Progress in Bioremediation of Pyrene

Author(s): Jianghong Liu*, Huimin Su, Xiaohang Wei, Jian Xue

Journal Name: Recent Innovations in Chemical Engineering
Formerly: Recent Patents on Chemical Engineering

Volume 13 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

With the continuous exploitation of petroleum, Polycyclic Aromatic Hydrocarbons (PAHs), a diverse class of the organic pollutants with carcinogenicity, mutagenicity and teratogenicity, seriously endanger the ecological environment and public health. Pyrene, consisting of four benzene rings, is used as an indicator for PAH-contaminated waste monitoring and is ubiquitously found in oil-contaminated soils and water sediments. Thus, the most urgent task is to find a repair method that can degrade pyrene efficiently now. Bioremediation is widely applied in the degradation of pyrene due to its simplicity of operation, low environmental impact and low cost. This paper is a review of the repair methods of pyrene, including physical, chemical and bioremediation methods. In addition, it focuses on the methods, status quo, mechanisms and current problems that need to be solved in the bioremediation degradation of pyrene.

Keywords: Pyrene, bioremediation, phytoremediation, method, mechanism, macromolecules.

[1]
Fu PP, Xia Q, Sun X, Yu H. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2012; 30(1): 1-41.
[http://dx.doi.org/10.1080/10590501.2012.653887] [PMID: 22458855]
[2]
Vaca CE, Wilhelm J, Harms-Ringdahl M. Interaction of lipid peroxidation products with DNA. A review. Mutat Res 1988; 195(2): 137-49.
[http://dx.doi.org/10.1016/0165-1110(88)90022-X] [PMID: 3277035]
[3]
Eguchi M, Nishikawa T, Macdonald K, Cavicchioli R, Gottschal JC, Kjelleberg S. Response to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 1996; 62(4): 1287-94.
[PMID: 16535292]
[4]
Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 2012; 95(3): 789-98.
[http://dx.doi.org/10.1007/s00253-011-3706-4] [PMID: 22086071]
[5]
Crampon M, Bureau F, Akpa-Vinceslas M, et al. Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environ Sci Pollut Res Int 2014; 21(13): 8133-45.
[http://dx.doi.org/10.1007/s11356-014-2799-6] [PMID: 24671402]
[6]
Alawi MA, Tarawneh IN. Removal efficiency of PAH’s from five wastewater treatment plants in Jordan. Toxin Rev 2017; 33(17): 1-10.
[7]
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front Microbiol 2016; 7(386): 1369.
[http://dx.doi.org/10.3389/fmicb.2016.01369] [PMID: 27630626]
[8]
Li RL, Liu BB, Zhu YX, Zhang Y. Effects of flooding and aging on phytoremediation of typical polycyclic aromatic hydrocarbons in mangrove sediments by Kandelia obovata seedlings. Ecotoxicol Environ Saf 2016; 128(128): 118-25.
[http://dx.doi.org/10.1016/j.ecoenv.2016.02.002] [PMID: 26921545]
[9]
Kadokami K, Li X, Pan S, et al. Screening analysis of hundreds of sediment pollutants and evaluation of their effects on benthic organisms in Dokai Bay, Japan. Chemosphere 2013; 90(2): 721-8.
[http://dx.doi.org/10.1016/j.chemosphere.2012.09.055] [PMID: 23089392]
[10]
Weinstein JE, Crawford KD, Garner TR, Flemming AJ. Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in storm water detention pond sediments of Coastal South Carolina, USA. J Hazard Mater 2010; 178(1-3): 906-16.
[http://dx.doi.org/10.1016/j.jhazmat.2010.02.024] [PMID: 20211519]
[11]
Rahmanpoor S, Ghafourian H, Hashtroudi SM, Bastami KD. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the Hormuz strait, Persian Gulf. Mar Pollut Bull 2014; 78(1-2): 224-9.
[http://dx.doi.org/10.1016/j.marpolbul.2013.10.032] [PMID: 24239307]
[12]
Zhang M, Tang FL, Wu ZX, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Xin’anjiang Reservoir. Zhongguo Huanjing Kexue 2014; 34(1): 253-8.
[13]
Guo GH, Wu FC, He HP, et al. Ecological risk assessment of PAHs in the Meiliang Bay, Gonghu Bay, and Xukou Bay of Taihu Lake. Acta Scientiae Circumstantiae 2011; 31(12): 2804-13.
