjog.2017.01.001] [PMID: 28420495]
Heerwagen, M.J.R.; Miller, M.R.; Barbour, L.A.; Friedman, J.E. Maternal obesity and fetal metabolic programming: A fertile epigenetic soil. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 299(3), R711-R722.
[http://dx.doi.org/10.1152/ajpregu.00310.2010] [PMID: 20631295]
Gniuli, D.; Calcagno, A.; Caristo, M.E.; Mancuso, A.; Macchi, V.; Mingrone, G.; Vettor, R. Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J. Lipid Res., 2008, 49(9), 1936-1945.
[http://dx.doi.org/10.1194/jlr.M800033-JLR200] [PMID: 18493032]
Peretz, J.; Vrooman, L.; Ricke, W.A.; Hunt, P.A.; Ehrlich, S.; Hauser, R.; Padmanabhan, V.; Taylor, H.S.; Swan, S.H.; VandeVoort, C.A.; Flaws, J.A. Bisphenol a and reproductive health: Update of experimental and human evidence, 2007-2013. Environ. Health Perspect., 2014, 122(8), 775-786.
[http://dx.doi.org/10.1289/ehp.1307728] [PMID: 24896072]
Veiga-Lopez, A.; Moeller, J.; Sreedharan, R.; Singer, K.; Lumeng, C.; Ye, W.; Pease, A.; Padmanabhan, V. Developmental programming: Interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep. Am. J. Physiol. Endocrinol. Metab., 2016, 310(3), E238-E247.
[http://dx.doi.org/10.1152/ajpendo.00425.2015] [PMID: 26646100]
Noctor, E.; Dunne, F.P. Type 2 diabetes after gestational diabetes: The influence of changing diagnostic criteria. World J. Diabetes, 2015, 6(2), 234-244.
[http://dx.doi.org/10.4239/wjd.v6.i2.234] [PMID: 25789105]
Pettitt, D.J.; Nelson, R.G.; Saad, M.F.; Bennett, P.H.; Knowler, W.C. Diabetes and obesity in the offspring of Pima Indian women with diabetes during pregnancy. Diabetes Care, 1993, 16(1), 310-314.
[http://dx.doi.org/10.2337/diacare.16.1.310] [PMID: 8422798]
Silverman, B.L.; Metzger, B.E.; Cho, N.H.; Loeb, C.A. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care, 1995, 18(5), 611-617.
[http://dx.doi.org/10.2337/diacare.18.5.611] [PMID: 8585997]
Kajantie, E.; Osmond, C.; Barker, D.J.; Eriksson, J.G. Preterm birth-a risk factor for type 2 diabetes? The Helsinki birth cohort study. Diabetes Care, 2010, 33(12), 2623-2625.
[http://dx.doi.org/10.2337/dc10-0912] [PMID: 20823347]
Retnakaran, R.; Shah, B.R. Sex of the baby and future maternal risk of Type 2 diabetes in women who had gestational diabetes. Diabet. Med., 2016, 33(7), 956-960.
[http://dx.doi.org/10.1111/dme.12989] [PMID: 26470996]
Donovan, L.E.; Cundy, T. Does exposure to hyperglycaemia in utero increase the risk of obesity and diabetes in the offspring? A critical reappraisal. Diabet. Med., 2015, 32(3), 295-304.
[http://dx.doi.org/10.1111/dme.12625] [PMID: 25381964]
Pereira, T.J.; Moyce, B.L.; Kereliuk, S.M.; Dolinsky, V.W. Influence of maternal overnutrition and gestational diabetes on the programming of metabolic health outcomes in the offspring: experimental evidence. Biochem. Cell Biol., 2015, 93(5), 438-451.
[http://dx.doi.org/10.1139/bcb-2014-0141] [PMID: 25673017]
Petry, C.J.; Hales, C.N. Long-term effects on offspring of intrauterine exposure to deficits in nutrition. Hum. Reprod. Update, 2000, 6(6), 578-586.
[http://dx.doi.org/10.1093/humupd/6.6.578] [PMID: 11129690]
Cross, J.A.; Temple, R.C.; Hughes, J.C.; Dozio, N.C.; Brennan, C.; Stanley, K.; Murphy, H.R.; Fowler, D.; Hughes, D.A.; Sampson, M.J. Cord blood telomere length, telomerase activity and inflammatory markers in pregnancies in women with diabetes or gestational diabetes. Diabet. Med., 2010, 27(11), 1264-1270.
[http://dx.doi.org/10.1111/j.1464-5491.2010.03099.x] [PMID: 20950384]
Mazaki-Tovi, S.; Romero, R.; Vaisbuch, E.; Kusanovic, J.P.; Chaiworapongsa, T.; Kim, S.K.; Mittal, P.; Dong, Z.; Pacora, P.; Yeo, L.; Hassan, S.S. Retinol-binding protein 4: A novel adipokine implicated in the genesis of LGA in the absence of gestational diabetes mellitus. J. Perinat. Med., 2010, 38(2), 147-155.