[14]
Guo W, He M, Yang Z, Lin C, Quan X, Wang H. Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere 2007; 68(1): 93-104.
[http://dx.doi.org/10.1016/j.chemosphere.2006.12.072] [PMID: 17280707]
[15]
Ning Y, Yongchun K, Deng J, et al. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediment in Lake Chaohu. Hupo Kexue 2012; 24(6): 891-8.
[http://dx.doi.org/10.18307/2012.0612]
[16]
Chen B, Xuan X, Zhu L, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 2004; 38(16): 3558-68.
[http://dx.doi.org/10.1016/j.watres.2004.05.013] [PMID: 15325182]
[17]
Rubio-Clemente A, Torres-Palma RA, Peñuela GA. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Sci Total Environ 2014; 478(478): 201-25.
[http://dx.doi.org/10.1016/j.scitotenv.2013.12.126] [PMID: 24552655]
[18]
Bonnard M, Devin S, Leyval C, Morel JL, Vasseur P. The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicol Environ Saf 2010; 73(5): 955-60.
[http://dx.doi.org/10.1016/j.ecoenv.2010.02.023] [PMID: 20236704]
[19]
Srivastava VJ, Hudson JM, Cassidy DP. In situ solidification and in situ chemical oxidation combined in a single application to reduce contaminant mass and leachability in soil. J Environ Chem Eng 2016; 4(3): 2857-64.
[http://dx.doi.org/10.1016/j.jece.2016.05.032]
[20]
Jørgensen KS. In situ bioremediation. Adv Appl Microbiol 2007; 61(5): 285-305.
[http://dx.doi.org/10.1016/S0065-2164(06)61008-3] [PMID: 17448793]
[21]
Moshkovich E, Ronen Z, Gelman F, et al. In Situ bioremediation of a gasoline-contaminated vadose zone: Implications from direct observations. Vadose Zone J 2018; 17(1): 1-11.
[http://dx.doi.org/10.2136/vzj2017.08.0153]
[22]
Daniel D, Jegathambal P, Bevers B. In Situ bioremediation of textile dye effluent-contaminated soils using mixed microbial culture. Int J Civ Eng 2019; 11(8): 1-10.
[http://dx.doi.org/10.1007/s40999-019-00414-5]
[23]
Beškoski VP, Miletić S, Ilić M, et al. Biodegradation of isoprenoids, steranes, terpanes, and phenanthrenes during in situ bioremediation of petroleum-contaminated groundwater. Clean-Soil Air Water 2017; 45(2): 1-18.
[http://dx.doi.org/10.1002/clen.201600023]
[24]
Cai XD, Wang DY, Li H, et al. Ex situ bioremediation of polycyclic aromatic hydrocarbon contaminated soil using a static aeration biopile process. Appl Mech Mater 2014; 41(3): 498-504.
[25]
Venkata MS, Purushotham RB, Sarma PN. Ex situ slurry phase bioremediation of chrysene contaminated soil with the function of metabolic function: Process evaluation by data enveloping analysis (DEA) and Taguchi design of experimental methodology (DOE). Bioresour Technol 2009; 100(1): 164-72.
[http://dx.doi.org/10.1016/j.biortech.2008.06.020] [PMID: 18657417]
[26]
Wadgaonkar SL, Ferraro A, Nancharaiah YV, et al. In situ and ex situ bioremediation of seleniferous soils from northwestern India. J Soils Sediments 2018; 47(2-3): 1-12.
[27]
Lin TC, Pan PT, Cheng SS. Ex situ bioremediation of oil-contaminated soil. J Hazard Mater 2010; 176(1-3): 27-34.
[http://dx.doi.org/10.1016/j.jhazmat.2009.10.080] [PMID: 20053499]
[28]
Singleton DR, Jones MD, Richardson SD, Aitken MD. Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 2013; 97(18): 8381-91.
[http://dx.doi.org/10.1007/s00253-012-4531-0] [PMID: 23132343]
[29]
Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol 2002; 20(6): 243-8.
[http://dx.doi.org/10.1016/S0167-7799(02)01943-1] [PMID: 12007492]
[30]
Li X, Lin X, Li P, et al. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J Hazard Mater 2009; 172(2-3): 601-5.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.044] [PMID: 19682791]
[31]
Bartha R. Biotechnology of petroleum pollutant biodegradation. Microb Ecol 1986; 12(1): 155-72.
[http://dx.doi.org/10.1007/BF02153231] [PMID: 24212466]
[32]
Yuan SY, Wei SH, Chang BV. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 2000; 41(9): 1463-8.
[http://dx.doi.org/10.1016/S0045-6535(99)00522-6] [PMID: 11057584]
[33]
Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 1998; 44(8): 743-52.
[http://dx.doi.org/10.1139/w98-065] [PMID: 9830104]
[34]
Ravelet C, Krivobok S, Sage L, Steiman R. Biodegradation of pyrene by sediment fungi. Chemosphere 2000; 40(5): 557-63.
[http://dx.doi.org/10.1016/S0045-6535(99)00320-3] [PMID: 10665394]
[35]
Dries J, Smets BF. Transformation and mineralization of benzo[a]pyrene by microbial cultures enriched on mixtures of three and four-ring polycyclic aromatic hydrocarbons. J Ind Microbiol Biotechnol 2002; 28(2): 70-3.
[http://dx.doi.org/10.1038/sj/jim/7000211] [PMID: 12074054]
[36]
Lee H, Jang Y, Choi YS, et al. Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 2014; 97(97): 56-62.
[http://dx.doi.org/10.1016/j.mimet.2013.12.007] [PMID: 24374215]
[37]
Fernández-Sánchez JM, Rodríguez-Vázquez R, Ruiz-Aguilar G, Alvarez PJ. PCB biodegradation in aged contaminated soil: Interactions between exogenous Phanerochaete chrysosporium and indigenous microorganisms J Environ Sci Health A Tox Hazard Subst Environ Eng 2001; 36(7): 1145-62.
[http://dx.doi.org/10.1081/ESE-100104869] [PMID: 11545344]
[38]
Liu Z, Yu H, MacGregor JF. Research progress of characterization of white-rot fungus enzyme system for lignin degradation and its application. Chem Ind Eng Prog 2007; 26(2): 198-203.
[39]
Gillespie DE, Brady SF, Bettermann AD, et al. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 2002; 68(9): 4301-6.
[http://dx.doi.org/10.1128/AEM.68.9.4301-4306.2002] [PMID: 12200279]
[40]
Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol 1988; 54(10): 2556-65.
[PMID: 3202634]
[41]
Cripps GC. Hydrocarbons in the seawater and pelagic organisms of the Southern Ocean. Polar Biol 1990; 10(5): 393-402.
[http://dx.doi.org/10.1007/BF00237827]
[42]
He YM, Duan XG, Liu YS. Enhanced bioremediation of oily sludge using co-culture of specific bacterial and yeast strains. J Chem Technol Biotechnol 2014; 89(11): 1785-92.
[http://dx.doi.org/10.1002/jctb.4471]
[43]
Bowen GD, Rovira AD. Microbial colonization of plant roots. Annu Rev Phytopathol 1976; 14(1): 121-44.
[http://dx.doi.org/10.1146/annurev.py.14.090176.001005]
[44]
Lawrence JR, Delaquis PJ, Korber DR, Caldwell DE. Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 1987; 14(1): 1-14.
[http://dx.doi.org/10.1007/BF02011566] [PMID: 24202602]
[45]
Field JA, de Jong E, Feijoo Costa G, de Bont JA. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 1992; 58(7): 2219-26.
[PMID: 1637159]
[46]
Waszak DQ, Da CH. Bioremediation of a Benzo[a]pyrene-contaminated soil using a microbial consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp. Water Air Soil Pollut 2015; 226(9): 1-11.
[http://dx.doi.org/10.1007/s11270-015-2582-4]
[47]
Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 2000; 66(3): 1007-19.
[http://dx.doi.org/10.1128/AEM.66.3.1007-1019.2000] [PMID: 10698765]
[48]
Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L. Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: A review. Environ Sci Pollut Res Int 2011; 18(1): 12-30.
[http://dx.doi.org/10.1007/s11356-010-0371-6] [PMID: 20623198]
[49]
Wang S, Nomura N, Nakajima T, Uchiyama H. Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J Biosci Bioeng 2012; 113(5): 624-30.