[http://dx.doi.org/10.1515/jpm.2010.044] [PMID: 20146659]
Nuyt, A.M.; Szyf, M. Developmental programming through epigenetic changes. Circ. Res., 2007, 100(4), 452-455.
[http://dx.doi.org/10.1161/01.RES.0000260292.95612.ac] [PMID: 17332436]
Luo, Z-C.; Delvin, E.; Fraser, W.D.; Audibert, F.; Deal, C.I.; Julien, P.; Girard, I.; Shear, R.; Levy, E.; Nuyt, A-M. Maternal glucose tolerance in pregnancy affects fetal insulin sensitivity. Diabetes Care, 2010, 33(9), 2055-2061.
[http://dx.doi.org/10.2337/dc10-0819] [PMID: 20573751]
Baier, L.J.; Muller, Y.L.; Remedi, M.S.; Traurig, M.; Piaggi, P.; Wiessner, G.; Huang, K.; Stacy, A.; Kobes, S.; Krakoff, J.; Bennett, P.H.; Nelson, R.G.; Knowler, W.C.; Hanson, R.L.; Nichols, C.G.; Bogardus, C. ABCC8 R1420H loss-of-function variant in a Southwest American Indian Community: Association with increased birth weight and doubled risk of type 2 diabetes. Diabetes, 2015, 64(12), 4322-4332.
[http://dx.doi.org/10.2337/db15-0459] [PMID: 26246406]
Ashcroft, F.M. ATP-sensitive potassium channelopathies: Focus on insulin secretion. J. Clin. Invest., 2005, 115(8), 2047-2058.
[http://dx.doi.org/10.1172/JCI25495] [PMID: 16075046]
Choi, J-H.; Kang, M.; Kim, G-H.; Hong, M.; Jin, H.Y.; Lee, B-H.; Park, J-Y.; Lee, S-M.; Seo, E-J.; Yoo, H-W. Clinical and functional characteristics of a novel heterozygous mutation of the IGF1R gene and IGF1R haploinsufficiency due to terminal 15q26.2>qter deletion in patients with intrauterine growth retardation and postnatal catch-up growth failure. J. Clin. Endocrinol. Metab., 2011, 96(1), E130-E134.
[http://dx.doi.org/10.1210/jc.2010-1789] [PMID: 20962017]
Garg, N.; Thakur, S.; McMahan, C.A.; Adamo, M.L. High fat diet induced insulin resistance and glucose intolerance are gender-specific in IGF-1R heterozygous mice. Biochem. Biophys. Res. Commun., 2011, 413(3), 476-480.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.123] [PMID: 21910970]
Carmody, J.S.; Wan, P.; Accili, D.; Zeltser, L.M.; Leibel, R.L. Respective contributions of maternal insulin resistance and diet to metabolic and hypothalamic phenotypes of progeny. Obesity (Silver Spring), 2011, 19(3), 492-499.
[http://dx.doi.org/10.1038/oby.2010.245] [PMID: 20948526]
Painter, R.C.; Roseboom, T.J.; Bleker, O.P. Prenatal exposure to the Dutch famine and disease in later life: An overview. Reprod. Toxicol., 2005, 20(3), 345-352.
[http://dx.doi.org/10.1016/j.reprotox.2005.04.005] [PMID: 15893910]
Botden, I.P.G.; Zillikens, M.C.; de Rooij, S.R.; Langendonk, J.G.; Danser, A.H.J.; Sijbrands, E.J.G.; Roseboom, T.J. Variants in the SIRT1 gene may affect diabetes risk in interaction with prenatal exposure to famine. Diabetes Care, 2012, 35(2), 424-426.
[http://dx.doi.org/10.2337/dc11-1203] [PMID: 22228742]
Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature, 2006, 444(7121), 868-874.
[http://dx.doi.org/10.1038/nature05486] [PMID: 17167475]
Liang, F.; Kume, S.; Koya, D. SIRT1 and insulin resistance. Nat. Rev. Endocrinol., 2009, 5(7), 367-373.
[http://dx.doi.org/10.1038/nrendo.2009.101] [PMID: 19455179]
Pilgaard, K.; Hammershaimb Mosbech, T.; Grunnet, L.; Eiberg, H.; Van Hall, G.; Fallentin, E.; Larsen, T.; Larsen, R.; Poulsen, P.; Vaag, A. Differential nongenetic impact of birth weight versus third-trimester growth velocity on glucose metabolism and magnetic resonance imaging abdominal obesity in young healthy twins. J. Clin. Endocrinol. Metab., 2011, 96(9), 2835-2843.
[http://dx.doi.org/10.1210/jc.2011-0577] [PMID: 21733994]
Sosa-Larios, T.C.; Cerbón, M.A.; Morimoto, S. Epigenetic alterations caused by nutritional stress during fetal programming of the endocrine pancreas. Arch. Med. Res., 2015, 46(2), 93-100.
[http://dx.doi.org/10.1016/j.arcmed.2015.01.005] [PMID: 25660337]
Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect., 2006, 114(3), A160-A167.