[http://dx.doi.org/10.1016/j.jbiosc.2012.01.005] [PMID: 22305589]
[50]
Tang YC, You ZY, Zhang SJ. Characteristics of white rot fungus and its synergistic action with bacteria in terms of degradation of pyrene. Environ Sci Technol 2018; 41(10): 34-41.
[51]
Kong FX, Sun GD, Liu ZP. Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism. Chemosphere 2018; 198(198): 83-91.
[http://dx.doi.org/10.1016/j.chemosphere.2018.01.097] [PMID: 29421764]
[52]
Cerniglia CE, Kelly DW, Freeman JP, Miller DW. Microbial metabolism of pyrene. Chem Biol Interact 1986; 57(2): 203-16.
[http://dx.doi.org/10.1016/0009-2797(86)90038-4] [PMID: 3955791]
[53]
Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 2005; 67(2): 275-85.
[http://dx.doi.org/10.1007/s00253-004-1796-y] [PMID: 15592827]
[54]
Seo JS, Keum YS, Li QX. Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 2009; 6(1): 278-309.
[http://dx.doi.org/10.3390/ijerph6010278] [PMID: 19440284]
[55]
Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: Actions of the isolate on two and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 2001; 67(12): 5497-505.
[http://dx.doi.org/10.1128/AEM.67.12.5497-5505.2001] [PMID: 11722898]
[56]
Zhong Y, Luan T, Zhou H, Lan C, Tam NF. Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium sp. Environ Toxicol Chem 2006; 25(11): 2853-9.
[http://dx.doi.org/10.1897/06-042R.1] [PMID: 17089707]
[57]
Dean-Ross D, Cerniglia CE. Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 1996; 46(3): 307-12.
[http://dx.doi.org/10.1007/s002530050822] [PMID: 8933844]
[58]
Kweon O, Kim SJ, Kim DW, et al. Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. J Bacteriol 2014; 196(19): 3503-15.
[http://dx.doi.org/10.1128/JB.01945-14] [PMID: 25070740]
[59]
Liang Y, Gardner DR, Miller CD, et al. Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 2006; 72(12): 7821-8.
[http://dx.doi.org/10.1128/AEM.01274-06] [PMID: 17041157]
[60]
Seo JS, Keum YS, Hu Y, Lee SE, Li QX. Phenanthrene degradation in Arthrobacter sp. P1-1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 2006; 65(11): 2388-94.
[http://dx.doi.org/10.1016/j.chemosphere.2006.04.067] [PMID: 16777186]
[61]
Feng TC, Cui CZ, Dong F, Feng YY, Liu YD, Yang XM. Phenanthrene biodegradation by halophilic Martelella sp. AD-3. J Appl Microbiol 2012; 113(4): 779-89.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05386.x] [PMID: 22762374]
[62]
Lei AP, Hu ZL, Wong YS, Tam NF. Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 2007; 98(2): 273-80.
[http://dx.doi.org/10.1016/j.biortech.2006.01.012] [PMID: 16517155]
[63]
Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010; 3(2): 136-64.
[http://dx.doi.org/10.1111/j.1751-7915.2009.00130.x] [PMID: 21255317]
[64]
Ma J, Xu L, Jia L. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. Bioresour Technol 2013; 140(140): 15-21.
[http://dx.doi.org/10.1016/j.biortech.2013.03.184] [PMID: 23669098]
[65]
Wang B, Lai Q, Cui Z, Tan T, Shao Z. A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 2008; 10(8): 1948-63.
[http://dx.doi.org/10.1111/j.1462-2920.2008.01611.x] [PMID: 18430013]
[66]
Jiang S, Lu H, Zhang Q, Liu J, Yan C. Effect of enhanced reactive nitrogen availability on plant-sediment mediated degradation of polycyclic aromatic hydrocarbons in contaminated mangrove sediment. Mar Pollut Bull 2016; 103(1-2): 151-8.
[http://dx.doi.org/10.1016/j.marpolbul.2015.12.027] [PMID: 26749225]
[67]
Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Hazard Mater 2009; 169(1-3): 1-15.
[http://dx.doi.org/10.1016/j.jhazmat.2009.03.137] [PMID: 19442441]
[68]
Chen X, Liu X, Zhang X, Cao L, Hu X. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater 2017; 325(325): 319-26.
[http://dx.doi.org/10.1016/j.jhazmat.2016.12.009] [PMID: 27951500]
[69]
Petrová Š, Rezek J, Soudek P, et al. Preliminary study of phytoremediation of brownfield soil contaminated by PAHs Sci Total Environ 2017; 599-600(2014): 572-580.
[70]
Domanski G, Kuzyakov Y, Siniakina SV, et al. Carbon flows in the rhizosphere of ryegrass (Lolium perenne). J Plant Nutr Soil Sci 2015; 164(4): 381-7.
[http://dx.doi.org/10.1002/1522-2624(200108)164:4 <381:AID-JPLN381>3.0.CO;2-5]
[71]
Ghosh I, Mukherji S. Substrate interaction effects during pyrene biodegradation by Pseudomonas aeruginosa RS1. J Environ Chem Eng 2017; 5(2): 1791-800.
[http://dx.doi.org/10.1016/j.jece.2017.03.016]
[72]
Joner EJ, Leyval C. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ Sci Technol 2003; 37(11): 2371-5.
[http://dx.doi.org/10.1021/es020196y] [PMID: 12831019]
[73]
Liste HH, Alexander M. Plant-promoted pyrene degradation in soil. Chemosphere 2000; 40(1): 7-10.
[http://dx.doi.org/10.1016/S0045-6535(99)00216-7] [PMID: 10665438]
[74]
Subashchandrabose SR, Logeshwaran P, Venkateswarlu K, et al. Pyrene degradation by, Chlorella, sp. MM3 in liquid medium and soil slurry: Possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation. Algal Res 2017; 2017(23): 223-32.
[http://dx.doi.org/10.1016/j.algal.2017.02.010]
[75]
Wei J, Zhang X, Liu X, et al. Influence of root components of celery on pyrene bio-accessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils Sci Total Environ 2017; 599- 600(2017): 50-57.
[76]
Meng F, Chi J. Effect of Potamogeton crispus L. on bioavailability and biodegradation activity of pyrenein aged and unaged sediments. J Hazard Mater 2017; 324(Pt B): 391-7.
[http://dx.doi.org/10.1016/j.jhazmat.2016.11.001] [PMID: 27836406]
[77]
Liu H, Meng F, Tong Y, et al. Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecol Eng 2014; 2014(73): 380-5.
[http://dx.doi.org/10.1016/j.ecoleng.2014.09.084]
[78]
He Y, Chi J. Phytoremediation of sediments polluted with phenanthrene and pyrene by four submerged aquatic plants. J Soils Sediments 2016; 16(1): 309-17.
[http://dx.doi.org/10.1007/s11368-015-1221-4]
[79]
Liu T, Wei L, Qiao M, Zou D, Yang X, Lin A. Mineralization of pyrene induced by interaction between Ochrobactrum sp. PW and ryegrass in spiked soil. Ecotoxicol Environ Saf 2016; 133(133): 290-6.
[http://dx.doi.org/10.1016/j.ecoenv.2016.07.032] [PMID: 27479773]
[80]
Toyama T, Furukawa T, Maeda N, et al. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Res 2011; 45(4): 1629-38.
[http://dx.doi.org/10.1016/j.watres.2010.11.044] [PMID: 21196023]
[81]
Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 2005; 12(1): 34-48.
[http://dx.doi.org/10.1065/espr2004.08.213] [PMID: 15768739]
[82]
Liu SL, Ge YM, Cao ZH, et al. Advances in research on combined repair of plants and microorganisms in polycyclic aromatic hydrocarbon contaminated soil. Soils 2002; 34(5): 257-65.
[83]
Sun TR, Cang L, Wang QY, Zhou DM, Cheng JM, Xu H. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. J Hazard Mater 2010; 176(1-3): 919-25.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.124] [PMID: 20005625]
[84]
Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH. Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 1995; 29(7): 318A-23A.
[http://dx.doi.org/10.1021/es00007a747] [PMID: 22667744]
[85]
Olivier P, Catherine R, Etienne V. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegradation 2004; 54(1): 45-52.
[http://dx.doi.org/10.1016/j.ibiod.2004.01.003]
[86]
Lima SHMD, Rosas BL, Mota AJD, et al. Tolerance to polycyclic aromatic hydrocarbons (PAHs) by filamentous fungi isolated from contaminated sediment in the Amazon region. Acta Sci Biol Sci 2017; 39(4): 481.