[http://dx.doi.org/10.1289/ehp.114-a160] [PMID: 16507447]
Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 2011, 123(19), 2145-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
Heijmans, B.T.; Kremer, D.; Tobi, E.W.; Boomsma, D.I.; Slagboom, P.E. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum. Mol. Genet., 2007, 16(5), 547-554.
[http://dx.doi.org/10.1093/hmg/ddm010] [PMID: 17339271]
Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA, 2008, 105(44), 17046-17049.
[http://dx.doi.org/10.1073/pnas.0806560105] [PMID: 18955703]
Lee, H-S. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients, 2015, 7(11), 9492-9507.
[http://dx.doi.org/10.3390/nu7115467] [PMID: 26593940]
Thompson, R.F.; Fazzari, M.J.; Niu, H.; Barzilai, N.; Simmons, R.A.; Greally, J.M. Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J. Biol. Chem., 2010, 285(20), 15111-15118.
[http://dx.doi.org/10.1074/jbc.M109.095133] [PMID: 20194508]
Roberfroid, D.; Huybregts, L.; Lanou, H.; Ouedraogo, L.; Henry, M-C.; Meda, N.; Kolsteren, P. MISAME study group. Impact of prenatal multiple micronutrients on survival and growth during infancy: A randomized controlled trial. Am. J. Clin. Nutr., 2012, 95(4), 916-924.
[http://dx.doi.org/10.3945/ajcn.111.029033] [PMID: 22378724]
Zagré, N.M.; Desplats, G.; Adou, P.; Mamadoultaibou, A.; Aguayo, V.M. Prenatal multiple micronutrient supplementation has greater impact on birthweight than supplementation with iron and folic acid: A cluster-randomized, double-blind, controlled programmatic study in rural Niger. Food Nutr. Bull., 2007, 28(3), 317-327.
[http://dx.doi.org/10.1177/156482650702800308] [PMID: 17974365]
Roberfroid, D. Huybregts, L.; Lanou, H.; Henry, M-C.; Meda, N.; Kolsteren F, P. Micronutriments et Santé de la Mère et de l’Enfant Study (MISAME) Group. Effect of maternal multiple micronutrient supplements on cord blood hormones: A randomized controlled trial. Am. J. Clin. Nutr., 2010, 91(6), 1649-1658.
[http://dx.doi.org/10.3945/ajcn.2009.28855] [PMID: 20375185]
Cooper, W.N.; Khulan, B.; Owens, S.; Elks, C.E.; Seidel, V.; Prentice, A.M.; Belteki, G.; Ong, K.K.; Affara, N.A.; Constância, M.; Dunger, D.B. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: Results of a pilot randomized controlled trial. FASEB J., 2012, 26(5), 1782-1790.
[http://dx.doi.org/10.1096/fj.11-192708] [PMID: 22267336]
Ding, G-L.; Wang, F-F.; Shu, J.; Tian, S.; Jiang, Y.; Zhang, D.; Wang, N.; Luo, Q.; Zhang, Y.; Jin, F.; Leung, P.C.K.; Sheng, J-Z.; Huang, H-F. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes, 2012, 61(5), 1133-1142.
[http://dx.doi.org/10.2337/db11-1314] [PMID: 22447856]
Park, J.H.; Stoffers, D.A.; Nicholls, R.D.; Simmons, R.A. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest., 2008, 118(6), 2316-2324.
[http://dx.doi.org/10.1172/JCI33655] [PMID: 18464933]
Ling, C.; Groop, L. Epigenetics: A molecular link between environmental factors and type 2 diabetes. Diabetes, 2009, 58(12), 2718-2725.
[http://dx.doi.org/10.2337/db09-1003] [PMID: 19940235]
Reusens, B.; Theys, N.; Dumortier, O.; Goosse, K.; Remacle, C. Maternal malnutrition programs the endocrine pancreas in progeny. Am. J. Clin. Nutr., 2011, 94(6)(Suppl.), 1824S-1829S.
[http://dx.doi.org/10.3945/ajcn.110.000729] [PMID: 21562089]
Bertoli, S.; Leone, A.; Battezzati, A. Human bisphenol A exposure and the “diabesity phenotype”. Dose Response, 2015, 13(3)1559325815599173
[http://dx.doi.org/10.1177/1559325815599173] [PMID: 26858585]
Liu, J.; Yu, P.; Qian, W.; Li, Y.; Zhao, J.; Huan, F.; Wang, J.; Xiao, H. Perinatal bisphenol A exposure and adult glucose homeostasis: Identifying critical windows of exposure. PLoS One, 2013, 8(5)e64143
[http://dx.doi.org/10.1371/journal.pone.0064143] [PMID: 23675523]
Ribeiro, E.; Ladeira, C.; Viegas, S. Occupational exposure to Bisphenol A (BPA): A reality that still needs to be unveiled. Toxics, 2017, 5(3), 22.
[http://dx.doi.org/10.3390/toxics5030022] [PMID: 29051454]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 02 January, 2020
Page: [453 - 463]
Pages: 11
DOI: 10.2174/1389202920666191009110724
Price: $65

Article Metrics

PDF: 21