[http://dx.doi.org/10.4025/actascibiolsci.v39i4.34709]
[87]
Zhou Q, Tao H. Bioremediation: A review of applications and problems to be resolved. Progress Nat Sci: Mat Int 2004; 14(11): 937-44.
[http://dx.doi.org/10.1080/10020070412331344601]
[88]
Mattison RG, Taki H, Harayama S. The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 2005; 49(1): 142-50.
[http://dx.doi.org/10.1007/s00248-003-0226-5] [PMID: 15690226]
[89]
Zarda B, Mattison G, Hess A, et al. Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons. FEMS Microbiol Ecol 1998; 27(2): 141-52.
[http://dx.doi.org/10.1111/j.1574-6941.1998.tb00532.x]
[90]
Lee SH, Lee WS, Lee CH, Kim JG. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 2008; 153(1-2): 892-8.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.041] [PMID: 17959304]
[91]
Child R, Miller CD, Liang Y, et al. Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: Their association with plant roots. Appl Microbiol Biotechnol 2007; 75(3): 655-63.
[http://dx.doi.org/10.1007/s00253-007-0840-0] [PMID: 17256117]
[92]
Ingham RE, Trofymow JA, Ingham ER, et al. Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol Monogr 1985; 55(1): 119-40.
[http://dx.doi.org/10.2307/1942528]
[93]
Sundin P. Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: Effects on root exudation and distribution of bacteria. FEMS Microbiol Lett 1990; 73(1): 13-22.
[http://dx.doi.org/10.1111/j.1574-6968.1990.tb03920.x]
[94]
Luepromchai E, Singer AC, Yang CH, Crowley DE. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria. FEMS Microbiol Ecol 2002; 41(3): 191-7.
[http://dx.doi.org/10.1111/j.1574-6941.2002.tb00980.x] [PMID: 19709253]
[95]
Singer AC, Jury W, Luepromchai E, et al. Contribution of earthworms to PCB bioremediation Soil Biol Biochem 2001; 33(6): 0-776.
[96]
Eijsackers H, Van Gestel CA, De Jonge S, Muijs B, Slijkerman D. Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earthworms: A mutual interference. Ecotoxicol 2001; 10(1): 35-50.
[http://dx.doi.org/10.1023/A:1008954706150] [PMID: 11227816]
[97]
Zhuo S, Su JX, Li HS, et al. Combined effects of ryegrass - mycorrhizal- earthworm on soil contaminated by PCBS. J Environ Sci (China) 2011; 31(1): 150-7.
[98]
Tso SF, Taghon GL. Protozoan grazing increases mineralization of naphthalene in marine sediment. Microb Ecol 2006; 51(4): 460-9.
[http://dx.doi.org/10.1007/s00248-006-9058-4] [PMID: 16645923]
[99]
Shi ZM, Ma LL, Hu FL, et al. Effects of earthworm slime on the growth of ryegrass seedlings and their absorption of phenanthophyllum. Soil (Gottingen) 2013; 45(6): 1091-6.
[100]
Pan SW, Wei SQ, Cao SX, et al. The role of the cyclopean worm in the restoration of fibriferous soil pollution in tall festia. J Ecol Environ 2010; 19(3): 594-8.
[101]
Li JM, Sun HW, Li Y, et al. Earthworm assisted microbial remediation of pyrene contaminated soil. J Environ Sci (China) 2008; 28(9): 1854-60.
[102]
Ratsak CH, Maarsen KA, Kooijman SALM. Effects of protozoa on carbon mineralization in activated sludge Water Res 1996; 30(1): 0-12.
[103]
Wei S, Zhou Q, Zhang K, Liang J. Roles of rhizosphere in remediation of contaminated soils and its mechanisms. Ying Yong Sheng Tai Xue Bao 2003; 14(1): 143-7.
[PMID: 12722459]
[104]
Jing YP. Effects of Soil Fauna (Nematodes and Earthworms) on the Removal of Poly cyclic Aromatic Hydrocarbons (PAHs) From Contaminated Soil. Nanjing Agricultural University 2011.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 2
Year: 2020
Page: [138 - 155]
Pages: 18
DOI: 10.2174/2405520412666191009104644
Price: $65

Article Metrics

PDF: 9
HTML: 3
PRC: 1